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Abstract. Schema/ontology matching is a critical problem in many application
domains, such as, semantic web, schema/ontology integration, data warehouses,
e-commerce, catalog matching, etc. Many diverse solutions to the matching prob-
lem have been proposed so far. In this paper we present a new classification of
schema-based matching techniques that builds on the previous work on classify-
ing schema matching approaches. Some innovations are in introducing new crite-
ria which are based on (i) general properties of matching techniques, (ii) interpre-
tation of input information, and (iii) the kind of input information. In particular,
we distinguish between heuristic and exact techniques at schema-level; and syn-
tactic, external, and semantic techniques at element- and structure-level. Based
on the classification proposed we overview some of the recent schema/ontology
matching systems pointing which part of the solution space they cover. The clas-
sification proposed provides a common conceptual basis, and hence can be used
for comparing different existing schema/ontology matching systems as well as
for designing a new one, taking advantages of state of the art solutions.

1 Introduction

Matching is a critical operation in many well-known application domains, such as, se-
mantic web, schema/ontology integration, data warehouses, e-commerce, XML mes-
sage mapping, catalog matching, etc. It takes two schemas/ontologies, each consisting
of a set of discrete entities (e.g., tables, XML elements, classes, properties, rules, pred-
icates) as input and determines as output the relationships (e.g., equivalence, subsump-
tion) holding between these entities.

Many diverse solutions to the matching problem have been proposed so far, for ex-
ample [29, 25, 14, 32, 53, 1, 27, 34, 37, 31]. Good surveys through the recent years are
provided in [42, 52, 26]. The survey of [26] focuses on current state of the art in on-
tology alignment. Authors review recent approaches, techniques and tools. The survey
of [52] concentrates on approaches to ontology-based information integration and dis-
cusses general matching approaches that are used in information integration systems.
However, none of the above mentioned surveys provide a comparative review of the ex-
isting ontology alignment techniques and systems. On the contrary, the survey of [42] is
devoted to a classification of database schema matching approaches and a comparative
review of matching systems.

In this paper we focus only on schema-based solutions, i.e., matching systems ex-
ploiting only intensional information, not instance data. Although, there is a difference



Fig. 1. Two XML schemas

between schema and ontology matching (alignment) 1 problems (see next section for
details), we believe that techniques developed for each of them can be of a mutual
benefit, therefore we discuss schema and ontology matching as the same problem. We
bring together and discuss systematically recent approaches and systems developed in
schema matching and ontology alignment domains. We present a new classification of
schema/ontology matching approaches that builds on the work of [42] augmented in
[45, 20] and [18]. Some innovations are in introducing new criteria which are based on
(i) general properties of matching techniques, (ii) interpretation of input information,
and (iii) the kind of input information. We distinguish between heuristic and exact tech-
niques at schema-level; and syntactic, external, and semantic techniques at element- and
structure-level. Based on the classification proposed we provide a comparative review
of the recent schema/ontology matching systems pointing which part of the solution
space they cover.

The rest of the paper is organized as follows. Section 2 provides, via an example,
the basic motivations and definitions to the schema/ontology matching problem. Sec-
tion 3 discusses possible matching dimensions. Section 4 introduces the classification
of elementary automatic schema-based matching techniques and discusses in details
possible alternatives. Section 5 provides a vision on classifying matching systems. Sec-
tion 6 overviews some of the recent schema/ontology matching solutions in light of the
classification proposed pointing which part of the solution space they cover. Section 7
reports some conclusions.

2 The Matching Problem

2.1 Motivating Example

To motivate the matching problem, let us use two simple XML schemas that are shown
in Figure 1 and exemplify one of the possible situations which arise, for example, when
resolving a schema integration task.

Suppose an e-commerce company A1 needs to finalize a corporate acquisition of
another company A2. To complete the acquisition we have to integrate databases of

1 We use terms matching and alignment interchangeably.



the two companies. The documents of both companies are stored according to XML
schemas A1 and A2 respectively. Numbers in boxes are the unique identifiers of the
XML elements. A first step in integrating the schemas is to identify candidates to be
merged or to have taxonomic relationships under an integrated schema. This step refers
to a process of schema matching. For example, the elements with labels Office Produ
cts in A1 and in A2 are the candidates to be merged, while the element with label
Digital Cameras in A2 should be subsumed by the element with label Photo and Ca
meras in A1.

2.2 Schema Matching vs Ontology Alignment

In this paper we discuss the problem of matching schemas and ontologies from the
perspective of information which is exploited by matching systems in order to deter-
mine correspondences between the input schemas/ontologies. In this respect, ontology
alignment differs substantially from schema matching in the following two (among the
others, see [36]) areas:

• Database schemas often do not provide explicit semantics for their data. Semantics
is usually specified explicitly at design-time, and frequently is not becoming a part
of a database specification, therefore it is not available. Ontologies are logical sys-
tems that themselves incorporate semantics (intuitive or formal). For example, in
the case of formal semantics we can interpret ontology definitions as a set of logical
axioms.

• Ontology data models are richer (the number of primitives is higher, and they are
more complex) then schema data models. For example, OWL [47] allows defining
inverse properties, transitive properties; disjoint classes, new classes as unions or
intersections of other classes.

However, ontologies can be viewed as schemas (and vice versa, schemas can be
viewed as simple ontologies) for knowledge bases. Having defined classes and slots in
the ontology, we populate the knowledge base with instance data [36]. Thus, techniques
developed for each separate problem can be of interest to each other.

On the one side, schema matching is usually performed with the help of techniques
trying to guess the meaning encoded in the schemas. On the other side, ontology match-
ing systems (primarily) try to exploit knowledge explicitly encoded in the ontologies.
In real-world applications, schemas/ontologies usually have both well defined and ob-
scure labels (terms), and contexts they occur, therefore, solutions from both problems
would be mutually beneficial.

2.3 Problem Statement

A mapping element is a 5-tuple: 〈id, e, e′, n, R〉, where

– id is a unique identifier of the given mapping element;
– e and e′ are entities (e.g., tables, XML elements, properties, classes, individuals) of

the first and the second schema/ontology respectively;



– R is a relation (e.g., equivalence (=); more general (�); mismatch (⊥); overlapping
(�)), that should hold between the entities e and e ′;

– n is a confidence measure in some mathematical structure (typically in the [0,1]
range), that holds for the correspondence between the entities e and e ′.

The above definition is highly motivated by the work of [17, 5] which contain an in-
depth discussion on a format for expressing alignments between ontologies.

An alignment is a set of mapping elements. The matching operation determines an
alignment. For instance, in Figure 1, according to some matching algorithm based on
linguistic and structure analysis, the confidence measure (for the fact that the equiv-
alence relation holds) between entities with labels Photo and Cameras in A1 and
Cameras and Photo in A2 could be 0.67. While, the relation between the same pair
of entities, according to another matching algorithm which is able to determine that
both entities mean the same thing, could be exactly the equivalence relation.

The matching process generates an alignment (A ′) from a pair of schemas/ontologies
(o and o′). However, there are various other parameters which can extend the definition
of the matching process. These are namely, the use of an input alignment (A) which is
to be completed by the process, the matching parameters, p (e.g., weights) and some ex-
ternal resources used by the matching process, r (e.g., lexicons). The matching process
described above is schematically represented in Figure 2.
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Fig. 2. The matching process

2.4 Applications

Matching is a critical operation in many well-known application domains, such as se-
mantic web, schema/ontology integration, data warehouses, e-commerce, and semantic
query processing, see [42]. More recently, new application domains have emerged, such
as agent communication, web services integration, catalog matching, peer-to-peer (P2P)
databases, etc. Let us discuss them in a more detail.

Agent Communication. Agents are computer entities characterized by autonomy and
capacity of interaction. Cognitive agents communicate through speech-act inspired lan-
guages which determine the ”envelope” of the messages and enable agents to position
them within a particular interaction contexts. The actual content of messages is to be



expressed in knowledge representation languages and often refer to some ontology. As
a consequence, when two autonomous and independently designed agents meet, they
have the possibility of exchanging messages but little chance to understand each oth-
ers if they do not share the same content language and ontology. Thus, it is necessary
to provide the possibility for these agents to match their ontologies in order to either
translate their messages or integrate bridge axioms in their own models, see [51]. One
solution to this problem is to have an ontology alignment protocol able to be interleaved
with any other agent interaction protocol and which could be triggered upon receiving
a message expressed in an alien ontology.

Web Services Integration. Web services are processes that expose their interface to
the web so that users can invoke them. Semantic web services provide a richer and more
precise way to describe the services through the use of knowledge representation lan-
guages and ontologies. Web service discovery and integration is the process of finding a
web service able to deliver a particular service and composing several services in order
to achieve a particular goal, see [39]. However, semantic web services descriptions have
no reasons to be expressed by reference to exactly the same ontologies. Henceforth, both
for finding the adequate service and for interfacing services it will be necessary to es-
tablish the correspondences between the terms of the description. This can be provided
either on-line or off-line through matching the corresponding ontologies.

Catalog Matching. In B2B applications, trade partners store their products in elec-
tronic catalogs. Catalogs are tree-like structures, namely concept hierarchies with at-
tributes. Typical examples of catalogs are product directories of www.amazon.com,
www.ebay.com, etc. In order for a private company to participate in the marketplace
(e.g., eBay), it is used to determine correspondences between entries of its catalogs and
entries of a single catalog of a marketplace. This process of mapping entries among cat-
alogs is referred to the catalog matching problem, see [6]. Having aligned the catalogs,
users of a marketplace have a unified access to the products which are on sale.

P2P Databases. P2P networks are characterized by an extreme flexibility and dynam-
ics. Peers may appear and disappear on the network, their databases are autonomous in
their language, contents, how they can change their schemas, and so on. Since the peer
schemas are autonomous, they might use different terminology, even if they refer to the
same domain of interest. Thus, in order establish (meaningful) information exchange
between peers, one of the steps is to identify and characterize relationships between
their schemas. This process is that of schema matching. However, P2P applications
pose additional requirements on matching algorithms. In P2P settings an assumption
that all peers rely on one global schema, as in data integration, can not be made, be-
cause the global schema should be updated any time the system evolves, see [24]. Thus,
if in the case of data integration schema matching operation can be performed at design
time, in P2P applications peers need coordinating their databases on the fly, therefore
requiring a run time schema matching operation.



3 The Matching Dimensions

There are many independent dimensions along which algorithms can be classified. Fig-
ure 2 suggests possible axis for classifying matching approaches: we may classify them
according to (i) input of the algorithms, (ii) characteristics of the matching process, and
(iii) output of the algorithms. We use these axis for presenting possible dimensions.

Input dimensions. These dimensions concern the kind of input on which algorithms
operate. Algorithms can be classified depending on the data models in which ontologies
or schemas are expressed. For example, the Artemis [7] system supports the relational,
OO, and ER data models; Cupid [29] supports XML and relational data models; QOM
[16] supports RDF and OWL models. A second possible dimension depends on the kind
of data that the algorithms exploit: different approaches exploit different information of
the input data models, some of them rely only on schema-level information (e.g., Cupid
[29], COMA[25]), others rely only on instance data (e.g., GLUE [14]), or exploit both,
schema- and instance-level information (e.g., QOM [16]). Even with the same data
models, matching systems do not always use all available constructs. For example, S-
Match [22] so far is limited to class hierarchies, and does not handle attributes.

Process dimensions. A classification of the matching process could be based on its
general properties, as soon as we restrict ourselves to formal algorithms. In particular,
it depends on the heuristic or exact nature of its computation. Heuristics algorithms
sacrifice exactness to performance (e.g., [16]). All the techniques discussed in the re-
mainder of the paper can be either heuristic or exact. Another dimension for analyzing
the matching algorithms is based on the way they interpret the input data. In particular,
we define three large classes based on the intrinsic input, external resources, or some se-
mantic theory of the considered entities. We call these three classes syntactic, external,
and semantic respectively; and discuss them in details in the next section.

Output dimensions. Apart from the information that matching systems exploit and
how they manipulate it, the other important class of dimensions concerns the form of
the result they produce. The form of the alignment might be of importance: is it a one-
to-one correspondence between the ontology entities? Has it to be a true mapping?
Is any relation suitable? Other significant distinctions in the output results have been
indicated in [21]. One dimension concerns whether systems deliver a graded answer,
i.e., identity, or an all-or-nothing answer. In these approaches correspondences between
schema/ontology entities are determined using confidence measures provided with re-
spect to the equivalence relation, usually in [0,1] range, for example, with the help of
similarity coefficients [29, 20]. Another dimension concerns the kind of relations be-
tween aligned entities a system can provide. Most of the systems focus on equivalence
(providing a [0,1] identity for it), while a few other are able to provide a more expres-
sive result (e.g., equivalence (=), subsumption (�), see for details [22]).



In the next sections we first present a classification of elementary matchers (notice
that each of them can be implemented as exact or heuristic algorithm, depending on the
goals of a matching system), and then we discuss how matching systems themselves
can also be classified.

4 A retained classification of elementary schema-based matching
approaches

At present, there exists a line of semi-automated schema/ontology matching systems,
see, for instance [29, 25, 14, 32, 53, 1, 27, 34, 37, 31]. As indicated in introduction of the
paper we build on the previous work of classifying automated schema matching ap-
proaches of [42]. The classification of [42] distinguishes between elementary (individ-
ual) matchers and combinations of matchers. Elementary matchers comprise instance-
based and schema-based, element- and structure-level, linguistic- and constrained-based
matching techniques. Also cardinality and auxiliary information (e.g., dictionaries,
global schemas) can be taken into account.

In this section we discuss only schema-based elementary matchers, and we address
issues of their combination in the next section. Therefore, only schema/ontology in-
formation is considered, not instance data2. For classifying elementary schema-based
matching techniques, we introduce a three-layered classification, see Figure 3:

– the upper layer is based on (i) granularity of match, i.e., element- or structure-level,
and then (ii) on how the techniques generally interpret the input information;

– the middle layer represents classes of elementary matching techniques and their
concrete examples;

– the lower layer is based on the kind of input which is used by elementary matching
techniques.

The classification of Figure 3 can be read both in descending (focusing on how
the techniques interpret the input information) and ascending (focusing on the kind of
manipulated objects) manner. To make the distinctions between the categories proposed
clearer, we mark in bold type the innovations with regard to the initial classification of
[42].

Elementary matchers are distinguished by the upper layer according to the following
classification criteria:

– Element-level vs structure-level. Element-level matching techniques compute map-
ping elements by analyzing entities in isolation, ignoring their relations with other
entities. Structure-level techniques compute mapping elements by analyzing how
entities are related together. This criterion is the same as first introduced in [42].

– Syntactic vs external vs semantic. The key characteristic of the syntactic techniques
is that they interpret the input in function of its sole structure following some clearly
stated algorithm. External are the techniques exploiting in the matching process

2 Prominent solutions of instance-based schema/ontology matching as well as possible exten-
sions of the instance-based part of the classification of [42] can be found in [14] and [27]
respectively.
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Fig. 3. A retained classification of elementary schema-based matching approaches

auxiliary (external) resources of a domain and common knowledge in order to in-
terpret the input. These resources might be human input or some lexicon expressing
the relationships between terms or concepts. The key characteristic of the semantic
techniques is that they use some formal semantics (e.g., model-theoretic semantics)
to interpret the input and justify their results. In case of a semantic based match-
ing system, exact algorithms are complete while heuristic algorithms tend to be
incomplete.

Distinctions between classes of elementary matching techniques in the middle layer
of our classification are motivated by the way a matching technique interprets the input
information in each concrete case. In particular, a label can be interpreted as a string (a
sequence of letters from an alphabet) or as a word or a phrase in some natural language,
a hierarchy can be considered as a graph (a set of nodes related by edges) or a tax-
onomy (a set of concepts having a set-theoretic interpretation organized by a relation
which preserves inclusion). Thus, we introduce the following classes of elementary
schema/ontology matching techniques at the element-level: string-based, language-
based, based on linguistic resources, constraint-based, and alignment reuse. At the
structure-level we distinguish between: graph-based, taxonomy-based, and model-based
techniques.



The lower layer of the classification is only concerned with the type of input consid-
ered by a particular technique. Its first level is categorized on broad classes depending
on which kind of data the algorithms work on: strings (terminological), structure (struc-
tural) or models (semantics). The second level distinguish between linguistics methods,
and methods based on internal and external structures.

We discuss below the main alternatives (also indicating in which matching systems
they were exploited) according to the above classification in more detail. Notice, that
we omit in further discussions element-level semantic techniques and structure-level
external techniques. In the former case, the semantics is usually given in a structure and,
hence there are no element-level semantic techniques; regarding the latter case, we are
not aware of any matching systems exploiting libraries providing similarities between
different structures. We have also split linguistic techniques of [42] into string-based
techniques and language-based techniques in order to provide fine-grained distinctions
between possible alternatives.

4.1 Element-level techniques

String-based techniques are often used in order to match names and name descriptions
of schema/ontology entities. These techniques consider strings as sequences of letters
in an alphabet. A comparison of different string matching techniques, from distance
like functions to token-based distance functions can be found in [9]. Usually, distance
functions map a pair of strings to a real number, where a smaller value of the real
number indicates a greater similarity between the strings. Some examples of string-
based techniques which are extensively used in matching systems are prefix, suffix, edit
distance, and n-gram tests.

• Prefix. This test takes as input two strings and checks whether the first string starts
with the second one. Prefix is efficient in matching cognate strings and similar
acronyms (e.g., int and integer), see, for example [29, 25, 32, 23].

• Suffix. This test takes as input two strings and checks whether the first string ends
with the second one (e.g., phone and telephone), see, for example [29, 25, 32, 23].

• Edit distance. This test takes as input two strings and calculates the edit distance
between the strings. That is, the number of insertions, deletions, and substitu-
tions of characters required to transform one string into another, normalized by
max(length(string1), length(string2)). For example, the edit distance between
NKN and Nikon is 0.4. Some of matching systems exploiting the given test are [25,
37, 23].

• N-gram. This test takes as input two strings and calculates the number of the same
n-grams (i. e., sequences of n characters) between them. For example, trigram(3)
for the string nikon are nik, iko, kon. Some of matching systems exploiting the given
test are [25, 23].

Language-based techniques consider names as words in some natural language (e.g.,
English). They are based on Natural Language Processing (NLP) techniques exploiting
morphological properties of the input words.



• Tokenization. Names of entities are parsed into tokens by a tokenizer which recog-
nizes punctuation, cases, blank characters, digits, etc. (e.g., Hands−Free Kits →
〈hands, free, kits〉, see, for example [22].

• Lemmatization. Tokens at names are are morphologically analyzed in order to find
all their possible basic forms (e.g., Kits → Kit), see, for example [22].

• Elimination. Tokens that are articles, prepositions, conjunctions, and so on, are
marked (by some matching algorithms, e.g., [29]) to be discarded.

Usually, the above mentioned techniques are applied to names of entities before run-
ning string-based or lexicon-based techniques in order to improve their results. How-
ever, we consider these language-based techniques as a separate class of matching tech-
niques, since they are naturally extended in a distance computation (by comparing the
resulting strings or sets of strings).

Constraint-based techniques are algorithms which deal with the internal constraints
being applied to the definitions of entities, such as types, cardinality of attributes, and
keys. We omit here a discussion of matching cardinalities and keys as these techniques
appear in our classification without changes in respect to the original publication [42].
However, we provide a more detailed overview on matching datatypes.

• Datatypes comparison involves comparing the various attributes of a class with
regard to the datatypes of their value. Contrary to objects that require interpreta-
tions, the datatypes can be considered objectively and it is possible to determine
how a datatype is close to another (ideally this can be based on the interpretation of
datatypes as sets of values and the set-theoretic comparison of these datatypes, see
[49, 50]). For instance, the datatype day can be considered closer to the datatype
workingday than the datatype integer. This technique is used in [19].

• Multiplicity comparison attribute values can be collected by a particular construc-
tion (set, list, multiset) on which cardinality constraints are applied. Again, it is
possible to compare the so constructed datatypes by comparing (i) the datatypes
on which they are constructed and (ii) the cardinality that are applied to them. For
instance, a set of between 2 and 3 children is closer to a set of 3 people than a set
of 10-12 flowers (if children are people). This technique is used in [19].

Linguistic resources such as lexicons or thesauri are used in order to match words
(in this case names of schema/ontology entities are considered as words of a natural
language) based on linguistic relations between them (e.g., synonyms, hyponyms).

• Lexicons and thesauri. The approach is to use lexicons to obtain meaning of terms
used in schemas/ontologies. For example, WordNet [35] is an electronic lexical
database for English (and other languages), where various senses (possible mean-
ings of a word or expression) of words are put together into sets of synonyms.
Relations between schema/ontology entities can be computed in terms of bind-
ings between WordNet senses, see, for instance [22, 6]. For example, in Figure 1, a
sense-based matcher may learn from WordNet (with a prior morphological prepro-
cessing of labels performed) that ”Camera” in A1 is a hypernym for ”Digital Cam-
era” in A2, and, therefore conclude that entity Digital Cameras in A2 should



be subsumed by the entity Photo and Cameras in A1. Another type of matchers
exploiting lexicons is based on their structural properties, e.g., WordNet hierar-
chies. In particular, hierarchy-based matchers measure the distance, for example,
by counting the number of arcs traversed, between two concepts in a given hierar-
chy, see [23]. Several other distance measures for lexicons have been proposed in
the literature, e.g., [43, 41].

• Dictionaries and directories. A dictionary usually stores some specific domain
knowledge (e.g., proper names) as entries with synonym, hypernym and other re-
lations. For example, in Figure 1 entities NKN in A1 and Nikon in A2 are treated
by a matcher as synonyms from the dictionary look up: syn key - ”NKN:Nikon =
syn”, see, for instance [29].

Alignment reuse techniques represent an alternative way of exploiting external re-
sources, which contain in this case alignments of previously matched schemas/ontologies.
For instance, when we need to match schema/ontology o ′ and o′′, given the alignments
between o and o′, and between o and o′′ from the external resource, storing previous
match operations results. The alignment reuse is motivated by the intuition that many
schemas/ontologies to be matched are similar to already matched schemas/ontologies,
especially if we they are describing the same application domain. The approach was first
introduced in [42], and later was implemented as two matchers, i.e., (i) reuse alignments
of entire schemas, or (ii) their fragments, in [25]. To our knowledge, for the moment,
this is the unique matching system supporting the alignment reuse.

4.2 Structure-level techniques

Graph-based techniques are graph algorithms which consider the input as labeled
graphs. The applications (e.g., database schemas, taxonomies, or ontologies) are viewed
as graph-like structures containing terms and their inter-relationships. Usually, the sim-
ilarity comparison between a pair of nodes from the two schemas/ontologies is based
on the analysis of their positions within the graphs. The intuition behind is that, if two
nodes from two schemas/ontologies are similar, their neighbors might also be somehow
similar. Below, we present some particular matchers representing this intuition.

• Graph matching. There had been a lot of work on graph (tree) matching in graph
theory and also with respect to schema/ontology matching applications, see [44,
54]. Typically, the schema/ontology matching problem is encoded as an optimiza-
tion problem which is further resolved with the help of a graph matching algorithm.
Examples of systems exploiting graph matching algorithms based on fix-point com-
putation are [32] and [19]. Some particular matchers handling DAGs and trees are
children and leaves.

• Children. The (structural) similarity between inner nodes of the graphs is computed
based on similarity of their children nodes, that is, two non-leaf schema elements
are structurally similar if their immediate children sets are highly similar. A more
complex version of this matcher is implemented in [25].



• Leaves. The (structural) similarity between inner nodes of the graphs is computed
based on similarity of leaf nodes, that is, two non-leaf schema elements are struc-
turally similar if their leaf sets are highly similar, even if their immediate children
are not, see, for example [29, 25].

• Relations. The similarity computation between nodes can be also based on their re-
lations. For example, in one of the possible ontology representations of schemas of
Figure 1, if class Photo and Cameras relates to class NKN by relation hasBrand
in one ontology, and if class Digital Cameras relates to class Nikon by relation
hasMarque in the other ontology, then knowing that classes Photo and Cameras
and Digital Cameras are similar, and also relations hasBrand and hasMarque
are similar, we can infer that NKN and Nikon may be similar too, see [30].

Taxonomy-based techniques are also graph algorithms which consider only the spe-
cialization relation. The intuition behind taxonomic techniques is that is-a links connect
terms that are already similar (being a subset or superset of each other), therefore their
neighbors may be also somehow similar. This intuition can be exploited in several dif-
ferent ways:

• Bounded path matching. These matchers take two paths with links between classes
defined by the hierarchical relations, compare terms and their positions along these
paths, and identify similar terms, see, for instance [37]. For example, in Figure 1
given that element Digital Cameras in A2 should be subsumed by the element
Photo and Cameras in A1, a matcher would suggest FJFLM in A1 and FujiFilm
in A2 as an appropriate match.

• Super(sub)-concepts rules. These matchers are based on rules capturing the above
sated intuition. For example, if super-concepts are the same, the actual concepts are
similar to each other. If sub-concepts are the same, the compared concepts are also
similar, see, for example [11, 16].

Model-based algorithms handle the input based on its semantic interpretation (e.g.,
model-theoretic semantics). Thus, they are well grounded deductive methods. Examples
are propositional satisfiability (SAT), modal SAT techniques or description logics (DL)
reasoning techniques.

• Propositional satisfiability (SAT). As from [21, 6] the approach translates the match-
ing problem, namely the two graphs (trees) and mapping queries into a proposi-
tional formula and then checks it for validity. By a mapping query we mean here
the pair of nodes and a possible relation between them. Notice that SAT deciders
are correct and complete decision procedures for propositional satisfiability, and
therefore they can be used in order to exhaustively check for all possible mappings.

• Modal SAT. As proposed in [46] the approach is to delimit propositional SAT which
allows handling only unary predicates (e.g., classes, XML elements) by admitting
binary predicates (e.g., attributes). The key idea is to enhance propositional logics
with modal logic (or ALC description logics) operators. Therefore, the matching
problem is translated into a modal logic formula which is further checked for its
validity using sound and complete satisfiability search procedures.



• DL-based techniques. Description logics techniques, i.e., subsumption test, can be
used to determine the relations between classes in a purely semantic manner. In
fact, first merging two ontologies (after renaming) and then testing each pair of
concepts and roles for subsumption is enough for aligning terms with the same
interpretation (or with a subset of the interpretations of the others). However, we
are not aware of existence of any schema/ontology matching systems supporting
DL-based techniques for the moment.

There is a line of examples in the literature when DL-based techniques are used
in relevant to schema/ontology matching applications. For example, in spatio-temporal
database integration scenario, as first motivated in [40] and later developed in [48] the
inter-schema mappings are initially proposed by the integrated schema designer and
are encoded together with input schemas in ALCRP (S2 ⊕ T ) language. Then, the
DL reasoning services are used to check the satisfiability of the two source schemas
and the set of inter-schema mappings. If some objects are found unsatisfied, then the
inter-schema mappings should be reconsidered.

Another example, is when DL-based techniques are used in query processing sce-
nario [34]. The approach assumes that mappings between pre-existing domain ontolo-
gies are already specified in a declarative manner (e.g., manually). User queries are
rewritten in terms of pre-existing ontologies and are expressed in Classic [4], and further
evaluated against real-world repositories, which are also subscribed to the pre-existing
ontologies.

Finally, a very similar problem to schema/ontology matching is addressed within
the system developed for matchmaking in electronic marketplaces [10]. Demand D
and supply S requests are translated from natural language sentences into Classic [4].
The approach assumes the existence of a pre-defined domain ontology T , which is also
encoded in Classic. Matchmaking between a supply S and a demand D is performed
with respect to the pre-defined domain ontology T . Reasoning is performed with the
help of the NeoClassic reasoner in order to determine the exact match (T |= (D � S))
and (T |= (S � D)), potential match (if D � S is satisfiable in T ), and nearly miss
(if D � S is unsatisfiable in T ). The system also provides a logically based matching
results rank operation.

5 On classifying matching systems

As the previous section indicates, elementary matchers rely on a particular kind of input
information, therefore they have different applicability and value with respect to differ-
ent schema/ontology matching tasks. State of the art matching systems are made not of
a single elementary matcher, usually they combine them in a variety of ways. As no-
ticed in [42] elementary matchers can be used in sequence (hybrid matchers), examples
are [29, 1], or in parallel (composite matchers) combining the results (e.g., taking the
average, maximum) of independently executed matchers, see, for instance [25, 14, 16].

Most of the matching algorithms are hybrid, or ”compose” hybrid algorithms. The
above classification is useful from an architectural perspective, however it does not
show how the systems can be distinguished with respect to how they state the matching



problem and what kind of a solution they produce. Thus, it cannot be useful for the
customer of alignment.

Finding a better classification is rather difficult. Below, we provide a vision of a
classification of matching systems depending on how they consider alignments and the
alignment task. This classification captures only a tendency of each algorithm and we
think that it is still not exclusive. As a matter of fact, we find that some algorithms may
fall between two categories. The proposed classification criteria for matching systems
are as follows:

– Alignments as solutions. This category covers purely algorithmic techniques that
consider that the alignment problem is to be solved and the alignment is a solution
to that problem. It could be characterized as a (continuous or discrete) optimization
problem. This covers algorithms like [19], or [32] as well as most of the distance-
based systems and instance-based systems which learn from the data.

– Alignments as theorems. Systems of this category rely on semantics and require
the alignment to satisfy it, for example [22]. This category is, strictly speaking,
a sub-category of the previous one (the problem is expressed in semantic terms).
However, it is sufficiently autonomous for being singled out here. Moreover, it has
a strong link with the use of the aligned ontologies.

– Alignments as likeness clues. This category refers to the algorithms which do not
pretend to find the solution to a problem (usually they just measure the distance) but
rather to provide reasonable indications to a user for selecting the actual alignment.
They can be based on the same techniques as the others but usually do not provide
an exact solution to the problem. Examples of matching systems from this category
are [29, 25].

6 Review of state of the art matching systems

We now look at some recent schema-based state of the art matching systems in light of
the classification presented in Figure 3 and criteria highlighted in Section 5.

Rondo. The SF [32] approach as implemented in Rondo [33] utilizes a hybrid
matching algorithm based on the ideas of similarity propagation. Schemas are presented
as directed labeled graphs; grounding on the OIM specification [8] the algorithm manip-
ulates them in an iterative fix-point computation to produce an alignment between the
nodes of the input graphs. The technique starts from string-based comparison (common
prefixes, suffixes tests) of the vertice’s labels to obtain an initial alignment which is re-
fined within the fix-point computation. The basic concept behind the SF algorithm is the
similarity spreading from similar nodes to the adjacent neighbors through propagation
coefficients. From iteration to iteration the spreading depth and a similarity measure
are increasing till the fix-point is reached. The result of this step is a refined alignment
which is further filtered to finalize the matching process. SF considers the alignment as
a solution to a clearly stated optimization problem.

Artemis. Artemis (Analysis of Requirements: Tool Environment for Multiple In-
formation Systems) [7] was designed as a module of MOMIS mediator system [1] for
creating global views. It performs affinity-based analysis and hierarchical clustering
of source schemas elements. Affinity-based analysis represents the matching step: in a



hybrid manner it calculates the name, structural and global affinity coefficients exploit-
ing a common thesaurus. The common thesaurus is built with the help of ODB-Tools,
WordNet or manual input. It represents a set of intensional and extensional relationships
which depict intra- and inter-schema knowledge about classes and attributes of the in-
put schemas. Based on global affinity coefficients, a hierarchical clustering technique
categorizes classes into groups at different levels of affinity. For each cluster it creates
a set of global attributes - global class. Logical correspondence between the attributes
of a global class and source schema’s attributes is determined through a mapping table.
Artemis falls into the alignments as likeness clues category.

Cupid. Cupid [29] implements a hybrid matching algorithm comprising linguis-
tic and structural schema matching techniques, and computes similarity coefficients
with the assistance of a precompiled dictionary. Input schemas are encoded as graphs.
Nodes represent schema elements and are traversed in a combined bottom-up and top-
down manner. The matching algorithm consists of three phases and operates only with
tree-structures to which non-tree cases are reduced. The first phase (linguistic match-
ing) computes linguistic similarity coefficients between schema element names (labels)
based on morphological normalization, categorization, string-based techniques (com-
mon prefixes, suffixes tests) and a dictionary look-up. The second phase (structural
matching) computes structural similarity coefficients weighted by leaves which mea-
sure the similarity between contexts in which elementary schema elements occur. The
third phase (mapping generation) computes weighted similarity coefficients and gen-
erates final alignment by choosing pairs of schema elements with weighted similarity
coefficients which are higher than a threshold. Referring to [29], Cupid performs some-
what better overall, then the other hybrid matchers: Dike [38] and Artemis [7]. Cupid
falls into the alignments as likeness clues category.

COMA. COMA (COmbination of MAtching algorithms) [25] is a composite schema
matching tool. It provides an extensible library of matching algorithms; a framework for
combining obtained results, and a platform for the evaluation of the effectiveness of the
different matchers. Matching library is extensible, and as from [25] it contains 6 ele-
mentary matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them
implement string-based techniques (affix, n-gram, edit distance, etc.) as a background
idea; others share techniques with Cupid (dictionary look-up, etc.); and reuse-oriented
is a completely novel matcher, which tries to reuse previously obtained results for entire
new schemas or for its fragments. Schemas are internally encoded as DAGs, where el-
ements are the paths. This fact aims at capturing contexts in which the elements occur.
Distinct features of the COMA tool in respect to Cupid, are a more flexible architecture
and a possibility of performing iterations in the matching process. Based on the com-
parative evaluations conducted in [12], COMA dominates Autoplex[2] and Automatch
[3]; LSD [13] and GLUE [14]; SF [32], and SemInt [28] matching tools. COMA falls
into the alignments as likeness clues category.

NOM. NOM (Naive Ontology Mapping) [16] adopts the idea of composite match-
ing from COMA [25]. Some other innovations with respect to COMA, are in the set
of elementary matchers based on rules, exploiting explicitly codified knowledge in on-
tologies, such as information about super- and sub-concepts, super- and sub-properties,
etc. At present the system supports 17 rules. For example, rule#5 (R5) states that if



super-concepts are the same, the actual concepts are similar to each other, R15 states
that two entities are the same if they are binded by sameClassAs OWL property. NOM
also exploits a set of instance-based techniques, this topic is beyond scope of the paper.
The system falls into the alignments as likeness clues category.

QOM. QOM (Quick Ontology Mapping) [15] is a successor of the NOM system
[16]. The approach is based on the idea that the loss of quality in matching algorithms
is marginal (to a standard baseline), however improvement in efficiency can be tremen-
dous. This fact allows QOM producing mappings fast, even for large-size ontologies.
QOM is grounded on matching rules of NOM. However, for the purpose of efficiency
the use of some rules have been restricted, e.g., R5. QOM avoids the complete pair-
wise comparison of trees in favor of a (n incomplete) top-down strategy. Experimental
study has shown that QOM is on a par with other state of the art algorithms concerning
the quality of proposed alignment, while outperforming them with respect to efficiency,
and vice versa QOM shows better quality results than approaches within the same com-
plexity class. The system falls into the alignments as likeness clues category.

OLA. OLA (OWL Lite Aligner) [19] is designed with the idea of balancing the
contribution of each component that compose an ontology (classes, properties, names,
constraints, taxonomy, and even instances). As such it takes advantage of all the ele-
mentary matching techniques that have been considered in the previous sections, but the
semantic ones. OLA is a family of distance based algorithms which converts definitions
of distances based on all the input structures into a set of equations. These distances are
almost linearly aggregated (they are linearly aggregated modulo local matches of enti-
ties). The algorithm then looks for the matching between the ontologies that minimizes
the overall distance between them. For that purpose it starts with base distance measures
computed from labels and concrete datatypes. Then, it iterates a fix-point algorithm un-
til no improvement is produced. From that solution, an alignment is generated which
satisfies some additional criterion (on the alignment obtained and the distance between
aligned entities). As a system OLA consider the alignment as a solution to a clearly
stated optimization problem.

Anchor-PROMPT. Anchor-PROMPT [37] (an extension of PROMPT, also for-
merly known as SMART) is an ontology merging and alignment tool with a sophisti-
cated prompt mechanism for possible matching terms. The anchor-PROMPT is a hy-
brid alignment algorithm which takes as input two ontologies, (internally represented
as graphs) and a set of anchors-pairs of related terms, which are identified with the help
of string-based techniques (edit-distance test), or defined by a user, or another matcher
computing linguistic similarity, for example [31]. Then the algorithm refines them by
analyzing the paths of the input ontologies limited by the anchors in order to deter-
mine terms frequently appearing in similar positions on similar paths. Finally, based
on the frequencies and a user feedback, the algorithm determines matching candidates.
Anchor-PROMPT falls into the alignments as solutions and alignments as likeness clues
categories.

S-Match. S-Match [21, 22] is a schema-based schema/ontology matching system
implementing semantic matching approach. It takes two graph-like structures (e.g.,
database schemas or ontologies) as input and returns as output the relations between
the nodes of the graphs that correspond semantically to each other. Possible relations



Fig. 4. Characteristics of state of the art matching approaches

are: equivalence (=), more general (�), less general (�), mismatch (⊥), and overlap-
ping (�). The current version of S-Match is a rationalized re-implementation of the
CTXmatch system [6] with a few added functionalities. S-Match was designed and de-
veloped as a platform for semantic matching, namely a highly modular system with
the core of computing relations where single components can be plugged, unplugged
or suitably customized. It is a hybrid system. At present, S-Match libraries contain 13
element-level matchers, see [23], and 2 structure-level (JSAT and SAT4J) matchers.
S-Match falls into the alignments as theorems category.

Figure 4 briefly summarizes how the matching systems cover the solution space in
terms of the proposed classification. Numbers in brackets specify how many matchers
of a particular type a system supports. For example, S-Match supports 5 string-based
element-level syntactic matchers (prefix, suffix, edit distance, n-gram, and text corpus,
see [23]), OLA has one element-level external matcher based on WordNet. Figure 4
also testifies that schema/ontology matching research was mainly focused on syntactic
and external techniques so far. Semantic techniques have been exploited only by the
S-Match system [22].

7 Conclusions

This paper presents a new classification of schema-based matching approaches, which
improves the previous work on classifying schema matching approaches. We have intro-
duced new criteria which are based on (i) general properties of matching techniques, (ii)
interpretation of input information, and (iii) the kind of input information. In particular,
we distinguish between heuristic and exact techniques at schema-level; and syntactic,
external, and semantic techniques at element- and structure-level. We reviewed some
of the recent schema/ontology matching systems in light of the classification proposed
pointing which part of the solution space they cover. Analysis of state of the art systems
discussed has shown, that most of them exploit only syntactic and external techniques,
and only one uses semantic techniques. However, the category of semantic techniques



was identified only recently as a part of the solution space; its methods provide sound
and complete results, and, hence it represents a wide area for the future investigations.

The proposed classification provides a common conceptual basis, and hence can be
used for comparing (analytically) different existing schema/ontology matching systems
as well as for designing a new one, taking advantages of state of the art solutions. As
the paper shows, the solution space is quite large and there exists a variety of matching
techniques. In some cases it is difficult to draw conclusions from the classification of
systems. A complementary approach is to compare matching systems experimentally,
with the help of benchmarks. Initial steps have already been done by running I3CON
initiative 3 and Ontology Alignment Contest4.
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