Enabling Scoping
in Sensor Network Macroprogramming

Luca Mottol&, Animesh Pathak Amol Bakshi, Viktor K. Prasanng and Gian Pietro Pic¢o
iPolitecnico di Milano, Italyyrot t ol a@l et . polimi . it
TUniversity of Southern California, USAani nesh, anol, prasannaj@isc. edu
#University of Trento, Italypi cco@li t. unitn.it

Abstract

Wireless sensor networks are increasingly employed tololew@phisticated applications beyond simple data
gathering. In these scenaridgterogeneousodes are deployed, amaultiple parallel activitiesmust be performed
to achieve the application goals. Therefore, applicatievetbpers require the ability foartition the systenbased
on the node characteristics, and specify the interactietaden different partitions to implement the processing
germane to different activities.

Node-level programming abstractions for sensor netwogk® lalready tackled this problem by providing a no-
tion of scoping However, the level of abstraction achieved is still notesiito implementing non-trivial, large-scale
applications. In this paper we demonstrate how the aforéor@d issue can be addressed by enalditgping con-
ceptsin macroprogrammingdor sensor networks. Using macroprogramming, developsan at a higher level of
abstraction, focusing on the behavior to be achieved byyhtems as a whole. By enabling scoping in macropro-
gramming, they can capture the essence of a significantalakstributed, embedded applications in a very concise
manner. This extremely simplifies the development procass increases the maintainability and re-usability of the
resulting implementations.

1 Introduction

Initial deployments of wireless sensor networks focused@ingle, system-wide goal, and featured fairly simple
architectures and algorithms. Habitat monitoring [10], idely cited example in this respect, can indeed be imple-
mented using mostliomogeneousodes, each running tlkameapplication code. In these scenarios, developers are
required to describe fairly simple patterns of interactiang., that of sensing and reporting a physical reading.
Recent technological advances and the consequent adverdrefpowerful sensor nodes [14] are, however, en-
abling the use of WSNs in increasingly sophisticated sgdtifrom smart spaces [24] to monitoring and control in
buildings [8]. These applications often invollieterogeneousodes equipped with actuators to influence the environ-
ment, and their ultimate goal is usually obtained by commpsifferent,collaborating activities For instance, a road
traffic management application [13] is usually designedaidgrm at least two different activities, e.g., controdjithe

speed of vehicles on the highway, and regulating accessghrime ramps leading to it. For this purpose, various types

*This work is partially supported by the European Union urtterlST-004536 RUNES project and by the National Sciencenéfation, USA,
under grant number CCF-0430061.

of sensors are employed, and different devices are indtialmfluence the environment, e.g., speed limit displayk an
ramp signals. In this respect, a non-trivial example isferdescribed in Section 2.

Developers of these applications face several commonesigahk, due to the presence of different types of nodes and
several concurrent activities. In these scenarios, they tespecify different system partitions and express tte-in
actions between them, so as to map the processing implargehé different activities to the “right” subset of nodes.
To achieve this, different notions stopinghave been proposed in the sensor network literature, ¢9.26, 27].
These generally refer to the ability of grouping, at a loblegel, nodes satisfying specific application requirersent
This approach actually addressesneof the needs arising in developing complex applicationsmagking hetero-
geneity and providing support for expressing non-trivianenunication patterns. However, the currently available
abstractions supporting scoping are targeted to nodépesgramming frameworks. As a result, developers are still
forced to handle low level aspects such as parsing receiesdages, as in [27].

Clearly, more powerful abstractions must be provided tddehain-experts without a strong computing background
develop complex sensor network applications. An answerisorteed can be found in the contexteécroprogram-
ming[4, 11, 21], where higher-level abstractions are providmaising on the system as a whole, and many low-level
details related to inter-node communication and coordinare hidden. However, most of the existing approaches in
macroprogramming do not explicitly address heterogenaitgt do not allow the specification of different collaborat-

ing parallel activities. To address this issue, in this payepresent the following contributions:

e We propose in Section 4 a precise definitionsebpingin sensor networks to provide a foundation for our
work. Based on this, we take an existing macroprogrammindahavhose salient features are described in
Section 3, and introduce novel programming constructs ablkerthe definition of system partitions and express
the interactions between them. Using this approach, weigg@application developers withlagical layer on
top of the underlying physical system, abstracting awaypthesicallocation of data and nodes, as illustrated in
Figure 1. This represents an added value to the programmaagithat developers can easily take advantage
of: the programming activity is naturally brought to a realrhere the focus is on thapplication goals and
requirementsrather than on theystemwhere the final implementation runs. The specific constreistbling

this are illustrated in Section 5, along with examples oirthse in a non-trivial application.

¢ We demonstrate theasibilityof our approach by developing an end-to-end programmimgédreork in support
of our programming model. This includes all the aspects®friiplementation process, from the compilation of
the macroprogram to an analysis of the system performareefoFmer problem is tackled in Section 6, where
we illustrate how the programming constructs we are pramgpsan be compiled down to node-level code that
uses a dedicated run-time layer. The latter is discusseddtidd 7, by showing simulation results obtained by

running the actual code resulting from the aforementioroadpilation process.

Compute the average speed
of vehicles on the highway from

Hollywood to Santa Monica g
Q
N
& As
\% K]
Y -
Q |
R 10 Q
o) ==}
N ! o 2
1 LQ =
: g @
\]
(2
\\’04 @(2
>

Collect data with
identifier A from nodes of
type 5 within 7 hops and
call average()

Figure 1: Raising the level of abstraction from the physlegél to a logical level where only application data is
exposed.

To discuss the advantages brought by scoping to macropnogirag, Section 8 reports on code metrics we gathered
on the actual implementation of our reference applicatéord compares our programming model against existing
proposals to highlight the scenarios where a specific mogesdghe greatest advantages. Section 9 provides brief
concluding remarks and directions for future work.

The following section describes the reference applicatienhave chosen for this study. While constituting a
meaningful example on its own, it is also representative wiugh larger class of applications, as it embodies many

typical interaction patterns of non-trivial scenarios.

2 Reference Application

To showcase the complexity of the scenarios we target, hereonsider aoad traffic monitoring and controhp-
plication, a field where WSNs have gained increasing atiarftiom the research community [13]. Indeed, various
techniques exist to influence the vehicle movement and iwgpn@ffic efficiency. These can be applied in various
settings, ranging from metropolitan areas to highwayshénlatter case, two of the most commonly used solutions
are speed signaling [2] and ramp metering [16]. The formesaio control the behavior of traffic by suggesting
appropriate speeds, while the latter influences traffic bytrofling access to the highway. In these fields, different
proposals exist to optimize goals such as pollution anddarsumption [17].

Our reference scenario is depicted in Figure 2. Usuallg kirid of system is divided into disjoirsectors[17],
with each sector usually being controlled depending on thieeat status of theameandneighboringsectors. In the

highway scenario we consider, a sector is identified by desiregnp leading to the highway, i.e., it spans the portion

Forwarding
Node .-

Speed Limit
[HsTwy

peed

2 (iny i

—— _ _ % e

— - 1

T I

Presence — |

I — — —) GE— GE— — — — — — —— — —_—) e — c—
: Sensor !

I

VARRY |

~ \ / :

VARRY '

\

-+ !
|
|
|
|
|
|

Figure 2: Scenario for the traffic management application.

of highway from a ramp to the following. The system has fivem@mponents:

e Speed sensorsto measure and report the speeds of vehicles. They areléustad the lanes of the highway.

Presence sensorsto measure and report the presence of vehicles. They asdi@uson the ramps leading to the

highway.

Speed limit displaysto inform the drivers of the recommended speed limit. Theyiastalled on the road side,

one per highway sector.

Ramp signals designed to allow or disallow cars onto the highway. Theyirstalled one per highway ramp.

Forwar ding nodesto enable wireless communication between the various nddesy are installed on the road

side at regular intervals.

Figure 3 illustrates, from a high-level perspective, theous stages of data processing in the application. Data is
first collected from the sensing devices, and a first proogssiperformed to derive an aggregate measure such as the
average speed of vehicles in a highway sector or the aversgeedength on a ramp. This information is fed as input
to an algorithm determining the best actions to achieve ystem objectives, e.g., to maximize the flow of vehicles
on the highway. These actions are then communicated toting segnals and to the speed limit displays. The specific
algorithms employed depend on the goals and metrics ofester Therefore, a modular approach to the development
of this class of applications may be advisable.

The application described above encapsulates behavidritaractions seen in a large class of networked em-

bedded applications [22]. These common characteristegmunded in the use bieterogeneousodes, and in the

e Avg Queue Length(s) Ramp Slgnal
r Calculator

I
[
[
[
[
[
[
e i
: I"JF"_'_'_'_'_' Avg Speed(s) sgaeliﬂll;::r::t Speed Limit
1iting
1 : : 5 SYSTEM
: : : ENVIRONMENT
| o HighwaySector; 4
H
1il
T HighwaySector; |
I
I
:_ _____________ HighwaySectori.4

Figure 3: Data processing in traffic management.

presence omultiple, concurrent activitiesollaborating to achieve the application goals. Develspéthese applica-

tions must therefore address requirements such as:

e Multi-stage data processing: as the raw sensor data is not useful by itself, the systemsrteecbmpute the
average speed and queue length used to compute the ramis sigdapeed limits. This represents a common

need in sensor networks when actuation is involved [1].

e Multiple sub-goals: to achieve the high-level application objective, e.g., iméxe the vehicle throughput on
the highway, the system is required to run multiple paraltivities. In our case, regulating the speed of
vehicles on the highway and controlling the access to it.sThioften required when the system is designed
to react to sensed data. For instance, in a different saeliei building monitoring and control, the system
is normally required to perform at least three activitie [y indoor environmental monitoring, ii) structural

monitoring, and iii) response to extreme events such as fire.

e Localized interactions: each of the aforementioned sub-goals usually involves ardgecific part of the sys-
tem. For instance, controlling the speed in a specific highsector relates to the sensors deployed on the
lanes of three neighboring sectors only. Keeping the pgicgslose to where data is sensed has been long

recognized as an effective approach to save energy andrachigre efficient implementations [1, 9].

e Heterogeneity handling: various types of nodes are to be employed, with differentadtaristics and various
devices attached. In our scenario, presence and speedsans@mployed along with nodes controlling the

speed limit displays and ramp signals. Similarly, in buifglicontrol and monitoring different kind of sensors

are used as well, e.g., temperature, humidity, and smolsoee[8],

Most of the existing WSN programming frameworks cannot nigetbove requirements easily. In first place, they
do not provide programming constructs to enable a clear ifladdation of different activities or consecutive stages
of processing. As a result, breaking the high-level apfibcegoal into smaller collaborating activities becomersdha
to achieve. More importantly, they do not provide supporttfeterogeneity It is therefore difficult to identify the
portion of the system concerned with a specific activity. iRstance, developers cannot map a specific processing to
the nodes equipped with a given sensing device. These asecbetter discussed in Section 8, where we compare
our work with existing approaches.

In this work we rely onscopingto give application developers a tool to address the afonéioreed issues. This
notion adequately provides the ability to partition thetegs depending on the application needs. Unlike existing
work enabling some notion of scoping at the node-level, is Work we make scoping available to the application
programmers at a high-level of abstraction, by enabling¢bincept in an existing macroprogramming model. This is

illustrated next.

3 ATaG: a Macroprogramming Framework for Sensor Networks

Several efforts are currently underway in macroprograngnfiim sensor networks, e.g., [11,21]. As a concrete il-
lustration of our ideas, we enable scoping in the AbstraskTaraph [4] (ATaG), a macroprogramming framework
providing a mixeddeclarative-imperativapproach to the development of sensor network applicatitins charac-
terized by two features: the first data drivencomputing, which provides a natural model for specifyingctere
behaviors, and the second is the usdedlarative specificatiorte express the placement of processing locations and
the patterns of interactions. An ATaG program, composetsafriperative and declarative parts, is given as input to
a compiler, along with the list of physical nodes employetiisTranslates the high-level, abstract specifications in

terms of the API provided by an underlying, node-level suppg run-time.

Programming Model. The notions ofabstract taskandabstract data itenare at the core of ATaG’s programming
model. The former is a logical entity encapsulating the pssing of one or more data items, representing the infor-
mation itself. The flow of information between tasks is ddfife terms of their input/output relations. To achieve
this, abstract channelare used to connect a task to a data item when thepasluceghat item, or vice versa when
the taskconsumedt.

Figure 4 illustrates an example ATaG program, specifyingrgbfied cluster-based, data gathering application [6,
12]. Sensors within a cluster take periodic temperaturdings, which are then collected by the corresponding

cluster-head. The former aspect is encoded irSamplertask, while the latter is represented Guster-Head The

‘ [nodes-per-instance: 1] ‘ ‘ [area-per-instance:10 sq. m] ,‘
[periodic:10] _ ‘ [anydata] /"

~

=~ I
Firing Rule @ //
~. /
Abstract (_4 Instantiation
Task domain Rule

~ = = Abstract
Channel

Sampler

local

Channel ,
Annotations

Abstract —- Temperature
Data

Figure 4: A sample ATaG program.

Temperaturedata item is connected to both tasks using a channel origgnfbm theSamplertask, and a channel
directed toCluster-Head

Tasks are annotated wifiring and instantiation rules The former specify when the processing in a task must
be triggered. In the our example, tBamplertask is triggered every 10 seconds according toptei odi ¢ rule.
Differently, theany- dat a firing rule requireCluster-Headto run when at least one data item is ready to be con-
sumed orany of its incoming channels. The instantiation rules govem placement of tasks on real nodes. The
nodes- per - i nst ance: ¢ construct requires the task to be instantiated once eyvendes. Asg; = 1 in the ex-
ample, theSamplettask is instantiated on every node. Tdreea- per - i nst ance construct used fo€luster-Head
implies partitioning the geographical space and deplogimginstance of the task per partition.

Abstract channels are annotated to expressritagestof a task in a data item. In our example, tBamplertask
generates data items of typemperatur&keptl ocal to the node where they have been generated Claster-Head
uses thelomai n annotation to gather data from the temperature sensors oiuster. This binds to some system
partitioning, e.g., that obtained lay ea- per - i nst ance, and connects the tasks running in the same patrtition.

The code within a task is the only imperative part in an ATaGgpam. To express the flow of information be-
tween tasks in the imperative code, programmers are prowiitd the abstraction of ahared data pogwhere each
task canoutputdata, or benotifiedwhen some data of interest is available. To support the foampect, a single
put Dat a(Dat al t en) operation is made available. The second aspect is handlgdoviding the programmer
with an automatically generated template for each task,igta an emptyhandl eDat al t en{) function for each
incoming channel. The programmer fills these functions @anpnting the processing associated to each input data
item.

The notion oftaskin ATaG provides a powerful concept to modularize differstaiges of processing. In addition,
the separation of declarative and imperative parts in arG§degram, and a modular run-time system and compila-

tion framework make the model easily extensible. Leverggiff these features, we devised novel annotations and

constructs to enable scoping in ATaG. This notion is defireed.n

4 Scoping

In this section, we describe a precise definition of scopmgéansor networks, aiming to provide a solid basis for
understanding. The actual constructs enabling the defndf scopes in the ATaG programming language will be
discussed next.

A scopein WSNs can be informally defined assabset of nodes sharing similar characteristics or gbal
this work, we specify this notion usingrmembership functiorf, whose goal is that of determining the subset of
nodes included in a scope. Specifically, we define the merhipsfianction asf; ;(j), wherei is the node wherég is
evaluated, and is the node whose membership in scepmust be determined. The boolean output of the function
returns whethey is part of scopes for nodei or not. The actual definition of; ; is obtained as the composition of
atomicboolean predicatesn the nodes characteristics (calleable attributediereafter). For instance, a node attribute
may describe the sensing devices attached to a node, andiegteson that attribute may check whether a particular
sensor is among them.

Two orthogonal dimensions combine to form a scope definitidfe say a boolean predicapé-) is symmetric
when it does not depend oni.e., it is not a function of the node where the scope is etelll For instance, the
predicatehasSpeedSensor(j), returning whethey is equipped with a speed sensor, is a symmetric one. Therefor
a scope defined a& ;(j) ::= hasSpeedSensor(j) will determine the same subset of nodes regardless of thepar
ular nodei where f is evaluated. Conversely, a predicate is said t@fanmetriovhen it does depend aon as in
isSameSector (i, j). Thus, in our scenario a scoge;(j) = isSameSector(i, j) will return a different subset of
nodes depending on the sector wheieinstalled.

In the general case, the membership function defining a Sedigely to be a combination of a symmetric part with
an asymmetric one, as illustrated in Figure 5. For instaimceur reference application a node in each sector might
define a scope to identify the nodes sensing the speed oflesmchat sector, and gather data from them to evaluate
the average measure. These nodes are those i) equipped spiled sensors, and ii) installed in the same sector as
the node requiring their readings. For this purpose, we msssthe combination of a symmetric predicate —used to

express “the nodes having a speed sensor"— with an asyneroeti—to describe “installed in the same sector”.

1Hereafter, we will terrmodethe hardware hosting CPU and main memory, whereas we widrgdip indicate aslevicethe sensors or actuators
attached to a node.

Figure 5: Scopes as the combination of symmetric and asyrionpetdicates. Squared nodes (regardless of their
coloring) are those satisfyingsymmetrigoredicate to check whether they are equipped with a speatsér., the
set{j € N|hasSpeedSensor(j)} (N being the set of nodes in the system). Light grey nodes asetimzluded in
scopesl, defined asfs1, 4 == isSameSector(A, j) A hasSpeedSensor(j) and evaluated on nodé. Symmetrically,
dark grey nodes are those in scezedefined ags1 g ::= isSameSector(B, j) A hasSpeedSensor(j).

5 Scoping in a Macroprogramming L anguage

In this section, we provide an overview of how the aforenmrad notion of scoping enhances the ATaG programming
model, and then discuss the details of the specific progragngonstructs using an ATaG-based implementation of

our reference application as example.

5.1 Overview

Augmenting the ATaG programming model with scoping affadtnarily two aspectstask placemenanddata ex-
changebetween tasks. In the former case, scoping addréstesgeneitamong the nodes and the need for dividing
the system intdogical regions Notably, an ATaG-based implementation of our referenemato requires tasks to
be instantiated on nodes equipped with the needed sensing/devices, or in specific regions only. For instance, a
task designed to operate the ramp signal must be instathtata node having that particular device attached. Further,
we need only one task to compute the average speed for edolayigsector, so we need to identify the different
sectors uniquely. This has been achieved with nmsthntiation rulesthat give application programmers the ability
to define subsets of nodes satisfying specific constraings,that of being installed in the same highway sector. The
ATaG compiler is instructed to instantiate a task on one aemmodes in a specific subset only.

As for data exchange between tasks, scoping is used by tldogev to express the interactions among subset
of nodes. In this sense, it enables the specificatidoa#lizedinteractions, as well as relations betweeniindtiple

stage®f a given processing or multiple collaboratisigh-goals For instance, in our scenario the speed limitis decided

»
»

g p hasSpeedSensor
-= N
S @
B 2
5 g
© Logical Scope = ATaG Scope
5 -
: g
; isSameSector £
(7]
f > >
asymmetric predicates channel interests

(a) A logical scope as the combination of sym{b) A scope in ATaG as the combination of in-
metric and asymmetric predicates. stantiation rules and channel annotations.

Figure 6: Embedding scoping in ATaG.

based on the information gathered from three neighborighvisay sectors. To express this, we define mbannel
interestsin ATaG, so that application programmers can specify thieitéterests by referring to the logical properties
of data, regardless of their physical location. This speaiiion is passed to the run-time support, that retrievedakee
accordingly.

The combination of the novel instantiation rules and chaimerests can be mapped to the two orthogonal dimen-
sions we relied on to define scopes, as illustrated in Figuhesantiation rules define subsets of nodes with common
characteristics, e.g., having a particular actuator hldcAs such, the subset they define is the same regardldss of t
node where it is evaluated, and can therefore be descrilitbcbwe or moresymmetriqpredicates. Conversely, chan-
nel interests are typically described in termsasiymmetriqredicates. They strictly depend on the associated task,
therefore, the subset of nodes the application is intestéstis a function of the node where the task is running. For
example, in our scenario, the three neighboring sectorsetative to the particular sector where the node requesting
the data for processing is located. This mapping is at the abthe translation process that generates the actual scope

definitions from the ATaG constructs, described in Section 6

5.2 ATaG Constructsfor Scoping

The syntax and use of our scoping constructs are shown ind-igwhere we illustrate the ATaG specification of the
application described in Section 2. All the applicatiorommation is represented as ATaG data items. The actual algo-
rithm determining the actuation part is encapsulated inttg&s: SpeedLimitCalculatoandRampSignalCalculator
whose inputs are the data produced by tasks deriving thageeneasures. Once the actuation is determined, this is

given as input to the tasks operating the displays and ragmals.

Task Placement. The SpeedSampleaask is in charge of gathering the raw data from a speed samsarramp

leading to the highway. Therefore, it must run on a node gepdwith the corresponding sensing device. To express

10

[nodes-per-instance: ‘ ‘ [panition-per-instance: [partition-per-instance: [nodes-per-instance:
1 resenc] 1/HighwaySector] 1/HighwaySector] 1@speedLimitActuator]
[periodic:10] ‘ | [anydata] | [anydata] k [anydata] J
RampSampler SpeedLimit SReedLimit
Calculator Displayer
(local) (domain) C domain) C local)

AvgQueuelLength
Calculator

logical-hops: 1
VehiclePresence (Highway Sector) SpeedLimit
y logical-hops: 1 .
[nodes-per-instance: [partition-per-instance: (HighwaySector) [partition-per-instance: [nodes-per-instance:
1@speedSensor] 1/HighwaySector] 1/HighwaySector] 1@rampSignalActuator]
[periodic: 10] [anydata] [anydata] k [anydata] J

SpeedSampler

AvgSpeed RampSignal RampsSignal
Calculator Calculator Displayer
(local) C domain) (local)

logical-hops: 1 C domain) (local)
\ (HighwaySector) \

RawSpeed AvgSpeed AvgQueueLength RampsSignal

logical-hops: 1
(HighwaySector)

Figure 7: The ATaG program for the traffic management apfitina

<t ask nanme="SpeedSanpl er" >
<instantiationrul e>
<nodes- per-i nstance
nunber =" 1"
requi redAttri but eType="AttachedSensors"/>
<attribute type="AttachedSensors">
<val ue="speedSensor" >
</ attribute>
</instantiationrul e>
</task>

Figure 8: XML declaration fo@ peedSensor in Figure 7. At t achedSensor s is defined in a separate XML
file listing the relevant attributes for each node).

this requirement, thaodes- per - i nst ance: 1@peedSensor construct is used, whei@peedSensor is a
placeholder for a boolean predicate determining the sebdés equipped with a specific sensing devices. In our
current prototype, the actual predicate is specified ussimple XML file, shown in Figure 8 Similar constructs are
used forRampSampleSpeedLimitDisplayeandRampSignalDisplayer

The AvgSpeedCalculatdask takes as input the raw data coming from the speed seinsarsector, and derives
the average speed of vehicles in the same sector. Thergfereeed such a task to be instantiated once per sector.
To express this, thpartiti on-per-instance: 1/ H ghwaySect or construct is used. This is based on the
enumeration of possible values of the node attrilblitghway Sect or —that describes where a node is placed in the

highway— and requires the task to be instantiated on one imagich sector only.

Data Exchange. To bind tasks running in the sark ghway Sect or , thedomai n annotation on a channel can be

used. However, this time it is based on the system partitgpobtained through thgarti ti on- per-i nst ance

2t is not our intention to force the programmer to write XMLrefitly, we instead envision these specification to be aateted by an
integrated development environment.

11

HighwaySector B
logical hops from A: 1

HighwaySector A
logical hops from A: 0

_4______;___:_____—_____;__.___—_____i

I 1 | ™ :

_ e - s

r ; o I

—— e e — — i e e e o — =

|"| ! i r 7

= 2 g = 7N 4 H — 17N !

:u — - — _/ — _/ '
N\ 7\ N\ 1 AY 7\ 7\

_/ _/ _/ / 1

! HighwaySector C
logical hops from A:2 !

Figure 9: Logical hops over thidi ghway Sect or attribute. The picture shows the number of logical hops to be
crossed for a node in highway sectoto reach any node in a different highway sector.

instantiation rule. Differently fronar ea- per - i nst ance, this rule determines the different partitions at a logical
level, by considering the node attributes instead of thegygagghical position.

In addition, the construdtogi cal - hops: 1(Hi ghwaySect or) connecting, e.g., thAvgSpeedCalculatdo
both theSpeedLimitCalculatoand theRampSignalCalculatois used to collect a data item from different highway
sectors. It represents a number of hops counted not on thegalhpetwork links, but in terms of how many system
partitions (derived from the attribute given in parentBesan be crossed. Figure 9 illustrates the concept grdphica
Given the partitioning induced by thd ghway Sect or attribute, requiring one logical hop on that attribute mgan
for a SpeedLimitCalculatgrto collect a data item from the same, immediately precedimgdj following highway
sectors. Notice how the semantics of specifying a numbegiaf zops is not to cross any patrtition, i.e., to collect from
the same partition where the data item originated. In thissgthedomai n construct actually constitutes a particular

case of the more geneiflabgi cal - hops construct.

6 Compiler and Run-time Support

To enable scoping in a macroprogramming language, one neétgplement compiler support for the scoping con-
structs, and have an underlying, node-level run-time dalproviding data delivery to/from nodes in a given scope.
Itis indeed unreasonable to ask the compiler to generateditie-level code up to the network layers [20, 23].

In the prototype system we developed, we use the Java2ZMHBdA§lilage and APIs to describe the imperative part
of an ATaG program, targeting the upcoming SunSpot senatfopin [25]. As for supporting node-level run-time, we
developed a Java version of Logical Neighborhoods [18 A Ajiddleware-level programming abstraction providing a
notion of scoping in WSNs. With Logical Neighborhoods, tihggical neighborhood of a node is replaced by a logical
notion of proximity determined by applicative informatioA (logical) neighborhood is specified in a neighborhood

template that encodes a boolean predicate acting as a selectioicaieedver the set of possible nodes. For instance,

12

ATaG L ogical Neighborhoods
Symmetric Predicates Instantiation Rules| Neighborhood Template
Asymmetric Predicates Channel Interests | Neighborhood Instantiation|

Figure 10: Mapping scoping in ATaG to Logical Neighborhaods

the hasSpeedSensor predicate described in Section 4 can be inserted in a neighbd template. The template is then

instantiatedon a specific node, by specifying where the encoded predicagt be evaluated w.r.t. the instantiating

node. Thisis used to limit the span of the logical neighborhe.g., by specifying a maximum number of logical hops
away from the instantiating node. Originally, the Logicaihborhood run-time did not provide a way of specifying
logical hops. However, adding this feature did not requimg major modification in the processing required to
determine the neighborhood members. In this case, the nodeite over which the logical hops should be counted
must also be provided.

The neighborhood definition is fed to Logical Neighborhoodthe form of a suitable data structure. To interact
with the nodes in a (logical) neighborhood, the programmerovided with a simple message-passing API, used
to broadcast(in a logical sense) a message to all nodes member of a netgidh An efficient routing scheme is
provided in support of this API, illustrated in [19].

Given the logical neighborhood AP, it is straightforwaod the ATaG compiler to map scopes in ATaG to logical
neighborhoods, as Figure 10 illustrates. Instantiatidesraan indeed be considered as selection predicates @ver th
set of nodes in the system, and are directly translated ghine@ihood templates. Instead, the channel annotations
actually constrain the span of the scope associated to a ghannel. As such, they depend on the node where the
task is running, and can therefore be translated as neighbdiinstantiations on the same node.

For instance, the node whefg@gSpeedCalculatas running gathers data output BpeedSampleaasks in its same
domain (highway sector). These are instantiated on nodépmed with the corresponding sensor. Therefore, the

compiler determines the nodg¢$érom which AvgSpeedCalculat@hould gather data as those satisfying:

fs1,:(4) == isSameSector(i,j)A)
hasSpeedSensor(j)
wherei is the node wherédvgSpeedCalculatas running. The latter conjunct is derived from the instatidin rule
specified for the producer tasiXpeedSensor), and can therefore be specified as part of a neighborhoquldésn
The former conjunctis instead derived from the channeté@stsdonai n) and can be expressed at the time of instan-
tiating the neighborhood on the node whésgySpeedCalculatds running. Similarly, consider the tasks producing

the data triggering the execution®peedLimitCalculatorin this case, the producer task can eitheAberageQueue-

LengthCalculatoior AvgSpeedCalculatpand can either be located on a node in the same sector, gaiceatones.

13

Therefore, the set of nodgsncluded in the scope is the one satisfying:

fs2,i(4) == isWithinNSectors(i, j, 1)A
(isRunningAvgSpeedCalculator(j§)V (2)

isRunningAvgQueueLengthCalculator(j))

where SpeedLimitCalculatois running at node. The first conjunct is again derived from the channel interes
(I ogi cal - hops: 1(H ghwaySect or)), and is therefore specified as part of the neighborhoodritisttion on
nodei, whereas the second determines the node included in s@pased on the task it is running, and is hence
specified in a neighborhood template. The latter conjunceeded since the instantiation rule used in this case does
not uniquely specify the node where the producer task isingnn

The compiler takes as input the list of nodes with their latiiés, and the ATaG program. The compilation is carried

out in a four step process:

1. The compiler allocates tasks to nodes by looking at thruimigtion rules specified in the ATaG program, and
matching them against the node attributes. Consistenakstare performed to ensure all the requirements on

task placement can be satisfied.

2. Once the tasks are placed, the compiler identifies a skitafpathdetween nodes running tasks connected by
some input/output relation. For each such path, the compalmbines the instantiation rules of the connected

tasks with the channel annotations, and derives an abstrape specification.

3. Given the abstract scope specifications, these are dtadshto neighborhood templates and neighborhoods

instantiations, and given as input to the run-time sup@ye of each target node.
4. Additionally, the ATaG compiler configures other helpemponents in the run-time support layer [3].

When the instantiation rule does not uniquely specify thdenshere to instantiate a task, asin the cagmott i t i on
- per -i nst ance, the compiler currently places the task so that it is coledatith the producer task of at least one

data item it consumes.

7 System Evaluation

To assess the feasibility of our approach, it is necessdoptoat the performance of the running system. To that end,
we run our traffic management application in a simulated agenand gathered performance metrics to characterize

the system behavior. To do so, we used the SWANS/Jist sioJE}t as it is able to run unmodified Java code on top

14

[Parameter Name

Value |

Propagation Model Two-ray Ground
Radio Model Additive Noise
MAC Layer CSMA

Transmission Rate 250 Kbps
Communication Range 40 meters
Message Size 47 bytes
Simulation Time 2000 secs
Number of Repetitions| 30

Figure 11: Simulation parameters.
of a simulated network. This way, we measured the performanthe same code that can be deployed on the real
nodes.

The relevant simulation parameters are summarized in €i@ar As for network topology, we simulated the
scenario represented in Figure 2 with a highway sector B#ngeters wide and 200 meters in length. We placed the
forwarding nodes 25 meters apart, and randomly distribtitecpeed sensors on the four lanes so that each of them
is range of at least another speed sensor or a forwarding rigidelarly, the presence sensors have been randomly
distributed on the ramp so that each of them is in range ofastlene speed sensor or another presence sensor.
The node controlling the ramp signal and the speed limitldispre placed at the border between different sectors,
on the opposite sides of the road. Overall, 18 nodes are geglim each highway sector. Also note the message
rate is implicitly determined by the application itself, particular by the firing rules for tasks. For instance, a node
running an instance dkampSamplewill generate one message every 10 seconds, as the cordisgdnng rule is
peri odi c: 10. TheAvgQueuelLengthCalculatfires for any data item received, and correspondingly ostpurttew
data item. Therefore, if folRampSampleasks are in itslomai n, the node running thA&vgQueuelLengthCalculator
will generate a message every 2.5 seconds, on the average.

The various simulation runs differ in the initial random de@ the location of nodes, and in the placement of
tasks not tied to the node capabilities when more than a ehieiavailable. As performance metrics, we consider the

following:

e the number ofnissing actuationsn the environment, resulting froone or more message lossas the path

from the nodes running the sensing tasks to the nodes rutimérectuation tasks,
¢ thenetwork overheadepresented as the overall number of messages sent atytsiegitiayer,

o the averagaumber of physical hopsaveled by a message carrying a data item before eitheg b&snarded or

delivered.

As the goal of the application developer is that of decidistjonsbased on dataensedthe first quantity intuitively
measures thquality of serviceprovided by the implemented system. The second measureabadithe cost paid
to achieve a given degree of service, and is therefore kepdenstanding thecalability properties of the resulting

implementation. The third measure gives more insights ihéotrends related to communication cost, describing

15

8000

_ ‘ ‘ 'Ideal Solution —+— ‘ w0l ‘ ‘ Ideal Solution —+— «
4 ATaG with Logical Neighborhoods -------- ATaG with Logical Neighborhoods ----%<---- ;
2 7000 - ATaG with Flooding - * 1 B ATaG with Flooding -3
2 T 35
= 6000 | g
S g 2 30 X
€ so00 | LK g =
3 = = K
3 S 8 25r
2 4000 | - 2 >
e . £
o * P—‘ 20
$ 3000 | i 5 E
= : o g
< X £ 15¢ K
& 2000 - 5
~ z %
5] =
S 1000 z or O O S— VS — x
= ;

0 St ‘

2 9 2 3 4 5 6 7 8 9
Number of Highway Sectors Number of Highway Sectors
(a) Network overhead against number of highway gbg-Average number of physical hops traveled by a mes-
tors. sage.

Figure 12: Performance of the traffic management applicatio

where in the system communication takes place. As the indbkge variable, we choose to vary the number of
highway sectors, as this dimension is likely to affect thetesn performance.

At a first glance, the aforementioned metrics appear to depaty on the performance provided by the run-time
support. However, this is in turn affected by the particuémk placement. Therefore, these quantities effectively
provide insights into the effectiveness of the frameworlaashole, from the ATaG compiler to the routing layer
supporting Logical Neighborhoods. To compare against, aw lthosen to compute the aforementioned metrics for
anideal solutionminimizing the network overhead. This is determined by tdgimg the minimum cost routing tree
connecting a sender to all the intended recipients, provglebal knowledge of the network topology and reliable
transmissions. The sender location is in turn determineiddnytifying, based on the same assumptions, the optimal
task placement While being an artifact far from reality, this choice renesithe bias introduced by comparing against
alternative routing schemes that may not be expressly degifpr the scenarios at hand. The performance obtained

with a pure flooding scheme are also reported as an upper Houhudther comparison.

Results. Given the message generation rates discussed earlierinmuiagons revealed our solution can provide at
least 96% of the actuations that would be occurring in caseettvere no message losses. This illustrates how the
messages carrying the application data are effectivelyated to the intended recipients, and is consistent et t
results shown in [18] obtained in a synthetic scenario. R&aidy, this metric is not affected by a varying number of
highway sectors (and is hence not shown graphically). Téigkior demonstrates how the processing is effectively
kept in a limited portion of the system, both at the applmatnd at the network level.

Figure 12(a) depicts the trends in network overhead againstrying number of highway sectors. As the chart
illustrates, the network load imposed by our solution is matser to the ideal solution than to flooding. More

importantly, the pattern exhibited as the number of highaegtors increases mimics that of the ideal solution, while

SDetermining the optimal task placement on a graph is a protiéeown to be NP-hard in the general case. To derive the opsiatation, we
performed an exhaustive search in the space of all possiiteatlocations.

16

the flooding approach reveals a much steeper increase iruthbar of messages. These good scalability properties
are clearly due to the ability of keeping message propagéticalized around the nodes running the relevant tasks.
Furthermore, albeit being already reasonable, thesetsemel likely to see a dramatic improvement if the compiler is
provided with a cost model of the underlying routing scheosed to place the tasks smartly by minimizing a given
metric. This topic is definitely worth being investigateddds among our immediate research goals.

The chart in Figure 12(b) further confirms how the improveta@ver flooding are obtained by constraining mes-
sage propagation around the nodes running related taséeednthe number of hops traveled by a message using
flooding rapidly increases with the number of highway sexctdihis is expected given the blind propagation of mes-
sages performed in this case. Differently, our solutiorpke@n almost constant performance in a range of settings,
effectively ending up very close to the theoretical minimuhtis trend demonstrates how the routing layer is well
aware of the application semantics, that indeed requirgseepsing to span three adjacent highway sectors, and is

therefore independent of the overall length of the highway.

8 Value of Scoping to Macroprogramming

Enabling scoping in macroprogramming makes developingptexmapplications extremely easy. At the same time,
every programming model has its own specific field of applidgband there is no “one size fits all” solution. Based
on this, in this section we first evaluagaantitativelythe programming effort in our reference application witkpect

to the total size of the deployed code, and then compare gualitativebasis, our programming model with existing
solutions. The former gives a measure of how effective opragch is in automating the implementation process
from high-level abstract specifications, hence allev@thre programming burden. The latter gives the bigger péctur
of the advantages brought by the combination of scoping amct@programming with respect to the current state of

the art.

8.1 Evaluating the Programming Effort

To quantify the development effort, we took a number of codérios on our prototype implementatforooking at

the number of Java classes compiled to deploy the applicatica single node, it turns out only 15 out of a total of
51 classes are the direct result of developers’ effort. Emeaining ones are either the implementation of the ATaG
run-time support, or the Logical Neighborhood routing layurthermore, considering the actual number of lines of
non-commented code, only about 12% of the imperative coldarid-written by developers, whereas the rest is either

part of the run-time support, or automatically generatduds s clearly due to the high-level abstractions providgd b

4In doing so, we do not consider the code needed to implemeritdiual control algorithm, as it is strictly applicatiorpdadent.

17

our framework, where most of the details related to messeagepsing, coordination and communication are hidden
from the application programmer.

Considering the code implementing each task, it is possibldentify a recurring pattern with only two classes
needed. One of them is directly connected to the ATaG ruestand contains processing that either inserts some data
item in the the data pool (usinut Dat a), or handles the arrival of a new data item. Notably, in oypslementation
all the state variables defined in this class relate only ¢oajbplication semantics, and never refer to distribution or
coordination aspects. This same class usually holds aereferto a second class containing the actual processing,
e.g., to average the incoming data as in the cagergQueuelLengthCalculatofhe data items are instead defined in
separate classes. These usually implement only a numbettef/getter methods relative to different class attebut

Notice how our framework naturally leads to highly encapsed implementations: both within single tasks and
with respect to different tasks. As for the former aspec, dlata processing can be effectively implemented as
an I/O machine without any explicit references to node locat or distribution. These low-level information can
be encapsulated in the particular class connected to th& Alia-time, where the references to the different tasks
are implicit, being determined by the nature of data itent @rannel declarations. This results in highly re-usable
implementations: adding an additional task or changingyiséem scale does not require any change in the application

code.

8.2 Comparing against the State of the Art

Despite the clear advantages brought by the programmin@maglpropose, scoping and macroprogramming might
not be a suitable paradigm for every application. Here, wesitethe requirements illustrated in Section 2, and

discuss the reasons why they cannot be addressed by existiggamming models. Simultaneously, we highlight the

requirements thatannotbe effectively addressed by our proposal, and instead #ter loeet by other frameworks.

For comparison, we will focus on the Regiment language [tbi] Kairos system [11], and the programming model
offered by Abstract Regions [26]. The former is a functiomelcroprogramming language based on the notion of
region stream: a spatially distributed, time-varying eolion of node states. These are taken as input to one or
more functions used to express the application proceskiaigos is a macroprogramming model inspired by parallel
architectures. Developers express the application behhayiwriting or reading variables at nodes, iterating on the
1-hop neighbors of a node, and addressing arbitrary nodestract Regions is instead a node-centric programming
approach, whose communication model —based on a dataigh@aradigm among nodes within a region— closely
resembles the one in ATaG. In some cases, Abstract Regialsdiable to select a subset of nodes in the system based

on topological characteristics, thus also enabling a naifcscoping.

Multi-stage data processing. The combined use ahsksand scopesnaturally allows the programmer to express

18

multiple stages of processing, and to determine the sulfseides involved in each stage. Achieving the same in
Kairos or Abstract Regions is more difficult, as neither @rthembodies any well-defined notion of processing unit.
Conversely, Regiment is presumably even more effective tha framework in expressing this particular pattern.
Indeed, as long as it is possible to express the input-ontppping as a mathematical function, composing multiple
functions is straightforward in Regiment. The fundamedifférence in this case is that our framework easily allows
the output of a stage to be directed to more than a singlewolg stage. To the best of our knowledge, achieving the

same in Regiment would force the system to duplicate theteffwoking the same function more than once.

Multiple sub-goals. Similarly to what discussed above, scoping allows the dedimof the different system partitions
concerned with a specific sub-goal. This enables betteratga of concerns, and results in more reusable imple-
mentations. Itis hard to achieve the same in the absenceopirgs; as in the case of Regiment or Kairos. In these
cases, different programs should be written to achieveipheijoals without explicit support to achieve collabovati

In the case of Abstract Regions, one could, in principlepeisse different goals to different regions, and run them
in parallel. However, as any region requires an underlyilgglicated implementation reaching down to the network
stack, the programming effort in this case may become uanezdude.

When the application has a single specific goal, our progragmodel can still be used to express the desired
behavior, even if its expressive power is not fully explditélowever, if the developer needs to implemesteavice
rather than an end-user application, e.g., a localizatienlranism or a routing scheme, our framework might not be
the best choice. Indeed, many details related to commuaitsatich as link quality are intentionally hidden from the

programmer.

Localized interactions. The channel annotationg/e propose make it easy to describe the tasks involved inengiv
processing by placing a logical layer on top of the physiedvork. Regiment as well as Kairos are instead designed
with a single system-wide processing in mind. Thereforeighnbe difficult to localize a given processing around
specific nodes. In particular, the latter completely hidesihdividual devices from the programmer. This rules out
the possibility of controlling how processing is distriedton the actual nodes.

However, if the desired goal depends on topological progeeof the physical network, relying on Kairos or Abstract
Regions might be advisable. In the former case, the netvogtdogy is explicitly made available with the construct
to iterate on the 1-hop neighbors of a node. Therefore, thegssing needed to, for instance, build overlays on top
of the physical network can be expressed very succinctly. [11 Abstract Regions, the network topology can be
used as input during region construction. In this case ak tuglding overlay-like structures turns out to be easily

achieved [26]. Conversely, our model might make expredsiagforementioned behaviors difficult if not impossible.

Addressing heterogeneity. To map a specific task to the nodes equipped with the requapdlilities, we devised

novelinstantiation rules Conversely, hiding the single nodes in Regiment requillesf dhem to produce the same

19

kind of data and have the same capabilities. The same re@sbalds in the case of Kairos: a node is characterized
only by its identifier and the variables it exports to othede® for read/write operations. In Abstract Regions, one
might associate nodes with equal capabilities to the sagierre However, as our reference application illustrates,
nodes with the same characteristics do not necessarily coneate only among themselves. Therefore, one should
address the problem of sharing data across different regéofunctionality not currently supported.

In case the system is mostly homogeneous, the drawbacksdet above have no impact on the expressivity of the
programming model. In particular, if the application is cemed only about the node identifier, the Kairos framework
could provide a better fit between the high-level design &edmplemented code, as it exposes the node identifiers

as a first-class concept and provides built-in operatorsaioage them.

9 Conclusion and Future Work

Scoping gives developers the tools to address the comptEdarge scale, sophisticated WSN applications. However,
it is still relegated to node-level programming frameworks this paper, we introduced the notion sfopingin
the context ofmacroprogrammingsensor networks. Using macroprogramming, developer®neasa high-level
of abstraction, where coordination and communication etspare mostly hidden. To illustrate our proposal, we
augmented the ATaG programming model with constructs @mglthe definition of scopes. The feasibility of our
approach is demonstrated by a dedicated compiler we dea@tapgeting Logical Neighborhoods as supporting run-
time, and by simulation studies assessing the performartbe oesulting implementations.

In the near future we intend to explore technique®pdimize the placement of taske the nodes during the

compilation process, looking at the expected flow of infatioraas specified in the high-level abstract program.

References

[1] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor andacnetworks: Research challenge&d Hoc Networks Journal

2(4):351-367, October 2004.

[2] A. Alessandri, A. di Febbraro, A. Ferrara, and E. Punta.onlhear optimization for freeway control using variable-

speedsignalinglEEE Transact. on Vehicular Technolq@8(6), Nov 1999.

[3] A. Bakshi, A. Pathak, and V. K. Prasanna. System-levppsut for macroprogramming of networked sensing appleceti

In Int. Conf. on Pervasive Systems and Computing (P3)5.

[4] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. Therabstask graph: A methodology for architecture-indeend

programming of networked sensor systemsWarkshop on End-to-end Sense-and-respond Systems (EEB&P005.

[5] R. Barr, Z.J. Haas, and R. van Renesse. Jist: an efficirbach to simulation using virtual machin&oftw. Pract. Exper.

35(6), 2005.

20

[6] W. Choi, P. Shah, and S. Das. A framework for energy-sgata gathering using two-phase clustering in wireless@en
networks. InProc. of thel®® Int. Conf. on Mobile and Ubiquitous Systems: Networking Sedvices (MOBIQUITOUS)
2004.

[7] M. Dermibas. Wireless sensor networks for monitorindasfye public buildings. Technical report, University atffailp,

2005.

[8] A. Deshpande, C. Guestrin, and S. Madden. Resourceecawieless sensor-actuator networkEEE Data Engineering

28(1), 2005.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Nextary challenges: scalable coordination in sensor nésvdn

Proc. of the5*” Int. Conf. on Mobile computing and networking (MobiCoi999.
[10] Habitat Monitoring on the Great Duck Islansww. gr eat i sl and. net .

[11] R. Gummadi, O. Gnawali, and R. Govindan. Macro-prograng wireless sensor networks using KairosPhoc. of thel **

Int. Conf. on Distributed Computing in Sensor Systems (D&)Q8ne 2005.

[12] W.R.Heinzelman, A. Chandrakasan, and H. BalakrishEaergy-efficient communication protocol for wireless rogensor

networks. InProc. of the33"¢ Int. Conf. on System Scienc@00.
[13] T.T. Hsieh. Using sensor networks for highway and tcadfiplicationsIEEE Potentials23(2), 2004.

[14] W. Hu, C.T.Chou, S. Jha, and N. Bulusu. Deploying loived and cost-effective hybrid sensor networksgl-Hoc Networks
4(6), 2006.

[15] Sun™ Java2 Micro-edition Specificatiopava. sun. cont j avane.
[16] P. Kachroo and K. Ozbayeedback Ramp Metering in Intelligent Transportation 8yst Plenum Pub Corp, 2004.

[17] C. Manzie, H. C. Watson, S. K. Halgamuge, and K. Lim. Oa potential for improving fuel economy using a traffic flow

sensor network. I®Proc. of the Int. Conf. on Intelligent Sensing and InformatProcessing2005.

[18] L. Mottola and G. P. Picco. Logical Neighborhoods: Agramming abstraction for wireless sensor network$®rbt. of the
the2™¢ Int. Conf. on Distributed Computing on Sensor Systems (DE)}@806.

[19] L. Mottola and G. P. Picco. Programming wireless semstworks with logical neighborhoods. Rroc. of thel®® Int. Conf.

on Integrated Internet Ad hoc and Sensor Networks (Intes&eR006.

[20] R. Newton, Arvind, and M. Welsh. Building up to macrogramming: An intermediate language for sensor networks. In

Proc. of the4'” Int. Conf. on Information Processing in Sensor NetworkS{{fp 2005.

[21] R. Newton and M. Welsh. Region streams: Functional w@mgramming for sensor networks. Rroc of thel®* Int.

Workshop on Data Management for Sensor Networks (DVZD04.

[22] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and GPRco. Expressing sensor network interaction patterimgus
data-driven macroprogramming. Rroc. of the3"¢ Int. Wkshp. on Sensor Networks and Systems for PervasiveGiog

(PerSens - colocated with IEEE PERCQIDO7.

21

[23] A. Pathak and V. K. Prasanna. Issues in Designing a Clatign Framework for Macroprogrammed Networked Sensor

Systems. IrProc. of the thel** Int. Conf. on Integrated Internet Ad hoc and Sensor Netw(irkerSenseg)2006.

[24] E. Petriu, N. Georganas, D. Petriu, D. Makrakis, and k6Za. Sensor-based information appliand&EE Instrumentation

and Measurement Mag3:31-35, 2000.
[25] SuM™ Small Programmable Object Technology (Sun SP@Wy. sunspot wor | d. com

[26] M. Welsh and G. Mainland. Programming sensor netwosisgiabstract regions. Rroc of the1** USENIX/ACM Symp. on
Networked Systems Design and Implementation (NSZdjch 2004.

[27] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hoadheighborhood abstraction for sensor networksProc. of the
274 Int. Conf. on Mobile systems, applications, and service@ NBY S)2004.

22

