In Hesham El-Rewini and Bruce D. Shriver, editors, Proceedings of the
Twenty-Seventh Annual Hawaii International Conference on System Sciences,

volume II, pages 226 -- 235, January 1994.

IEEE Computer Society Press.

ALCHEMIST - an object-oriented tool to build transformations
between Heterogeneous Data Representations*

Henry Tirri

Department of Computer Science
University of Helsinki
Helsinki, Finland

Abstract

ALCHEMIST is a general purpose object-oriented
transformation generator. ALCHEMIST provides a
new approach to developing transformations between
any well-defined representations. It allows users to de-
fine the syntactic structure of the data representations
and the related structure associations with a grammar
notation. These grammars can then be augmented
with semantic operations. From this description a per-
sistent object-oriented representation is formed and
a transformation module is generated automatically.
This transformation module relies on an object repre-
sentation of the parse tree. In this paper the principles
underlying ALCHEMIST are discussed and its object-
oriented design decisions are described.

1 Introduction

The modern paradigm to provide open software en-
vironments with the resulting heterogeneous software
platforms has dramatically increased the importance
of effective methods of translating between different
data representations. Even the most optimistic pre-
dictions acknowledge that several different representa-
tion standards will coexist in the future, regardless of
the various standardization efforts. Examples of such
coexistence can be found everywhere: object structure
representations (CORBA, PCTE [5]), data represen-
tations (CODASYL [1], relational representations [4]),
knowledge representations (INTERLINGUA [11], KL-
ONE [3]), etc. It should be observed that transforming

*This research was supported by the Technology Develop-
ment Center (TEKES) and in part by the Commission of the
European Communities under ESPRIT-II project 5365 VITAL.
This paper reflects the opinions of the authors and not necessar-
ily those of the consortium. The e-mail addresses of the authors
are tirri@cs.Helsinki.FI and linden@cs.Helsinki.F'1

Greger Lindén

Department of Computer Science
University of Helsinki
Helsinki, Finland

between data and knowledge representations is inher-
ently more difficult than pure syntactic translations
needed for image translations, since the semantics of
the objects involved typically has a great effect on the
translation process itself.

For data (or knowledge) representation transforma-
tions we adopt a view that a representation formalism
X is a machine language of a corresponding abstract
machine Px. In the extreme case the transformation
mapping has to incorporate most of the information
about this abstract machine executing the “data lan-
guage”, i.e., provide a simulation mapping between
the two abstract machines. Consequently in many
cases the transformation has to be semi-automatic,
and is even in the best case user-assisted. Developing
such transformations with proper user interfaces is a
tedious task, especially as the set of representations
to be included tends to increase with time. Conse-
quently the process of developing transformation soft-
ware would benefit from a toolkit supporting the de-
sign of the various components involved. Such a trans-
formation toolkit is akin to compiler-compilers [15],
editor generators and report generators [13], however
with many interesting special features and capabili-
ties of its own. It differs considerably from compiler-
compilers by assuming that in the general transforma-
tion case, the target code also has a complex structure
that requires a grammar description. Similarly the se-
mantic actions involved are more complex than in the
regular translation process. The most closely related
work to ours is the Intergrated Chameleon Architec-
ture data translator [9]

ALCHEMIST is an object-oriented transforma-
tion tool under development in the VITAL project
[10]. The VITAL project aims at developing an
open industrial-strength software engineering work-

bench for building heterogeneous knowledge based
(KBS) applications. However, ALCHEMIST is a gen-

User

source grammar. object user assistance INPUT
target grammar structure interface
description
4 S '
1 :
!))) specify object specify user |
' specify grammar specify mapping structure assistance i
! interface |
|
1 SPELLBOUND SPELLBOUND SUBSTANCE GLASS 1
i
' lib obje(_:ft,(s:tartucture |
! rary grammar specification assistance interface i
! pecification specification i
! source grammar mappin: i
1 specificgaion sp%?:ﬁic%tion i
3 Iargaf'%‘;mmar libi bject structl !
ecification ibrary of ructure
! & speaficanion Ul spec 3
3 !
! i
| specification !
| el BOOK ! ALCHEMIST
Il
! Il
! Il
! 1
1 !
i
i System spec |
! |
1 source grammar mappin target grammar i
i specificgation sp%éﬁic%tion spgcifi%ation '
! Il
i
' |
!
! Il
! Il
3 !
! generate generate |
! OtF parser default system |
i
! SWINDLER |
i
! Il
i
! |
,,]
file-to-object parser object-to-file parser OUTPUT

| interface
e

Figure 1: Data flow diagram of ALCHEMIST.

eral purpose transformation generator and its use is
not limited to its development context of KBS appli-
cations. ALCHEMIST provides a sophisticated way of
developing transformations between any well-defined
representations, and is especially suitable for defin-
ing mappings between data representations in a het-
erogeneous database environment. ALCHEMIST al-
lows users to define the syntactic structure of the data
representations and the related structure associations
with a grammar notation. These grammars can then
be augmented with semantic operations. From this
description a persistent object-oriented representation
is formed, and this representation is used to gener-
ate automatically a transformation program, coined
as a “spell”. Similarly the generated program uses
an object representation of the parse tree. Thus the
approach adopted relies heavily on persistent object
repositories, as in a “real world” translation the inter-
mediate object representations are too large to fit in
the main memory. Currently the system is being built

on top of ODE object-oriented database system from
AT&T [2]. The transformations are off-line, i.e., from
file to file, but eventually the toolkit will be extended
to handle also online transformations.

The ALCHEMIST transformation generator envi-
ronment comprises of the following modules (for the
structure of ALCHEMIST and a generated spell see
Figures 1 and 2):

e a spell specification interface (SPELLBOUND),

e a file-to-object parser generator (SEER),

e an object-to-file parser generator (SWINDLER),
a mapper generator (STONE),

a graphical user interface generator (GLASS),
an object structure generator (SUBSTANCE),
a mapping library manager (BOOK),

an object manager (POT).

ALCHEMIST produces transformation programs,
spells. Although in principle spells can be executed as
stand-alone processes, in many environments it is use-

| User |

user

y input
spell map
Mapper,

source object target object
structure structure
source source rep—‘(parse \ ol spellPOT unparse target rep- target
application | resentation A(FtOP) 5P (OtFP) [resentation | application

object

structures

Figure 2: Data flow diagram of a transformation.

ful to collect several spells together to form a “macro
spell”. The need for macro spells is especially com-
mon for heterogeneous systems, where the develop-
ment process requires a multi-step transformation be-
tween various applications. APPRENTICE is a tool
for executing the actual transformations, i.e., for using
a set of spells. APPRENTICE allows users to select
graphically what transformations take place for the
given files, and also to create macro spells.

Both ALCHEMIST and APPRENTICE interfaces
run on OpenWindows/Unix environment. In the def-
inition of the transformations full expressive power
of C++ is allowed. This paper describes the gen-
eral structure of the ALCHEMIST, as well as the
object-oriented technical solutions used in building the
toolkit. The theoretical framework of TT-grammars
is also briefly discussed. We proceed by first describ-
ing how the transformations are specified using AL-
CHEMIST (Section 2). In Section 3 we address the
problem of generating a transformation program, and
Section 4 discusses the additional components in AL-
CHEMIST for transformation design support.

2 Specifying spells

The spells are specified using the SPELLBOUND
window-based interface (see Figure 3). The specifica-
tion process produces an object-oriented data struc-
ture which has all the necessary information to pro-
duce the C/C++ code for the transformation module.
Although the SPELLBOUND interface is graphical,

all the information has also a textual representation

that can be edited by a standard character-based edi-
tor.

A spell specification object structure consists of
object-oriented specifications of grammars of the
source and target representations and mappings be-
tween these grammars. Correspondingly it includes
objects representing individual productions, symbols,
production groups, production group mappings, etc.

2.1 Specifying grammars

A source or target representation is specified by giv-
ing its context-free grammar. This grammar can be
defined either interactively using the SPELLBOUND
interface, or by giving a yacc-description [6] of the
grammar in a file. For the spell specification a
context-free grammar is represented as a four-tuple
G = (N,T,P,S), where N is the set of nonterminals,
T the set of terminals, P the set of productions, and S
a particular nonterminal called the start symbol. The
set V.= N UT is the alphabet of the grammar. The
elements in the alphabet are called symbols or tokens.

The specification of a representation grammar is
highly syntax-directed. SPELLBOUND lets the user
insert, delete, or modify existing productions. Since
each production corresponds to an object, many pro-
ductions can be edited at the same time. On the other
hand, when processing a production, only one right
hand symbol can be modified at any given time.

A grammar object has a name and a set of produc-
tions. Similarly each production consists of a name, a
left hand side and a right hand side. A left hand side

is one nonterminal, a right hand side consists of an

ordered set of symbols, each either a nonterminal or a
terminal. Productions with iterations are given with
recursive nonterminals, and productions with disjunc-
tions are represented as separate productions. Thus
the grammar is defined in a traditional manner, but
implemented as a collection of objects rather than ta-
ble representations.

A grammar object is specified by giving links to
its production objects. The nonterminal and termi-
nal objects are specified by the production objects.
The start symbol is the left hand side nonterminal of
the first given production. For the production objects
each right hand side can be associated with a semantic
action related to the mapping in question.

Grammar and production objects can also be saved
or loaded in textual form. This allows character based
editing of the grammar productions with a regular ed-
itor. However, normally a grammar is displayed (and
specified) through the SPELLBOUND grammar in-
terface. With this interface the user can insert new
productions, and delete or modify old ones. Adding
new productions or modifying old ones is performed
through the SPELLBOUND production interface.

A representation grammar with its productions is
stored as persistent objects to an Object Management
System. The source representation grammar is then
used to generate a parser for the source files given to
the spell in question. However, the primary purpose
of having grammar objects in the spell specification is
to create a mapping between a source grammar and a
target grammar.

2.2 Specifying mappings

In a regular compilation process the target repre-
sentation (e.g., machine code) is less structured than
the source representation. For data transformations
this is not the case, also the target representation can
be highly structured. This brings us to an interest-
ing problem. It is not enough that the transformation
scheme attaches target code to each node in the parse
tree of the source code, it also has to guarantee that
the produced code is structurally correct, i.e., con-
forms to the constraints imposed by the target gram-
mar. Thus the transformation mapping is between
two parse tree structures. Adopting such a viewpoint
is also useful when reverse transformations (“counter-
spells”) are needed, since in many cases this symmetry
allows reuse of the already existing mappings by sim-
ple reverse operations. Following this idea, the trans-
formation mappings are defined between sets of gram-
mar productions.

2.3 TT-grammars

The SPELLBOUND specification of mappings is
based on the notion of TT-grammars developed at
SDC [7]. TT-grammars are a formal description tech-
nique for describing transformations from one lan-
guage to another. A TT-grammar contains context-
free grammars for both languages. As discussed above
the transformation between the representation lan-
guages is described by associating productions in both
grammars. SSAGS — a syntax and semantics analysis
and generation system [12] was extended to support
certain TT-grammars.

A TT-grammar describes a relationship between a
syntax tree over a grammar (G; and a syntax tree
over a grammar G3. A TT-grammar may be inter-
preted as a description of a tree transformation tech-
nique. Transformations can be specified both ways,
from trees over grammar G to trees over grammar
(5 or vice versa, thus being especially suitable for our
purposes where two-way transformations are common.
Here we concentrate on one-way transformations from
trees over a source grammar G to trees over a target
grammar Gy;. The relationship is described by asso-
ciating groups of productions in G5 with groups of
productions in Gy4. In addition one needs to associate
symbol occurrences in G5 with symbol occurrences in
Gt.

Formally, a TT-grammar is a sextuplet (G5, Gy,
Ss, S, PA, SA), where G5 and G are the source
and target grammars, respectively, Sy and S; are sets
of source and target subgrammars, respectively, PA
is the set of production group associations, and SA
the set of symbol associations. The source and tar-
get grammars are context-free grammars. The source
and target subgrammars consist of sets of productions
from the source and target grammars, respectively. A
production group association is a pair consisting of a
source subgrammar in S; and a target subgrammar
in S;. A symbol association relates a symbol in a
source subgrammar to a symbol in a target subgram-
mar (within a certain production group association).

The source subgrammars must satisfy the following
restrictions. First, there must be a single start symbol
in every subgrammar. Second, every other symbol
in the subgrammar must be derivable from this start
symbol. Source subgrammars specify subtree patterns
to be matched against in the source tree; the target
subgrammars specify the subtrees that are the result
from a match in the source tree. A target subgrammar
is not required to have a single start symbol; it can
have several, resulting in a forest of target subtrees.

Informally, a TT-grammar may be viewed as gen-

erating subtrees in GG; from subtrees in G, as follows.
Let (pgs, pg:) be a production group association, where
pgs 1s a source subgrammar and pg; a target subgram-
mar. The productions in pg; are applied every time
the productions in pg, apply (all of them) to the source
tree. Let two of the productions produced in the re-
sulting forest of target subtrees be t — asf and s — 7.
Assume also that both instances of the symbol s are
associated with the same source symbol. Then the two
target subtrees are linked through s to form a single
target subtree.

Example 1 Consider the following case, where a
transformation between a simple entity relationship
model and a relational model is needed. Assume that
the source grammar G contains (among others) the
following productions.

Part of source grammar G,

ER — Ss

Ss — 5 Ss

Ss — 5

S — Entity

Entity — “ENTITY” “(” Name «)”
Name — 1D

Assume also that the target grammar G; has the fol-
lowing (corresponding) productions.

Part of Target grammar G

Relational_db — Schemes

Schemes — €

Schemes — Scheme Schemes
Scheme — Name “(” Attributes)"
Name — IDENTIFIER

The mapping must describe how we translate a persis-
tent representation of an entity into a relation scheme.
The following production group associations and sym-
bol associations belong to the TT-grammar describing
the required transformation. We follow the notation
of Keller et al. and denote symbol associations by
source_symbol.target _symbol.

Source subgrammars S

s;1: FER — Ss

Si9 1 S8y — S Ssy
S — Entity

S;3: Ss - S
S — Entity

Sia » Entity — “ENTITY” “(” Name ©)”
Name — IDENTIFIER

The corresponding target subgrammars are the follow-
ing (s;; corresponds to so;).

Target subgrammars Sy

$o1 - FER.Relational_db

_
So2 © Ss;.Schemes —

Ss.Schemes
Entity.Scheme
Sso.Schemes
Entity.Scheme
Entity.Schemes
Entity.Schemes — €

So3 : Ss.Schemes —

Soq : Entity.Scheme — Name.Name “(”
Entity. Attributes «)”
Name.Name — IDENTIFIER.ID

We translate an entity EMPLOYEE to a relation
scheme. The graphical representation is, e.g.,

EMPLOYEE

and according to the source grammar, the persis-
tent representation is ENTITY(EMPLOYEE). We have
the source tree over the source grammar

ER
|
Ss
|
S
I
Entity
/7 1\
ENTITY (Name)
|
EMPLOYEE

A transformation produces target subtrees

Relational_db Schemes Schemes
| 7\ |
Schemes Scheme Schemes €
Scheme Name

RN I
Name (Attributes) EMPLOYEE

which are connected through the symbol associations

to the target tree Relational.db

Schemes

S

Scheme Schemes
p 2 RN
Name (Attributes) €

/
EMPLOYEE

The result of the transformation is EMPLOYEE(). If
the entity has attributes, appropriate subtrees will be
produced and inserted into the target tree. a

2.4 Mappings

In ALCHEMIST’s object-oriented view, each of the
TT-grammar associations discussed above is also rep-
resented as an object. Thus a mapping between two
grammars is implemented as a set of production group
association (PGA) objects, each consisting of two pro-
duction group objects, one over the source grammar
and the other over the target grammar. Connected
with each production group association object we have
a set of symbol association objects. A production
group object consists of a set of production objects,
correspondingly a symbol association object consists
of two symbol objects, a source symbol object and
a target symbol object. For more complex transfor-
mation needs, semantic actions (C/C++ code) can
be attached to production group association objects.
Production group association objects are also linked to
conflicting production group association objects, i.e.,
PGAs with the same source production group.

The SPELLBOUND specification of mappings is
based on specifying the corresponding PGA associ-
ations. The user forms and connects subgrammars
through the production group association manager.
This interface allows the user to insert source pro-
ductions in the production group at the left, and tar-
get productions in the production group on the right.
Productions can be deleted from any group. However,
the user cannot modify the productions; modifications
must be done through the production interface. A
symbol association connects a source symbol with a
target symbol, where the symbols must belong to the
same production group association. The user connects
symbols in source and target productions in a produc-
tion group association by using the symbol association
interface.

An ALCHEMIST snapshot from a specification
phase is shown in Figure 3.

3 Generating the spell code

As discussed above, in ALCHEMIST the user
can specify the transformation interactively with the
SPELLBOUND interface. This incremental process
produces a persistent object structure which is stored
into an OMS. The persistent object structure consist-
ing of grammar and mapping objects with the seman-
tic actions can then be used to generate the actual
spell code, i.e., the C/C++ code that performs the
transformation. The spell code itself is modular, and
consists of the following modules:

a File-to-Object Parser (generated by SEER),
a Mapper (generated by STONE),
an Object-to-File Parser (generated by SWIND-
LER),

e a User Interface (generated by GLASS) and

e an Object Management System.
Correspondingly, ALCHEMIST has components that
generate each of these spell modules from the object
structure specifying the spell in question. Thus in the
following we proceed by describing briefly the spell

components together with the corresponding generat-
ing ALCHEMIST component.

3.1 Generating File-to-Object
with SEER

Parsers

In the spell implementation, the File-to-Object
(FtO) Parser reads a source file and constructs an ob-
ject structure (OS) according to a context-free gram-
mar. The object structure represents the parse tree of
the text file to be transformed. To generate parsers
ALCHEMIST uses the facilities provided by yacc and
lex [6, 8].

To implement a File-to-Object Parser the following
parts are needed:

e a lexical specification — specifies which lexemes
the file representations contains. For the yacc-
parser, this specification consists of a default 1lex
specification (possibly edited).

e a parsing specification — specifies the syntax of
the file representation. For the yacc-parser, this
is a yacc specification (without semantic actions).
The yacc specification can be automatically de-
rived from a grammar specification provided by
SPELLBOUND.

e an object structure (OS) construction specifica-
tion — specifies how to build the parse tree from
the source file. In the yacc-parser, this specifica-
tion is given as semantic actions associated with
every symbol of the grammar.

The File-to-Object Parser Generator (SEER) reads
the grammar specification of the source representa-
tion language and produces a parser for it. SEER
defines the generation of the parser locally, giving ev-
ery grammar and production object its own method
for producing a part of the parser.
producing a yacc specification, the grammar specifi-

In the case of

cation can be considered as a user interface for yacc
and lex. Automatic semantic actions, which are in-
serted into the yacc file for every production, build
a subtree with the left hand side of the production
as root and the right hand side symbols as children.

Grammar: ER—model

5]

5]

Grammar: Relational model

(Generate parser) (Create mapping)

Productions:

Prod

(Generats parser) (Create mapping)

uctions:

Grammar: [Z) ER-model

production group: [Z] PG11

Production group: [¥] PG21

=
ER —> S5 Relational_db - Schemes >
S5 -2 555 Schemes —> epsilon
B
S5 -2 5 Schemes —> Scheme Schemes
fiol Grammar ER—-model: Production P13 hLi
Scheme —> Name "(" Attributes)"
r@ Grammar ER—model: Production P12 '-LI Grammar Relational model: Production P22 i
- L Attributes|r .o Grammar Relational model: Production P21 D
Fgg Grammar ER—model: Production P11 w Attributes
& Production Group Association Manager Left hand side symbol: Right hand side symbols:
Relational_df,

Grammar: (7] Relational model

Schemes

=

B

=]
1

Mo

S5 —>58s
S —» Entity

a
1

Schemes —=> Scheme Schemes

1{

Symbol Associations: ER-model:PG12 —> Relational model:PG22

Mo

Symbol Associations: ER-model:PG11 —> Relational model:zPG21 R

Input: S5 -3 § S5

Output: schemes - Scheme Scl

Insert Production:

[@) ER->5s

Delete production) Insert Production:

Relaticnal_db = Schem

View associations: [T] all

es

#]0

Ss (1)
s
Ss (2)
s(2)
Entity

Schemes (1)
scheme
Schemes (2)

ET 0

—

0

ER—model:PG11 —> Relational model:PG21

Associations:

Connect Disconnect

S5 (1) <—> Schemes (1}
Entity <—> Scheme
S5 {2} <=3 Schemes (2)

T T=0

[

Sym

=

(Connect) (Disconnect) { Semantic Actions...)

Figure 3: The SPELLBOUND interface.

User defined actions can be given while the grammars
are specified, or attached later (with GLASS). The
yacc and lex files can also be modified directly by
the user. The SPELLBOUND interface provides also
a possibility to import a yacc specification and present
the grammar and the semantic actions in the grammar
and production interfaces.

3.2 Generating Object-to-File Parsers

with SWINDLER

In the spell implementation, the Object-to-File
(OtF) Parser reads an object structure and writes the
contents to a file. Extracting the text out of an object
structure is slightly more complicated than just writ-
ing the contents of the leaves of the parse tree to a
file. The specific OtF Parser is defined by the user. It
traverses the object structure and writes the textual
representation, with the structure pruned, to a file.
During this process some objects may be ignored (e.g.,
information added by user), some consulted and the
textual representation of some objects may be writ-
ten to a file. In general the OtF Parser writes the

contents of all (leaf) objects to a file except for some
predefined nodes. It should be observed that theoret-
ically, the OtF Parser can perform transformations,
pretty printing, etc., even if primary transformations
are done during the mapping phase.

The OtF Parser Generator (SWINDLER) produces
an object-to-file parser for the target language. There
are two main strategies for generating an OtF parser.
First, we can produce separate OtF-generating meth-
ods for each object type in an object structure. Such
a method knows how to extract the textual repre-
sentation. An alternative would be to use a global
traversal of the object structure that knows how to ex-
tract the textual representation from different objects.
SWINDLER follows the former approach. In simple
cases, an OtF parser is independent of the grammar
specification, extracting text from certain objects and
ignoring other objects. Generating an independent,
general OtF parser is easy, as the same code can be
used for every generated spell. In more complicated
cases, the OtF parser has to be tailored for a specific
grammar specification. Currently ALCHEMIST only

supports grammar independent OtF parsers.

In the generation process SWINDLER produces a
generating method for each type of object (each non-
terminal). This method generates the textual rep-
resentation of its owner object and call methods for
generating the textual representation of its subobjects
(children). Since the resulting representation can be
very large, writing to the file is performed incremen-
tally.

3.3 Generating Object-to-Object Map-
pers with STONE

The actual transformation in the spell is performed
by the Object-to-Object Mapper, which transforms
one object structure to another. These transforma-
tions can be either automatic or user-assisted.

A spell transformation consists of the following
modules which are iterated until the entire source
structure has been traversed:

1. Matcher — finds a substructure in the object
structure (OS) that matches a source substruc-

ture.

2. Producer — creates target substructures and
links the target objects to associated source ob-
jects.

3. Linker — Merges target objects that are of the
same type and associated to the same source ob-
ject.

The matching part is implemented as a tree match-
ing process, a traversal of the OS and simultaneous
checking of a source substructure library. Producing
a substructure of the other representation is similar
to the constructing of the FtO Parser. However, the
same order in which the objects are created cannot
be used. The mapping construction may produce tar-
get substructures in a very different order, thus an
object structure indexing scheme is used. The linker
part must merge loose ends among the target sub-
structures. It initially looks for objects that are asso-
ciated to the same source object and are of the same
type. Then it merges these target objects.

The mapper generator (STONE) produces an
Object-to-Object Mapper that translates objects of
the source language to objects of the target language.
STONE generated mappings can be (semi-) automati-
cally reversed. Correspondingly STONE produces the
following parts:

e a matcher process — finds the matching source
subgrammar at a specified node in the object
structure. The matching process can start at the
root and traverse the object structure in some or-

der, or randomly pick objects out of the structure
until all objects have been mapped.

e a producer process — creates target substructures
and links symbols in the target substructures to
symbols in the source object structure. This pro-
cess demands at least class definitions for the ob-
jects to be created, and a library of pairs of source
and target subgrammars

e link instructions connecting source and target
symbols (two-way linking)

Although a local mapping strategy could be used,
STONE adapts a global control of the mapping pro-
cess. The generated matching process is an object
structure traversal that finds the right objects in the
structure. Constructions is performed according to a
library of source/target subgrammars and the result-
ing target trees are maintained in a list. Connections
are performed by traversing the list of target subtrees.

3.4 Object Structure (OS)

An object structure can be considered as the parse
tree of a file over a certain grammar. In addition, such
a structure can contain user added information. An
object structure consists of objects (nodes) linked with
each other through structural links. Every node cor-
responds to an instance of a nonterminal or terminal
appearing in the file.

With an OS we associate a (physical) file, a rep-
resentation (grammar), time stamp, etc. Represent-
ing objects in an OS is based on a general produc-
tion/symbol class of which all objects (nodes) are spec-
ified versions. Defaults (e.g., name, number of chil-
dren, children) can be overridden. In spite of this
traversals and matching can take advantage of the
general class definitions, i.e.; every object is similar
enough to enable matching. On the negative side, ob-
ject types must be determined dynamically.

4 ALCHEMIST transformation design
support tools

In addition to the facilities to specify and generate
the actual spell modules, the ALCHEMIST environ-
ment offers tools for specifying the objects structures
used by spells and user interfaces needed for semi-
automatic translations, a mapping library for reuse
of designed mappings, etc. ALCHEMIST is indepen-
dent of the OMS used in the sense that it provides an
Object Manager which uses an object interface that
can be redefined (both for the generated spells or the

1
) Source: ER-mode lzexample.ER Mo Target: Relational mode lzexample.rel T
\ O]
ENTITY(Enployeel ane) 5
KEV_ATTRIBUTE (Enployes, Nane) Departnent (D_nane, D_address)
RELATIONSHIP(fiorks_in, Employee, Department) Works_inCang, D_nane, Salary)
ATTRIBUTECHorks_in. salary)
ENTITY(Departne; @
KEY_ATTRIGUTE (Departnent, D_nane)
ATTRIBUTE(Departnent, b_address)
B
NE) Apprentice T
Source represe ntation language Target representation language
ER-mode| ER-mode!
Relational mode! Relational mode|
source file: Target file:
[show | 9 [Show |
rp e R, rple.rel
status:
Transformation: ER-rmodel —> Relational mode| E
=
Start Done: Cmmm—
o 100
L a =l S

Figure 4: APPRENTICE --- interface to casting spells.

ALCHEMIST itself). Most of these components are
used if the default data structures are not satisfactory,
e.g., a more complex user interface is needed for semi-
automatic translations. Here these facilities are only
briefly discussed.

Object manager (POT): The object manager
handles the object-oriented spell specification, i.e.,
loading, saving, and updating of persistent objects.
The object dataface (data interface) manager lets the
user specify the interface to an underlying object man-
agement system (OMS). The dataface allows the user
to specify how objects actually are loaded, saved,
and updated in the OMS. This solution simplifies the
building of interfaces to different object management
systems.

Object structure generator (SUBSTANCE):
The user can modify the structure of objects produced
in parsing or mapping using the SUBSTANCE tool.
Since arbitrary modifications are allowed, they should
be used with extreme care as they will make the up-
date of the parsing and the mapping processes very

difficult.

Specifying the interactive user assistance code
(GLASS): The user can assist the system through
a windowing interface or a text-based interface. The
specification consists of three parts.
e Question specification. The question can be pa-
rameterized, depending on input tokens.
e How the input is entered by the user.

e Which actions should be taken due to the input.

The GLASS windowing interface is specified through
using DevGuide [14].

Mapping library (BOOK): The BOOK library is
based on existing (or predefined) spell specifications.
The user can reuse any part of a specification. In addi-
tion, also partial spell specifications can be provided,
showing how a particular concept is usually mapped
for a particular representation. The user can reuse
this specification or further specialize it.

Agenda (GUARD): The Agenda is a “metafacil-
ity” for a naive user. Specifying a spell typically con-
sists of several subtasks that must be performed in a
particular order, such as:

1. Specify first grammar.
Generate parser of first grammar.
Specify second grammar.

= W N

Generate parser of second grammar.
Specify mapper.

Ot

[

Generate mapper.

Every subtask can be further divided into subsubtasks.
GUARD keeps track of performed subtasks and in-
serts new ones in a to-do list. GUARD also notifies
the user of what to do, and what to update due to a
modification in a specification.

Using spells (APPRENTICE): APPRENTICE
provides a user interface for using the spells (transfor-
mations) generated by ALCHEMIST. A typical spell

performs the following actions. The File-to-Object
Parser (FtOP) reads and parses a file (File) construct-
ing an object structure (OS) of the file contents. The
Object-to-Object Mapper (OtOM) transforms the ob-
ject structure into another object structure (over an-
other grammar). Finally, the Object-to-File Parser
extracts a file representation from the object structure
and writes the representation to a file (see Figure 2).

The user executes a spell through the APPREN-
TICE window based interface, which allows selection
of the source and target representations graphically
(see Figure 4).

The user must also specify the names of the source
and target files. For convenience, the user can open
the files and follow the transformation process (in case
of syntax errors, etc.). In the present form APPREN-
TICE does not yet support creation of macro spells,
i.e., the “pipe” operation is not yet implemented.

5 Conclusion

ALCHEMIST is still under development, but the
core functionalities have been implemented. The ex-
perience so far has clearly shown that the “Unix-style”
toolkit approach has proved to be successful and al-
lows an evolutionary development of the complex soft-
ware involved. The full ALCHEMIST version offers a
powerful tool for providing a degree of interoperability
between existing software components, regardless of
their nature (database software, text formatters, name
servers, etc.). Editing ALCHEMIST specifications of-
fers a convenient way to maintain data interchange
capabilities regardless of changing versions of the pri-
mary application software version changes. However,
ALCHEMIST does not aim at being a toolkit for a
regular end-user of primary applications—its use re-
quires basic understanding of context-free grammars
as well as moderate programming skills for semantic
actions.

References

[1] ACM. Report of the CODASYL Data Base Task
Group, April 1971.

[2] R. Agrawal and N. H. Gehani. ODE (object database
and environment): The language and the data model.
In J. Clifford, B. Lindsay, and D. Maier, editors, Pro-
ceedings of the 1989 ACM SIGMOD International
Conference on the Management of Data, Portland,
Oregon, pages 36 — 45, June 1989.

(3]

[4]

[10]

(11]

[12]

[13]

[14]

[15]

R.J. Brachman and J.G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cognitive
Science, 2(9):171-216, August 1985.

E. Codd. A relational mode for large shared data
banks. Communications of the ACM, 13(6):377 — 387,
June 1970.

ECMA (European Computer Manufacturers Asso-
ciation). Standard ECMA-149. Portable Common
Tool Environment (PCTE). Abstract Specification,
2nd edition, June 1993.

S. C. Johnson. Yacc — yet another compiler compiler.
Technical Report 32, AT & T Bell Laboratories, Mur-
ray Hill, N. J., 1975.

S. E. Keller, J. A Perkins, T. F. Payton, and S. P.
Mardinly. Tree transformation techniques and expe-
In Proceedings of the ACM SIGPLAN ’84
Symposium on Compiler Construction, pages 190 —
201, June 1984.

riences.

M. E. Lesk. Lex — a lexical analyzer generator. Tech-
nical Report 39, AT & T Bell Laboratories, Murray
Hill, N. J., 1975.

S. A. Mamrak, J. Barnes, and C. S. O’Connell. Ben-
efits of automating data translation. IEEFE Software,
10(4):82 — 88, July 1993.

E. Motta, N. Shadbolt, and A. Rouge. VITAL
software technology for embedded knowledge based
systems technology. To appear in [EEE Software,
November 1993.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil,
T. Senator, and W. R. Swartout. Enabling technology
for knowledge sharing. AI Magazine, 12(3):36 — 56,
Fall 1991.

T. Payton, S. Keller, J. Perkins, S. Rowan, and
S. Mardinly. SSAGS: A syntax and semantics anal-
ysis and generation system. In Proceedings of the
IEEE Computer Society’s Sixzth International Com-
puter Software and Applications Conference, Chicago,
pages 424 — 432, November 1982.

T. Reps and T. Teitelbaum. The Synthesizer Gener-
ator. A System for Constructing Language-Based Ed-
itors. Texts and Monographs in Computer Science.
Springer-Verlag, 1989.

SunSoft. Open Windows Developer’s guide 3.0. User’s
Manual, revision A, November 1991.

M. Tofte. Compiler generators: what they can do,
what they might do and what they will probably never
do. Springer-Verlag, 1990.

