
Distributed Abstract Data Types

Gian Pietro Picco1, Matteo Migliavacca1,
Amy L. Murphy2, and Gruia-Catalin Roman3

1 Dip. di Elettronica e Informazione, Politecnico di Milano,Italy
2 Faculty of Informatics, Univ. of Lugano, Switzerland

3 Dept. of Computer Science and Engineering, Washington Univ. in St. Louis, USA

Abstract. In this paper we introduce the concept ofDistributed Abstract Data
Type (DADT), a new programming language construct specifically designed to
support the development of distributed, context-aware applications. Through a
DADT instance, a program gains access to both aggregate and individual ADT

instances throughout the system. The semantics of distribution and sharing is
specified byDADT operations using dedicated and novel programming constructs.
These include also the ability to declare at run-time partitions, calledviews, over
the targetADT instances based on their application or context state, to restrict
operation scope.
Interestingly,DADT constructs can be used to specify not only application data,
but also the space where it resides. This leads to a uniform treatment of the data
and space concerns, simplifying the development of context-aware applications
and providing the programmer with considerable flexibilityand expressive power.
We argue thatDADTs are amenable to incorporation in existing object-oriented
programming languages, as supported by our prototype implementation.

1 Introduction

Modern distributed computing places new demands on application programmers, not
only because of the increasing scale, decentralization, and dynamicity, but also because
of novel application requirements demanding control and visibility of the physical space
where the application executes. A paradigmatic example arethe applications falling
under the umbrella of pervasive, ubiquitous computing, andambient intelligence. In
these settings, programmers must derive information through simultaneous access to a
plethora of devices, sensors, or application objects, dispersed in the environment, e.g., to
gather aggregated information to base further decisions upon. Furthermore, the way this
processing is organized is often dependent on application or contextual information—
which is itself distributed (e.g., the mutual position of the entities involved, their residual
power, or their application state).

Despite the popularity of the field, the models and systems available often treat
the physical space—or context—where the application executes as something external
to the application, therefore requiring dedicated and specialized constructs increasing
the programming effort. Similarly, the abstractions for dealing with distribution are
usually quite primitive, often forcing the programmer to deal explicitly with the details
of individual remote accesses.

datatype Sensor {
data:

int sensorType;
bool isActive;

double value, resolution;
operations:
double read();

void reset();
}

Fig. 1. ADT interface for a simple sensor.

In the approach we describe here, we provide programming constructs to simplify
the access to distributed state, by explicitly taking into account physical space as well.
We accomplish this by extending the well-established programming notion of abstract
data type (ADT) into a distributed abstract data type(DADT). The state of multiple
ADTs disseminated in the system is made available collectivelythrough the interface
of a DADT, whose behavior in terms of distribution is defined by the programmer with
appropriate and dedicated constructs. Inside theDADT interface, properties overADT in-
stances enable the definition of partitions, calledviewsover the distributed state, which
can be used to dynamically restrict the scope of distributedoperations according to
the application needs. Interestingly, the definition ofDADTs and views is not limited
to application objects, as in conventional programming language, but is extended also
to the representation of space. Our model provides full integration of the spatial and
data concerns involved in the definition of context under a single, unified programming
framework revolving around the notion ofDADT. Data and space become two differ-
ent, and yet intimately related, perspectives enabling thedistributed manipulation of
application entities.

The paper is structured as follows. Section 2 introduces a simple and yet realistic
example, used throughout the paper for illustration purposes. Section 3 introduces the
reader to the basic concepts of ourDADT model. Section 4 discusses the constructs
enabling the programming of distributed access, while Section 5 introduces the notion
of a DADT viewenabling the programmer to specify declaratively and dynamically the
scope of an operation. Section 6 reports about the design andimplementation of our
proof-of-concept prototype. Section 7 placesDADTs in the context of related work and
Section 8 ends the paper with brief concluding remarks.

2 A Reference Example

This section introduces an example used throughout the paper to make the concepts
we present more concrete. Imagine an environment where several sensors are deployed
to report about some physical parameter (e.g., temperature). A monitoring station may
access the sensors to aggregate raw data (e.g., computing the average temperature), or
reset the sensor in case of problems.

Interaction with a sensor is naturally modeled by anADT, as shown in Figure 1. In a
conventional setting, this interface is used to access a sensor (i.e., aSensor instance) at
a time. Even a simple computation such as determining the average sensed value entails
a considerable programming effort. The programmer must have an explicit notion of the

sensor configuration, or at least of their identity, to invoke theread operation remotely
on each of them, fetch the corresponding value, and compute the average locally.

It can be argued that a skilled programmer would probably define a newADT, e.g.,
SensorProxy, that embodies this distributed processing. However, currently avail-
able languages do not provide any syntactic or semantic feature to keep track of the fact
that the twoADTs are conceptually related. Moreover, in the absence of proper mid-
dleware facilities, the behavior of this latterADT (SensorProxy in our case) must
be redefined from scratch every time. Also, the programmer does not retain any con-
trol over the portion of the system that should be affected byan operation. Thus, for
instance, there is no easy way to compute the average only on sensors that are within a
given range.

In the remainder of the paper, we use our sensor example to introduce the novel
notion ofdistributed abstract data type(DADT) which allows the programmer to define
a new, distributedADT as a refinement of the original one, define how it is possible to
restrain the set ofDADT instances involved in an operation, and therefore provide an
expressive solution to the problems we just outlined.

3 Basic Concepts

The driving motivations for our work are to manage distribution and context-awareness
while simultaneously minimizing the invasiveness for the programmer. Therefore, we
decided to cast our ideas into the notion ofabstract data type, as it represents a well-
understood and commonly used programming concept, and is general enough to allow
us to present our novel constructs without being distractedby the idiosyncrasies of a
specific programming language or model.

This latter aspect is reflected in the presentation style we adopt. TheDADT concept
is illustrated through code examples which allow the readerto appreciate directly how
the programmer can exploitDADTs in practice. The syntax, although inspired by mod-
ern programming object-oriented languages, serves illustration purposes and is not tied
to any particular language. We describe an instantiation ofthe DADT concept for the
Java language in Section 6.

Data and spaceADTs.At the core of our model is the notion ofADT. We draw a sharp
line between the data necessary to the application behavior, and the space where such
data resides. Accordingly, we distinguish between dataADTs and spaceADTs.

DataADTs are conventionalADTs encoding the application logic, like theSensor
ADT shown in Figure 1. Instead, spaceADTs (orsites) areADTs representing and char-
acterizing an abstract notion of the computational environment (e.g., a computer, a vir-
tual machine, a car, a person) hosting a dataADT. Many notions of space are meaning-
ful, depending on the application. For instance, the network topology may be irrelevant
for an Internet application, but it is fundamental in the context of mobile ad hoc net-
works. Similarly, physical location in space (e.g., gathered through a GPS system) is
usually irrelevant, but it becomes fundamental for many context-aware applications.
Traditionally, the structure of space is somehow hard-coded in the run-time of the dis-
tributed application, and programmers retain only limited—if any—control over it. In-
stead, in our approach we strive to empower the programmer with the ability to use

spacetype GPSSite extends Site {
data:
Location l;

operations:
Location getLocation();
double getBatteryLevel();

}

Fig. 2. A spaceADT representing a physical location.

(and even define) the notion of space that is most appropriatefor the application. As
such, the notion of site built in our approach is minimalistic, and consists of anADT

Site, which must be specialized by the programmer with the propernotion of space.
For instance, Figure 2 shows a spaceADT whose position in space is characterized by
a physical location. How the latter is physically acquired and defined (e.g., from GPS)
is entirely encapsulated in theADT implementation. In addition, it returns the current
battery level. One could similarly define aHost ADT representing a network host, or
any other notion of site, and “export” through the definitioncontextual data. Our imple-
mentation, described in Section 6, provides some built-in site definitions.

The only syntactic difference between data and spaceADTs is the use of the key-
wordsdatatype andspacetype introducing the declaration, essentially for en-
abling type checking and improving code readability and understanding.

From ADTs to DADTs. DistributedADTs specialize the notion ofADT by providing
the ability to treat a set of homogeneousADT instances as a collective unit, accessed
through the operations defined on theDADT interface. To make our presentation more
concrete, we return to the reference example introduced in Section 2 and consider a
scenario in which the application programmer frequently needs to compute the average
of sensed values, as well as to reset all the sensors.

Figure 3 is our starting point in illustrating by example theprogramming model we
put forth in this paper. The figure contains the declaration of a DADT calledDSensor
that enables distributed, collective access to instances of theADT Sensorwe defined in
Figure 1. The interface of theDADT specifies the signature of two operations providing
the aforementioned functionality.

The application programmer—which in large development efforts is likely to be
different from both theADT and DADT programmer—can then access the distributed
collection ofADTs by creating aDADT instance and using its operations. An instance
of a DADT is created using the constructs for conventionalADTs provided by the target
language, e.g., thenew operator and the notion of constructor. Thus, the application
programmer can write

datatype DSensor distributes Sensor with {
operations:
void resetAll();
double average();

}

Fig. 3.A dataDADT providing access to multiple sensors.

DSensor ds = new DSensor();
double v = ds.average();

to create aDSensor instance and use it to request the execution of the distributed pro-
cessing encapsulated in itsaverage operation, as specified by theDADT programmer.
Note how the operation invocation above is indistinguishable from any invocation on
a conventionalADT instance: the application programmer may even be unaware ofthe
distributed nature of the referenceds.

Similarly, one could define a spaceDADT providing collective access to a set of sites.
For instance, one could define aWirelessNetwork spaceDADT distributingSite
and providing distributed operations to test reachabilityof a given site or to change the
properties of the nodes involved, e.g., modify the wirelessrange.

The distributes relation and the member set.As the reader may have noticed,
the declaration of aDADT is similar to the one of anADT. This is not surprising, since
DADTs areADTs themselves. The only difference is the presence of thedistributes
relation, which extends the range of relations usually defined amongADT types, like
inheritance.A distributes B, whereA is a DADT andB an ADT, states that a set
of instances ofB4 can be collectively accessed through the operations definedin A’s
interface. Clearly, ifA distributes B andA is a spaceDADT, B must be a space
ADT, i.e., it must be a subtype ofSite.

The set ofADT instances available for distributed computation through aDADT

constitutes themember setof the DADT. The member set is effectively contained in
the data structure encapsulated by theDADT: everyDADT definition implicitly defines
a member set, whose elements areADT instances of the type on the right hand side of
thedistributes relation. In principle, the content of the member set is the same
across all theDADT instances in the system. Fulfilling this requirement, however, is
impractical not only in context-aware applications, whichoften involve mobile compo-
nents and other sources of dynamicity, but in general in any truly distributed system, as
asynchrony and concurrency complicate enormously the taskof maintaining a globally
consistent state. Moreover, different applications may require different, weaker notions
of consistency of the member set. For this reason, here and inthe rest of the paper we
assume that the underlying run-time provides only “best effort” guarantees for what
concerns the consistency of the member set. As a consequence, different DADT in-
stances may have different values of theDADT member set (e.g., because of transient
disconnections). At the same time, however, as we discuss inSection 6, our flexible
architecture of theDADT run-time provides mechanisms enabling customization of the
middleware with alternative consistency algorithms.

Binding an ADT into a DADT . Although we defined the notion of member set, we still
did not explain how anADT instance can become part of it. In our model, the binding of
anADT instance into aDADT is requested explicitly by the application programmer (i.e.,
the “client” of both theADT and theDADT distributing it) by using the dedicated pro-
gramming constructbind. In our examplebind(new Sensor(),"DSensor")
binds the newly createdSensor instance to the member set of theDADT named

4 Or any other type compatible withB according to the typing rules of the target language.

d a t a D A D T(m e m b e r s e t)

s p a c e D A D T(m e m b e r s e t)
s p a c e A D Ti n s t a n c e s(s i t e s)

d a t a A D Ti n s t a n c e s(a p p l i c a t i o n o b j e c t s) p l a c eb i n d d a t a
s p a c e

o p e r a t i o n i n v o c a t i o n o n a d a t a D A D T i n s t a n c e(e . g . , d s . a v e r a g e ())

o p e r a t i o n i n v o c a t i o n o n a s p a c e D A D T i n s t a n c e(e . g . , w n . i n c r e a s e R a n g e ())
b i n d

Fig. 4. Data and space in theDADT model.

DSensor. Thebind operation is idempotent. The dual effect of removing a given
ADT instance from the member set is obtained byunbind, with the same syntax.

The effect of these two operations is global. However, the propagation of the state
change, as discussed previously, is not necessarily synchronous w.r.t. the operation in-
vocation. Also, note how anADT instance is bound to aDADT type, not to a specific
DADT instance. In fact, it is theDADT name that serves to identify uniquely and col-
lectively a group ofADT instances;DADT instances, instead, serve only to provide an
“entry point” towards this group.

Putting it all together: The interplay of data and space.Figure 4 provides a graphical
representation of the concepts discussed thus far and introduces some new concepts.

The ADT instances in the figure can be bound to aDADT and therefore become
part of its member set. The latter is represented visually asa plane, onto whichADT

instances (the solid circles and squares) are “projected” as a consequence of abind
operation. Note how only thoseADTs that are explicitly bound by the programmer (i.e.,
for which an arrow towards the plane exists) become globallyaccessible through the
member set. Collective access to the member set is enabled through aDADT instance
(represented as a star), which serves as the “portal” towards the member set.

This allows access to either data or space, but, at this pointin the discussion, the
two are not related, meaning application objects are not associated to sites in space and

therefore no spatial context can be associated with dataADTs. Conventional program-
ming languages implicitly make this association when an object is created, including
it in the local “computational environment”, however, not only is this environment not
formally defined, but the programmer typically has no control over object placement.
Our model does both, defining a new operation,place, to define the binding between
a dataADT and a spaceADT. This operation, represented by the thick lines in Fig-
ure 4, can be performed explicitly by the programmer. For example, ifg is aGPSSite,
thenplace(new Sensor(),g) binds a newly created sensor to the existing siteg.
While this yields great degrees of flexibility for the programmer, some applications may
not require it. In this case, a default site can be provided tothe runtime system and every
newly created dataADT can be automatically bound to this site. Although this is very
similar to the conventional approach, the explicit definition of a site allows symmetric
treatment of data and space in the model. It is worth noting that placement of anADT

on a spaceADT is not necessary until thatADT is bound to aDADT. Prior to this, the
ADT can only be accessed as a regularobjectand no notion of location is needed.

As shown in the figure, multipleADTs can be placed on the same site. Also, the same
ADT can be bound to multipleDADTs; an option that could be represented in the figure
by drawing another plane (data or space) for the newDADT. By creating instances of
bothDADTs, the sameADTs can be accessed through multiple application perspectives
at different times. To see why this is useful for sites, consider a host with multiple
network interfaces, e.g., Bluetooth and WiFi. One option tosupport this is to create
two spaceDADTs, one for each network interface. Each host supporting bothinterfaces
should bind to bothDADTs. However, for the sake of simplicity the remainder of this
paper assumes a site is bound to a single spaceDADT, however the same is not true for
data.

The figure also demonstrates thatADT instances can be accessed by going through
instances of either a spaceDADT or a dataDADT, depending on the application needs.
Indeed, the power of the abstractions discussed thus far is unleashed when we intro-
duce the ability to restrict the scope of invocation by relying onboththe data and space
perspectives. Consider a laptop-based monitoring application that needs to obtain the
average sensed value only for temperature sensors and only in its immediate proximity.
Specifying this behavior with conventional programming constructs tends to be cum-
bersome. Instead, in ourDADT language this can be expressed simply and declaratively,
as in

double v = ds.average() on temperature within proximity;

wheretemperature andproximity are views defined and computed over the
member sets associated to the dataDADT DSensor and a spaceDADT (e.g.,Network).
Before delving into the details of how this is accomplished,however, we first discuss
which constructs are made available to the programmer for specifying the distributed
processing embodied in the operations of aDADT. We return to the topic ofDADT views
in Section 5.

1 void DSensor::resetAll() {
2 (all in targetset).reset();
3 }
4 double DSensor::average() {
5 double sum = 0;
6 double[] readings = (all in targetset).read();
7 for(int i=0; i<readings.length; i++)
8 sum += readings[i];
9 return sum/readings.length;

10 }

Fig. 5. Aggregating sensor data throughDADTs.

4 Distributed Access to ADTs

After the DADT ’s interface and targetADT are declared, as shown for instance in Fig-
ure 3, theDADT behavior realizing distributed, transparent access must be defined by
specifying the body of theDADT methods. Since aDADT is associated to the mem-
ber set, appropriate constructs are necessary to access andmanipulate the state of the
ADTs in this set both collectively and individually. To accomplish this, we introduce
two programming constructs:operatorsandactions.

4.1 Operators

Let us focus on the simple task of implementing theresetAllmethod ofDSensor,
whose intended behavior is simply to reset all the sensors inthe system. Since theDADT

operates on a set ofADT instances, one would like to be able to specify the desired
behavior by operating on the set in a declarative way. For instance, in a Z-like formal
language, one would express the semantics of the operation with something like:

∀x | x ∈ M • x.reset()

whereM is the member set ofDSensor. This is expressed in ourDADT language as
shown in Figure 5, where the expression above is representedby the statement on line
2. In this statement, the invocation target—normally a reference to anADT instance—is
replaced by an expression denoting the set of instances on which the methodreset is
executed. The semantics of execution is such thatreset gets invoked independently
and concurrently on each of theADT instances belonging to the set in the invocation
target. Figure 5 also shows the implementation of theaverage method, where the
results of the various invocation are collected and used by theDADT implementation.

Selection vs. condition operators.Next we look more closely at the expression repre-
senting the invocation target in line 2 of Figure 5. The variabletargetset, to which
everyDADT operation has implicit access, is the set ofADT instances that are available
for distributed processing. At this point of our presentation, the target set always co-
incides with the member set, however this is no longer true when DADT views will be
introduced in Section 5. The keywordin plays the role of the mathematical member-
ship operator∈. Finally, the operatorall allows one to extract a collective reference
to the instances in the target set.

Other operators also make sense. The dual operatorany, for example, is such that
the effect of

(any in targetset).reset();

is to reset one among the sensors in the target set, chosen non-deterministically. Both
all andany areselection operatorsor, shortly,selectors, in that they allow selection
of a subset of the instances contained in the target set. In the following, we describe
other selectors that add expressive power to ourDADT language.

Selection operators essentially enable the programmer to specify declaratively a
reference to a distributed invocation target constituted by multiple actualADT instances.
Interestingly, this is achieved transparently, i.e., the programmer does not require any
knowledge of the actualidentityof the instances. In addition, we also providecondition
operators, which can be used to make the code of aDADT method dependent on a
global condition on the target set. The operatorin? tests whether one set is contained
in another, while# returns the number of elements currently in it. With reference to
Figure 5, it would be possible to rewriteresetAll so that it resets all the sensors only
if a given “master” sensor (whose identifier below we assume known) is not available:

if (!({master} in? targetset)) (all in targetset).reset();

Similarly, we could rewriteaverage so that an average is effectively computed only
if, say, more than 3 sensors are around:

if ((# targetset)>3) readings = (all in targetset).read();

Clearly, other operators could be defined, beyond those discussed here. Examples are a
variant ofany that non-deterministically selects a given number of instances (e.g., as
in any(4)), or selectors relying on contextual information (e.g., anearest opera-
tor that returns the geographically closest instance). Ourcurrent prototype provides a
built-in implementation for the operators we described thus far, as well as the required
mechanisms to enable the programmer define her own, as we illustrate in Section 6.

Iteration operators. The ability to send multiple, concurrent remote invocations em-
powers the programmer with a high degree of expressiveness.However, in some cases it
may lead to inefficient use of communication resources. Examples are situations where
only a limited number of the nodes must be contacted, but their number is not known in
advance. In these situations, theall selector is clearly overkill. The problem is tack-
led by usingiteratorsand the associated operators. Figure 6 shows an example, which
would return the same value5 as the one shown in Figure 5, although likely with a
greater latency. The core of the computation is in line 6, where thenext selector en-
ables iterations over the members of the target set. As with all selectors,next operates
by picking one of the instances in the target set and returning a reference on which an
operation can be invoked. The (mandatory) parameter ofnext is an instance of the
Iterator ADT (line 4), which embeds the logic used to perform the iteration as well
as its current state, and is an argument for all iteration operators. These are, besides
next, prev, first, last, cur, and the conditional operatormore? used in the
loop condition of line 5.

5 Provided the network remains stable throughout the computation.

1 double DSensor::average() {
2 double sum=0;
3 int nodes=0;
4 Iterator i = new Iterator() on targetset;
5 while (more?(i) in targetset) {
6 sum += (next(i) in targetset).read(); nodes++;
7 }
8 return sum/nodes;
9 }

Fig. 6. Theaverage method rewritten using iterators.

1 void DSensor::resetMax() {
2 <double data, id source>[] readings;
3 readings = (all in targetset).read();
4 int m = 0;
5 for(int i=1; i<readings.length; i++)
6 if (readings[m].data < readings[i].data) m = i;
7 (readings[m].source in targetset).reset();
8 }

Fig. 7.Explicitly accessingADT instances.

As with other operators, the programmer may provide her own implementations
of iterators as described in Section 6, for instance to select the required iteration item
according to application or physical information (e.g., distance).

Enabling access to a specificADT instance.The notion ofDADT effectively abstracts
from the details of distribution, and enables the programmer to treat sets ofADT in-
stances as if they were one. Nevertheless, it is sometimes desirable or necessary, for
application needs or performance reasons, to access a givenADT instance. This requires
a means of identifying—and therefore distinguishing—it from the rest of the set, and
a means to target the instance and manipulate it. Returning to our example, we assume
that a new functionality must be added, namely, the ability to switch off the sensor cur-
rently reading the maximum value. The task is clearly composed of two parts: finding
such sensor, and resetting it.

As for the first problem, we can define a newDADT methodmax that returns such
identifier. However, none of the operators described thus far are suited for specifying its
behavior satisfactorily. We could use iterators, but that would affect latency linearly in
the scale of the system, which is usually not desirable. On the other hand, theall oper-
ator would help in identifying the maximum value, but not thesensor who read it, which
is necessary to solve the second problem. Figure 7 shows our solution to the problem.
Line 3 usesall to retrieve all the readings, but this time thereadings variable is
an array of pairs(double,id) instead of an array ofdouble. Both alternatives are
available to the programmer, which can therefore request the retrieval of the bare val-
ues, or of the corresponding source as well. At translation time, the static declaration
is sufficient to perform the necessary translation into the proper data structures of the
target language.

1 double DSensor::average() {
2 double[] readings; int tries = 3; bool found; int i;
3 while (tries > 0) {
4 readings = (all in targetset).read();
5 found = false; i = 0;
6 while (!found && i < readings.length)
7 found = (readings[i++] == ERROR);
8 if (found) --tries;
9 else break;

10 }
11 if (found) {
12 (all in targetset).reset();
13 readings = (all in targetset).read();
14 found = false; i = 0;
15 while (!found && i < readings.length)
16 found = (readings[i++] == ERROR);
17 }
18 if (!found) {
19 double sum = 0;
20 for (int i=0; i<readings.length; i++)
21 sum += readings[i];
22 return sum/readings.length;
23 } else /** report fault to the application **/;
24 }

Fig. 8. Access to remoteADTs: a naive solution.

Once the identifier is obtained, we are left with the problem of accessing explicitly
the corresponding sensor to reset it. This is naturally encompassed in our language by
using the identifier of the sensor as a selector (line 7). In general, a set of identifiers
can be used, thus supporting a specialization of theall selector where the invocation
target is a subset of programmer-specified instances.

4.2 Actions

The use of the aforementioned operators enables concurrentaccess to remoteADT in-
stances. Thus far, we have assumed that such access occurs only through one of the
ADT ’s operations. However, in many cases, this is not sufficient.

For instance, let us assume that theADT ’s read operation is capable of signaling
a malfunction by returning anERROR value (e.g., adouble value outside the range
of meaningful physical values sensed). In this case, it may be reasonable to circumvent
transient faults (e.g., due to interference of the sensor with physical phenomenons) with
simple countermeasures. A reasonable behavior could then be to retry the read operation
a number of times, after which the sensor is reset and the readrepeated again. If also
this last attempt fails, the fault is reported to the application.

A naive implementation of thisDADT behavior is shown in Figure 8. This solution
is clearly highly inefficient, since every time a fault is reported, theread operation

1 double DSensor::average() {
2 action double reliableRead() {
3 double reading; int tries = 3;
4 while (tries > 0) {
5 reading = local.read();
6 if (reading == ERROR) --tries;
7 else break;
8 }
9 if (reading == ERROR) {

10 local.reset();
11 reading = local.read();
12 }
13 }
14 double[] readings = (all in targetset).reliableRead();
15 bool found = false; int i = 0;
16 while (!found && i < readings.length)
17 found = (readings[i++] == ERROR);
18 if (!found) {
19 double sum = 0;
20 for (int i=0; i<readings.length; i++)
21 sum += readings[i];
22 return sum/readings.length;
23 } else /** report fault to the application **/;
24 }

Fig. 9.Access to remoteADTs using an action.

is retried onall sensors. Explicitly accessing a remote instance, as described in Sec-
tion 4.1, would only partially solve the problem by enablingthe programmer to limit
communication only towards those sensors that reported failure. Nevertheless, even in
this case a single interaction may result in several exchanges across the network, since
for each sensor theread andreset operations need be invoked from the (remote)
DADT instance. Moreover, this solution still requires a lot of bookkeeping, to keep track
of which sensors are still faulty and need another try and which instead started working
again.

Both solutions are inherently unsatisfactory because theyignore a fundamental
point: the sequence of failingread and correctivereset operations do not require in-
tervention of theDADT instance and instead can be controlled local to theADT instance.
In other words, a distinction is necessary between the application logic that determines
how to recover from a fault (which is entirely local to a sensor) and its distribution
across the system.

This separation can be achieved elegantly and efficiently with the notion ofaction.
An action is essentially an operation that is defined in theDADT but whose execution
occurs on theADT instance on which it is invoked. Loosely speaking, actions enable
the programmer to writeDADT code that operates onADT instances as if they were
exporting a richer interface, whose content is under control of the DADT programmer.

Figure 9 illustrates the concept. The action declaration iscontained in lines 2–
13, and is identical to the declaration of a standard programming language routine,
prepended by the keywordaction. The only difference is the use of the keyword

local, which is bound at runtime to theADT instance on which the action is currently
being evaluated. Note howlocal is different from the traditionalthis keyword,
pointing in this case to theDADT instance on which the operation containing the ac-
tion (average) is being invoked. This should not be surprising, in that although the
actiondefinitionbelongs to theDADT and its execution is triggered through one of the
DADT operations, the actionexecutionis entirely local to the sensor, as if it were just
another operation6 of theADT. These semantics can be “visualized” by considering ac-
tions as mobile code [5] being shipped dynamically and remotely evaluated on theADT

instances. However, mobile code is only one of the options available for their distributed
execution.

The action code in Figure 9 performs the local read and, if an error is reported,
retries the read and possibly resets the sensor. Theaverage DADT operation exploits
this action definition by simply invoking the action over thesensors in the target set
using the notation we described in Section 4.1 (line 14). Theremainder of the operation
scans the obtained readings for error codes (returned by sensors with a persistent fault)
and either computes and returns the average as in Figure 5 or reports the error to the
application.

Actions declared in an operation block are not visible outside, according to lexical
scoping rules. However, an action can also be declared in theDADT interface. The
action becomes visible and can be reused by any of theDADT operations and by client
objects calling these operations. The action code becomes encapsulated in theDADT,
thus providing a beneficial form of information hiding.

5 Restricting the Scope of Operations

Distributed sharing ofADTs as we have defined it thus far is a powerful concept. How-
ever, in many situations the invocation of an operation overall the instances in the
member set may not be desirable. Performance reasons may render it impractical. Ap-
plication needs may suggest better policies that restrain the effect of an operation only
to a subset of the instances.

Our reference example helps in clarifying these concepts. In our scenario, different
kinds of sensors (e.g., temperature, light, humidity) may be present. In Figure 1 this
fact is taken into account by the attributesensorType. If the only notion of sharing
available is one where all instances of a given type are effectively considered for the
distributed computation ofaverage, then values belonging to sensors of different
kinds are averaged together, yielding a meaningless result. In this case, we would like to
be able to operate only on a subset of the sensors available—those of a given kind. One
could argue that the sensor kind could (or should) be encodedas a differentADT, e.g.,
inheriting from a supertype representing an abstract notion of a sensor. Unfortunately,
the same requirement may hold for other characteristics of asensor that represent a
portion of its state, as opposed to a static characteristic like the sensor type, e.g., to reset
all the sensors that are currently inactive or to compute theaverage only from sensors

6 For what concerns distributed execution,ADT operations can be regarded as and are effectively
treated as a special case of action.

1 datatype DSensor distributes Sensor with {
2 properties:
3 bool isActive();
4 bool isSensorType(int sensorType);
5 bool isPrecise(double resolution);
6 actions:
7 double[] reliableRead();
8 operations:
9 double average();

10 void readAll();
11 }
12 bool DSensor::isActive() {
13 return local.isActive;
14 }
15 bool DSensor::isSensorType(int sensorType) {
16 return local.sensorType == sensorType;
17 }
18 bool DSensor::isPrecise(double resolution) {
19 return local.resolution >= resolution;
20 }
21 void DSensor::resetAll() {/* ...as in Figure 5... */}
22 double DSensor::average() {/* ...as in Figure 5... */}

Fig. 10.Restricting the scope of operations over data.

that guarantee a given resolution. In essence, in these cases one would like to be able to
specify something to the effect of

∀x | ¬(x is active) ∧ x ∈ M • x.reset()

or even

A
def
= {x | x is active∧ x ∈ M} ∀x | x 6∈ A • x.reset()

We provide this level of flexibility and expressiveness inDADTs by introducing the
notions of property and view. Conceptually, apropertyis a characteristic of aDADT de-
fined in terms of anADT ’s data and operations, and evaluated local to anADT instance.
In programming terms, properties are specified as part of theDADT interface as oper-
ations returning a boolean. Figure 10 shows theDADT we defined earlier in Figure 3
augmented with properties. For instance,isActive returns true if the local value of
the attributeisActive (see Figure 1) on theSensor instance where the property is
being evaluated is true as well. Similarly,isSensorType andisPrecise return
true if the target sensor is of the kind specified or provides asufficient resolution, re-
spectively. The definition of these properties in Figure 10 relies on thelocal keyword
to access theADT instance they are currently being evaluated upon, similarly to actions
in Section 4.2. Indeed, like actions, properties are definedon theDADT but evaluated
on (remote)ADTs.

This simple concept enables the definition of partitions of the member set into
programmer-defined subsets, which we callDADT views. Properties define the mem-
bership function for the elements in such subset. Views are defined by the programmer

using dedicated constructs. For instance, theA subset in the formula above effectively
represents a view, which can be declared as:

dataview active on DSensor as isActive();

In this case, the viewactive is defined as the subset of the member set ofDSensor
and contains only those (Sensor) instances for which the evaluation of the property
isActive yields true. TheDADT name is used to refer implicitly to its member set.

Properties can have parameters. For instance, the view containing all temperature
sensors can be defined as:

dataview temperature on DSensor as isSensorType(TEMP);

After a view is defined, it can be used for restricting the scope of aDADT operation.
For instance, the following code snippet

ds.resetAll() on !active;

resets all the sensors that are currently inactive. The semantics of execution is such that
thetargetset in line 2 of Figure 5, which in Section 4.1 was bound to the member
set, is here bound at invocation time to the identifiers of theADT instances belonging to
the view. Of course, the resulting view may be empty, i.e., noinstance satisfies the view
definition. In this case no operation is performed.

Note how in the statement above the boolean negation operator is used to obtain the
subset of instances that arenot in the viewactive. This is an example of the more
general ability to compose views by connecting their properties using boolean opera-
tors. The mechanics are trivial, since the properties defining the views are essentially
logic predicates over the state of anADT instance. Yet, this feature is powerful as it
allows one to express views using set union and intersection. For instance the following
definition

dataview preciseOn on DSensor
as isPrecise(0.1) && isActive();

captures the subset of sensors that are active and provide a resolution greater than 10%.
It is worth noting how all the views we defined thus far are symmetric, i.e, regardless

of the specificDADT instance requesting the operation whose scope is restricted by the
view, the latter always contains the same elements. In some cases, however, it is useful
to define views that depend on thestateof the DADT instance target of the distributed
operation. As we briefly mentioned in Section 3,DADTs may define attributes, e.g., to
store intermediate, aggregated data. Imagine a variation of the declaration ofDSensor
in Figure 10 where an attributelastAverage of type double is declared. This
attribute may be used to cache the last average value read throughaverage, and can
be exploited to define a property

bool DSensor::isBelowAverage() {
return local.read() < this.lastAverage;

}

which returns true for all sensors whose currently read value is below this cached
average value. Any view involving this property is asymmetric, in that the subset of
the member set it denotes depends on the value oflastAverage associated to the

spacetype WirelessNetwork distributes WirelessSite with {
properties:
bool isReachable(int hops);

operations:
void modifyRange(double percent);

}

Fig. 11.A spaceDADT providing distributed access to sites.

DSensor instance involved in the distributed computation, which can be different
since different instances may have invokedaverage at different times. The semantics
of execution is such that the value of the attribute accessedthroughthis is “frozen”
at invocation time, as this enables a straightforward distributed implementation without
losing significant expressive power. The use of thethis keyword, however, must be
limited to enabling access to attributes of theDADT, sinceDADT operations cannot be
performed from within the property, as its evaluation takesplace on theADT and not
on theDADT instance. Both theADT data and operations can instead be accessed freely
throughlocal.

Multiple views may coexist in the same code fragment, and be used at different
times on the sameDADT instance. For example, based on some of the previous declara-
tions, one could write:

ds.resetAll() on temperature;
double v = ds.average() on (preciseOn && temperature);

The statements above operate on the sameDADT instance, but on different target sets
and with different operations. Moreover, the definitions ofresetAll andaverage
are unchanged from those we provided in Section 4.

If no view is specified at invocation time, the operation is performed on the whole
member set, as we discussed in Section 4.1. Indeed, the member set defines the most
general view containingADT instances bound to theDADT. Moreover, all the constructs
we discussed in Section 4 can be used with views, as these are ultimately sets ofADT

instances. This holds not only for theDADT programmerinside the definition of an
operation, but also for the application programmer and thereforeoutsidetheDADT defi-
nition. For instance, the following program fragment reliably retrieves the values sensed
by all the active temperature sensors using the action whosecode7 appeared in Figure 9,
provided that there are at least three of these sensors provide sufficient resolution:

if ((# (preciseOn && temperature)) >= 3)
(all in (active && temperature)).reliableAverage();

All the considerations we made thus far clearly hold not onlyfor data viewslike
those we used in our examples, but also forspace views, i.e., views that are defined over
spaceDADTs. At different times, it may be necessary to access different sets of sensors
based on the configuration of the space where they reside. In aresource-constrained en-
vironment, for instance, most of the operations may involvesensors that are close, e.g.,
two hops away from the object requesting the probe. Figure 11shows the definition8

7 Note how, contrary to Figure 9, in Figure 10 the action had been declared in the interface of
theDSensor.

8 We omit the definition ofWirelessSite for the sake of brevity.

of theWirelessNetwork spaceDADT we briefly mentioned at the end of Section 3,
addressing this requirement.WirelessNetwork defines a propertyisReachable
that yields true if the target host is within a specified number of hops. Similarly to data
views, the programmer can now define a space view, e.g.,

spaceview proximity on WirelessNetwork as isReachable(2);

and use it to restrict an operation’s scope over the spaceDADT, e.g., to reduce by 10%
the communication range of “nearby” hosts as in

wn.modifyRange(-0.1) within proximity;

Note howproximity is asymmetric, as it depends on the implicit location of the
DSensor instance on which it is invoked.

Analogously toDADT types, data views are syntactically distinguished from their
space counterparts usingdataview andspaceview. This enables type checking to
prevent incorrect use of properties in a view definition (e.g., using a property on a space
DADT to define a data view), or incorrect use of a view in an operation invocation (e.g.,
using a data view in place of a space view).

Data views and space views can be used together. For instance

double v = ds.average() on temperature within proximity;

returns the average value of all temperature sensors in the space region defined by the
view proximity. Similarly,

wn.modifyRange(-0.1) on temperature within proximity;

reduces the wireless communication range of all the nearby nodes hosting a temperature
sensor. The content oftargetset inside the body of the invoked (data or space)
DADT operation is computed as the intersection of the subsets defined by the two views.
Figure 12 illustrates the concept w.r.t. the first of the two statements above. Differently
from Figure 4, data and spaceADT instances are not shown—only their “projection” on
the member sets is. The arrow between a dataADT (circle) and a site (square) means
that the former is placed on the latter. The black componentson the left make explicit
the fact thatDADT instances are themselvesADT instances and reside on a site, which
can be relevant for the definition of asymmetric views, e.g.,proximity.

As we mentioned in Section 3, ourDADT model provides a unified representation of
data and space, where they are simply two different perspectives for accessing and ma-
nipulating the applicationADTs. The notion ofDADT provides the mechanism for defin-
ing the application behavior manipulating the distributedstate, as well as the observable
state that can be used to define views.DADT instances are instead the dynamic entities
through which distributed access is effected, and whose scope is restricted dynamically
by means of views. The programmer is free to decide what is thebest “vantage point”
for accessing the distributed system. She can use a dataDADT instance to operate on the
distributed data and yet restrict the scope using predicates that are based on character-
istics of data, space, or both, depending on the needs of the application. Similarly, she
can use any kind of view to access the distributed representation of space. In our model,
data and space become easily interchanged during the programming practice, with our
model coherently maintaining their semantic interaction.

D S e n s o r(m e m b e r s e t)
W i r e l e s s N e t w o r k(m e m b e r s e t)

d a t a
s p a c e

d s . a v e r a g e () o n t e m p e r a t u r e w i t h i n p r o x i m i t yt e m p e r a t u r e

p r o x i m i t y
t e m p e r a t u r e& &p r o x i m i t y(t a r g e t s e t)D S e n s o ri n s t a n c e (d s)s i t e w h e r ed s r e s i d e s

Fig. 12.DADT views.

6 Prototype Implementation

To verify the feasibility of theDADT model we developed a proof-of-concept prototype,
providing theDADT constructs described thus far in the context of the Java language.
The prototype, currently nicknamedJDADT, is divided into two parts: a translator
and a run-time. Thetranslatortakes care of translating a Java program augmented with
statements from ourDADT language into a conventional Java program, through a pre-
compilation step. The code generated by the translator implements theDADT constructs
by using the classes defined in therun-time library. Once the translation is generated,
the resulting code can be directly executed on any Java virtual machine where the run-
time packages are deployed.

The translator for the source-to-source transformation isimplemented using the
ANTLR [1] parser generator. The source grammar is a modification of the Java 1.5
grammar by Studman [13] with extensions for DADT constructs. When launched, the
ANTLR generator builds the Abstract Syntax Tree (AST) with custom nodes for DADT
constructs which are next modified bytree walkersto reconstruct a plain Java AST. This
AST is emitted with a standard ANTLR Java emitter into code that contains invocations
to the run-time as detailed next.

The run-time architecture is composed of several components, the main classes of
which are outlined in Figure 13. The top layer is constitutedby application classes,
like those we used in our example. While the definition of dataADTs andDADTs is
entirely up to the programmer, our implementation providesbuilt-in notions ofHost
andNetwork.

The layer below constitutes the API of ourDADT run-time. This API is not di-
rectly accessible to the programmer who codes using the constructs we defined earlier.
Instead, it is used by the translator, to map theDADT constructs into the appropriate run-
time objects and invocations. The classDADTMgr provides the methods handling the
binding ofADTs to DADTs (used to executebind andunbind), to specify theSite

V i e w O p e r a t o r< < a b s t r a c t > > I t e r a t o r< < a b s t r a c t > >
R e s u l t D a t aI n v o c a t i o n D a t a

A c t i o n< < a b s t r a c t > >
P r o p e r t y< < a b s t r a c t > >D A D T M g r< < a b s t r a c t > >B i n d i n g R e g i s t r yI P M u l t i c a s t D A D T M g r I P M u l t i c a s t I t e r a t o rI P M u l t i c a s t A l l. . .I P M u l t i c a s t A n y

*
S e n s o rD S e n s o r< < d i s t r i b u t e s > > H o s tN e t w o r k< < d i s t r i b u t e s > >

S i t e

Fig. 13.The architecture of theJDADT run-time.

instance abstracting thenode9 where the run-time executes, as well as other auxiliary
methods managing configuration aspects of the run-time. There is only oneDADTMgr
instance per node.

The abstract classesProperty andAction represent the corresponding con-
cepts, and are similar in that both are essentiallyDADT methods whose execution takes
place on a (remote)ADT. To understand the translation strategy, let us focus on the
isPrecise property shown in Figure 10. The translator can straightforwardly gener-
ate the following corresponding class:

class isPrecise_Property extends Property {
double resolution;
isPrecise_Property(double resolution) {
this.resolution = resolution;

}
boolean evaluate(Object o) {
Sensor local = (Sensor) o;
return local.resolution >= resolution;

}
}

where the property parameter is now a class attribute, and the property body is contained
in theevaluate method. The latter accepts as a parameter an instance of theADT

9 Hereafter, we use the termnodeto represent the physical computational environment where
the run-time executes. In our implementation, the node is a JVM, and its identifier a pair
host:port. The node should not be confused with asite, which is a node’s abstract repre-
sentation as a spaceADT.

distributed by theDADT (Sensor in our case), which can be safely substituted for
the keywordlocal we used in Figure 10. A similar strategy is used for translating
actions like the one in Figure 9 into anAction class.Property andAction objects
are created upon action invocation or view definition, serialized, and once deserialized
on the node of the targetADT instance (e.g., thes object) theirevaluate method
is executed by using such object as a parameter. In doing this, we currently assume
that all the corresponding code is pre-deployed, together with the DADT class, on the
interested nodes. A more dynamic and open design can be easily obtained using a code
on demand mobile code paradigm [5], to dynamically relocatethe involved classes only
if and when really needed.

A view (data, space, or a mixture thereof) is represented by aView object, which
contains the set ofProperty objects associated with the view definition. To easily
manage the composition of properties through boolean operators, the property objects
are arranged in an abstract tree representing the logical predicate defining the view,
where the leaves are the property objects and the nodes are the boolean operators used
to compose them. To determine whether a givenADT instance belongs to the view,
the methodisMember(Object o) navigates the tree from the leaves to the top,
invoking theevaluatemethod of each property and composing it with others through
the boolean operator in each node. The process terminates atthe root, (i.e., the view
object) with the boolean result of the evaluation. Views areeasily composed by similarly
merging their property trees by means of boolean operators.Finally, View provides a
methodapply that allows execution of an action on theADT instances selected by an
operator.

Operator is the superclass of any of theDADT operators described in Section 4.1.
Iterator specializesOperator by providing directly the iteration operators (e.g.,
next) as methods. The programmer can provide new operators and iterators by simply
subclassing the aforementioned classes. The correct implementation can be built-in by
the translator or retrieved at run-time fromDADTMgr, designed using the Factory pat-
tern. The behavior of an operator is specified by overriding two methods. The method
performRemote(View v) is invoked on the node where the program requests the
evaluation of an operator, and embeds the logic for distributing the information nec-
essary to the collective evaluation of the operator on the view, and the retrieval of the
invocation results. Instead,performLocal(InvocationData d) is performed
on all the other nodes involved in the computation, and contains the logic for evalu-
ating the operator local to a single node and sending the results back to the initiator.
Operator essentially embeds all the distribution logic, as discussed later.

InvocationData is used for communication and contains the components nec-
essary to perform an invocation, i.e., the view specification, the operator to be applied,
the action to be executed, and the initiator’s identifier.ResultData contains an ar-
ray of pairs ofSerializable andADT identifiers10, and is the type of return values
for performLocal andperformRemote. Finally, theBindingRegistry ob-
ject associated to theDADTMgr singleton contains the information about which node’s
ADT is bound to whichDADT, and provides methods to determine the localADT in-

10 These are global. In our implementation they are the Java object identifier with the node iden-
tifier where the object is created.

stances that satisfy a given view specification. Finally, the bottom layer contains the
classes specializing our framework.

An example helps understand how the various components cooperate. Consider the
program statements

dataview preciseOn on DSensor as isPrecise(0.1) && isActive();
spaceview proximity on Network as isReachable(2);
ds.average() on preciseOn within proximity;

with the fault-tolerant definition ofaverage in Figure 9. The translator would first
generate theProperty subclasses for the properties defining the two views, create
the corresponding objects, and insert them in the abstract tree, either directly or by
invoking the methods (and, or) for logically composing properties:

View preciseOn = new View(new isPrecise_Property(0.1)
.and(new isActive_Property()));

View proximity = new View(new isReachable_Property(2));

Moreover, the translator modifies the signature ofaverage into

double average(View targetset)

so that the representation of the view specification (conjunction of preciseOn and
proximity) which effectively becomes the operation target set can be passed upon
method invocation as in

ds.average(new View(preciseOn).and(proximity));

Note how a newView instance is generated on the fly to represent theon...within...
portion of the invocation by merging the data view and the space view. In our imple-
mentation, both are represented usingView objects, which are then composed like
properties. Different constructors ofView are provided to create a view out of its prop-
erties or based on already existing views. Moreover, the translator generates a subclass
of Action representing the actionreliableRead in the figure, translated as we
described earlier. Line 14 of Figure 9, containing the action invocation in conjunction
with theall operator, is therefore translated as

double[] readings =
(double[]) view.apply("all",new reliableRead_Action());

The body of theapplymethod retrieves from the node’sDADTMgr instance the proper
implementation of the operator based on the name being passed as a parameter, and
starts its distributed execution on the boundADTs, as shown in the following excerpt

Object apply(String name, Action a) { ...
Operator op = DADTMgr.getOperator(name);
ResultData d = op.performRemote(
new InvocationData(this,name,a,initiator));

... }

wherethis is theView instance requesting the invocation andinitiator is the
identifier of the corresponding node.

As we mentioned earlier, the actual implementation of the operator manages directly
the communication between the initiator node and those hosting ADTs. In our proto-
type, for instance, the implementation of theall operator leverages off UDP unicast
and multicast sockets. Multicast is exploited for distributing information to theADT in-
stances bound to a givenDADT. The implementation ofIPMulticastAll.perfo-
rmRemote, therefore, simply sends theInvocationData object to the multicast
group associated to theDADT name (e.g.,DSensor). On the remoteADT nodes, the
communication run-time (which is initialized by our own specialization ofIPMulti-
castDADTMgr) receives this object and, based on the information it contains, cre-
ates the appropriate instance of theall operator and delegates toperformLocal
the processing of theInvocationData object. This latter method takes care of
the local processing, i.e., it queries the localBindingRegistry to obtain all the
ADTs that are bound to theDADT and whose state satisfies the view specification in
InvocationData. Moreover, it performs the action invocationa.evaluate(s)
on eachADT instance returned. The results are packed in aResultData object and
sent back to the initiator. InIPMulticastAll this is done using UDP unicast.

The design we just described is conceived asframework, in the object-oriented
sense and can be customized by changing a limited number of classes, most impor-
tantlyOperator subclasses andDADTMgr. For instance, in our implementation when
abind operation is issuedIPMulticastDADTMgr takes care of joining the multi-
cast group corresponding to the boundDADT. Moreover, note how each operator can
potentially define its own way to manage communication. For instance, while theall
operator dispatches directly theInvocationData using multicast, the implementa-
tion of iterators effectively uses multicast to build the target set and then uses unicast
communication for contacting eachADT.

Although ourJDADT run-time is a proof-of-concept prototype, its design and im-
plementation are still non-trivial. It is fully decentralized and, although we tested it thus
far only in a fixed environment, its reliance only on the most basic network facilities
leaves open the opportunity for a seamless migration to moredynamic ones, using the
appropriate routing algorithms (e.g., MAODV [11]). Nevertheless, it can clearly be im-
proved in many respects. Most notably, we are currently studying distributed algorithms
for managing more efficiently the distributed dissemination of actions and results, and
for maintaining views. In doing this, we are supported by ourprevious work on data
sharing middleware for mobile computing (e.g., LIME [9] and EgoSpaces [8]).

7 Related Work

The closest works are probably in the context of parallel systems. SharedADTs (SADTs) [6]
focuses on providing implementations of several standard data types, whose imple-
mentation is designed to scale well in the parallel environment. Concurrent Aggregates
(CAs) [4] provides language-level support for defining boththe ADT interface and the
implementation of its distributed components. Each component is defined in terms of
message processing and is explicitly enabled to send messages to fellow components,
creating aggregate behavior. In comparison to these systems, not onlyDADTs target the
more general distributed setting, but they also provide a unique and uniform treatment

of data and space, as well as the increased flexibility comingfrom the view concept.
In the other systems, not only is the view the same at all times, but the components
contributing to it cannot change during execution.

DADTs are also somehow related to software distributed shared memory (SDSM)
models, which aim at masking entirely distribution, while in our approach distribution
is under the control of the programmer. Recently, SDSM has been applied to embedded
systems in the Spatial Programming model [2] by making an analogy between space and
memory and exposing space to applications through spatial references, which enable the
definition of regions determining the components interested in a given computation. In
contrast, the main advantages ofDADT stem from the clean separation between data and
space, and its ability to provide access to multiple instances through a singleDADT ref-
erence, instead of access to a single object. Moreover, thisis accomplished by defining
a data view, further restraining the spatial constraints.

Some aspects of our work may look reminiscent of distributedobject platforms
(e.g., CORBA or Emerald [7]). However, these platforms relyon remote method invo-
cation as a means to access explicitly identified, single object instances. Instead, in our
DADT model the identity of remote objects remains hidden (unlessexplicitly needed),
enabling transparent access. Moreover, collective accessoccurs through a singleDADT

interface, while the same aggregation would require extensive programming effort in a
distributed object system. Finally, distributed object systems hide the object location in
references, whileDADTs foster a clean separation between data and space, hiding lo-
cation when dealing with data, but enabling its (direct or indirect) access when dealing
with space.

Another research connection is with process calculi exploring the representation of
locality in concurrent and distributed systems. For instance, the Ambient calculus [3]
represents space as a hierarchical composition of scopes (ambients) where processes
dwell. Processes can dissolve ambients as well as migrate from one ambient to another.
However, while a hierarchical structure of space is easy to reason about, is easily mir-
rored in the language syntax, and may be well-suited to modelthe logical mobility of
agents, it is too rigid to represent the physical mobility ofhosts, as physical space is
rarely best modeled as a hierarchy. Similar considerationshold for other works that
also adopt a hierarchical representation of space, e.g., the extension to join calculus
supporting context-awareness described in [14]. A more recent and flexible proposal is
τKLAIM [10], which assumes processes communicating and migratingacross a (flat)
network, whose dynamic changes can be described and encompassed in the calculus.
DADTs currently do not have a formal model, although its definition is among our cur-
rent research goals. Nevertheless, we maintain that the aforementioned languages are
less expressive thanDADTs in terms of their manipulation of data and space. Namely,
they capture distribution at a lower level of abstraction and do not provide the ability
to scope the execution of operations and actions based on arbitrary predicates over data
and/or space. Moreover, the distance of all these theoretical approaches from main-
stream programmers is large. We contend that by integratingour model in the main-
stream abstraction ofADT and by embodying it in the popular Java language and im-
plementation we reduce the semantic gap between our abstractions and their real use by
the programmer.

Finally, the idea of using sets as a programming abstractionwas pioneered in the
early 70’s (e.g., [12]). However, the goal was to use sets forall programming tasks. In
our context, we use the set abstraction only to deal with someaspects of distribution
and therefore we do not need the full power provided by the aforementioned languages.
Instead, our goal is to blend our set-based programming constructs into those of modern
languages.

8 Conclusion

Developing distributed applications is a complex task, especially when the physical
space is involved in the application requirements and logic, as in the case of context-
aware computing.

In this paper, we proposedDADTs as a novel distributed programming model en-
abling collective access to data and space entities by meansof operations whose dis-
tributed behavior is encapsulated in theDADT using dedicated constructs, and whose
invocation scope can be dynamically defined based on application and contextual infor-
mation. We conjecture that the unified treatment of data and space concerns inside the
model, together with our choice to embed these features in a well-known and widely
used programming technique, is likely to improve programming practices in modern
distributed and context-aware computing.

Future work will address both the model and the implementation. A formalization
of the syntactic and semantic aspects ofDADTs is among our immediate goals. More-
over, we will continue improving and refining our prototype,investigating efficient al-
gorithms for view maintenance and action dissemination.

References

1. ANTLR Web page.www.antlr.org.
2. C. Borcea et al. Spatial programming using smart messages: Design and implementation. In

Proc. of the 24th Int. Conf. on Distributed Computing Systems (ICDCS), March 2004.
3. L. Cardelli and A. D. Gordon. Mobile ambients. InFoundations of Software Science and

Computation Structures: First International Conference,FOSSACS ’98. Springer-Verlag,
Berlin Germany, 1998.

4. A. Chien and W. Dally. Concurrent Aggregates (CA). InProc. of the 2nd ACM SIGPLAN
Symp. on Principles & practice of parallel programming, pages 187–196. ACM Press, 1990.

5. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding CodeMobility. IEEE Trans. on
Software Engineering, 24(5), 1998.

6. D. Goodeve et al. Toward a model for shared data abstraction with performance.J. of Parallel
and Distributed Computing, 49(1):156–167, 1998.

7. E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grainedMobility in the Emerald System.
ACM Trans. on Computer Systems, 6(2):109–133, Feb. 1988.

8. C. Julien and G.-C. Roman. Active Coordination in Ad Hoc Networks. InProc. of COOR-
DINATION 2004.

9. G.P. Picco, A. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. InProc. of the 21st

Int. Conf. on Software Engineering, pages 368–377, May 1999.

10. R. D. Nicola, D. Gorla, and R. Pugliese. Pattern Matchingover a Dynamic Network of Tuple
Spaces. InProc. of the 7th Int. Conf. on Coordination Models and Languages (COORDI-
NATION), LNCS 3454, Namur (Belgium), April 2005.

11. E. Royer and C. Perkins. Multicast Operation of the Ad-hoc On-Demand Distance Vector
Routing Protocol. InProc. of MobiCom, 1999.

12. J. T. Schwartz et al.Programming with sets; an introduction to SETL. Springer, 1986.
13. M. Studman et al. Java 1.5 Grammar.www.antlr.org/grammar/1109874324096/

java1.5.zip.
14. P. Zimmer. A Calculus for Context-Awareness. TechnicalReport RS-05-27, BRICS: Basic

Research in Computer Science, August 2005.

