A Model for Compound Type Changes
Encountered in Schema Evolution

BARBARA STAUDT LERNER
University of Massachusetts, Amherst

Schema evolution is a problem that is faced by long-lived data. When a schema changes,
existing persistent data can become inaccessible unless the database system provides mecha-
nisms to access data created with previous versions of the schema. Most existing systems that
support schema evolution focus on changes local to individual types within the schema,
thereby limiting the changes that the database maintainer can perform. We have developed a
model of type changes incorporating changes local to individual types as well as compound
changes involving multiple types. The model describes both type changes and their impact on
data by defining derivation rules to initialize new data based on the existing data. The
derivation rules can describe local and nonlocal changes to types to capture the intent of a
large class of type change operations. We have built a system called Tess (Type Evolution
Software System) that uses this model to recognize type changes by comparing schemas and
then produces a transformer that can update data in a database to correspond to a newer
version of the schema.

Categories and Subject Descriptors: H.2.m [Database Management]|: Miscellaneous; H.2.3
[Database Management]: Languages—Database (persistent) programming languages; D.2.7
[Software Engineering]: Distribution, Maintenance, and Enhancement—Restructuring, re-
verse engineering, and reengineering

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Persistent programming languages, schema evolution

1. MOTIVATION

Databases frequently have long lives. During a database’s lifetime, the
database schema is likely to undergo significant change as new demands
are placed on the data. The database schema serves two purposes. First, it
defines an interface for programs and users to query the data contained

This work was supported in part by the Air Force Material Command, Rome Laboratory, and
the Defense Advanced Research Projects Agency under contract F30602-94-C-0137 and in part
by National Science Foundation grant CCR-9504170.

Author’s address: Department of Computer Science, Williams College, Williamstown, MA
01267; email: lerner@cs.williams.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 2000 ACM 0362-5915/00/0300-0083 $5.00

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000, Pages 83-127.

84 o B. Staudt Lerner

within the database. Second, it determines how the database management
system physically stores the data on the disk. When the schema is changed
so that the data can be used for a new purpose, this also impacts the way
data is physically stored. The goal of schema evolution research is to allow
schema definitions to change while maintaining access to data that has
already been stored to disk.

There are two major issues involved in schema evolution. The first issue
is understanding how a schema has changed. The second issue involves
deciding when and how to modify the database to address such concerns as
efficiency, availability, and impact on existing code. Most research efforts
have been aimed at this second issue and assume a small set of schema
changes that are easy to support, such as adding and removing record
fields, while requiring the maintainer to provide translation routines for
more complicated changes. As a result, progress has been made in develop-
ing the backend mechanisms to convert, screen, or version the existing
data, but little progress has been made on supporting a rich collection of
changes. The purpose of this work is to enrich the collection of changes
supported, independent of the backend mechanism used to manage the
data.

Existing database systems that provide schema evolution support
changes isolated to individual types within a schema, such as adding a field
to a record. More radical changes of representation, such as combining two
records are either difficult or impossible with existing database systems.
Changes isolated to individual types are not always sufficient, however. A
new record may be created to combine the information of several related
records, or a large record may be decomposed into several simpler ones.
Such changes will clearly impact the representation of persistent data.

The flexibility in data type definition offered by object-oriented databases
and persistent programming languages admits the possibility of more
complicated changes than those typically encountered in relational data-
base systems, making schema evolution a more difficult problem.

With persistent programming languages the evolution problem is more
pervasive than with databases. When using a database, those types that
have persistent data are defined in the schema, while transient types are
defined in traditional programming languages that interoperate with the
database. The transient types can be changed without impacting the
persistent data. With persistent programming languages, there is typically
no distinction in the programmer’s eyes between transient and persistent
types. In particular, some persistent programming languages, such as
PGraphite, Pleiades, Napier-88, and PS-Algol [Wileden et al. 1988; Tarr
and Clarke 1993; Dearle et al. 1989; Atkinson et al. 1983], treat persistence
orthogonally to types. With these languages, an instance of any type can be
made persistent dynamically. This approach is very powerful and flexible,
since it allows programs to manipulate data uniformly without being
concerned about whether it is persistent or transient data. It aggravates
the evolution problem, however, because every type potentially has persis-
tent data associated with it. Modifying any type definition can make some

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 85

persistent data inaccessible. While Java does not support orthogonal per-
sistence, Java’s serialization mechanism [Arnold and Gosling 1998] makes
it trivial to turn any type into a type that can become persistent. Thus,
while one can distinguish serializable types from non-serializable types,
there is no need to change a type in any significant way to make it
serializable. The result is that it is common for many types in a Java
program to be serializable.

Unfortunately, there is little published data [Garlan et al. 1994; Sjgberg
1993] about how persistent or transient types change during maintenance.
Researchers studying maintenance of object-oriented hierarchies, which
are not necessarily persistent, cite modifying types in the hierarchy and
reorganizing the hierarchy as frequently desirable activities [Johnson and
Opdyke 1993 ; Opdyke and Johnson 1993; Lieberherr et al. 1991; Opdyke
and Johnson 1990; Casais 1990; Mellor and Shlaer 1992]. One can expect,
however, that maintainers are reluctant to make radical changes to an
object-oriented hierarchy or any other persistent type or schema definition
if those changes make it difficult or impossible to access existing data. As a
result, the maintainers may sacrifice other desirable properties for their
schemas and type definitions such as appropriateness of abstractions,
modularity, efficiency, etc.

Our goal is to facilitate schema evolution involving complex type changes
to allow more natural evolution of persistent types. We have developed a
model of type changes incorporating changes local to individual types as
well as compound changes involving multiple types. The model describes
both type changes and their impact on data by defining derivation rules to
initialize new data based on the existing data. The derivation rules can
describe local and nonlocal changes to types to capture the intent of a large
class of type change operations.

2. OVERVIEW

One way to design a schema evolution system is to define schema modifica-
tion commands to implement each type change that we want to support.
The advantage of this approach is that the maintainer can explicitly inform
the schema evolution system of the changes. For each type change, the
system defines the effect that the change will have on the data. By choosing
the appropriate commands, the maintainer simultaneously modifies the
schema and develops a transformer to update the existing data. For
example, there may be a command to add fields to a record whose effect on
the data is to create a new field set to a default value. Another command
may be used to delete a field from the type. Its effect is to delete the data
corresponding to that field. In this type of system, there will be many
specialized commands to accomplish all the supported type changes such as
changing the size of an array, adding a value to an enumerated type, etc.
When dealing with type changes isolated to individual types, it is possible
for us to enumerate all the changes that may occur, provide a command for
each of these, and define precisely what the effect on existing data will be.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

86 . B. Staudt Lerner

Now, let’s consider a more complex type change. Suppose the maintainer
wants to move a field from one record to another. If the maintainer applies
the delete-field command on the original type followed by the add-field
command on the new type, this will be treated as two separate commands.
The semantics of the delete-field command will result in deletion of the
associated data. The semantics of the add-field command will result in
addition of a new field set to some default value. To solve this problem we
could introduce a new command, move-field. Now, there are two ways in
which the maintainer can modify the types. If one examines the type
definitions after the changes using the two approaches, the definitions are
identical. The effect on the persistent data is quite different, however.
When using the delete-field and add-field commands, data is lost. When
using the move-field command, data is preserved. The maintainer needs to
understand this difference and needs to be careful in choosing which
commands to use when modifying the types. The problem is that the
command approach focuses on the editing process rather than the editing
result. Furthermore, the number of commands would proliferate and the
complexity of using the schema evolution system would increase as more
complex type changes are supported.

Another alternative is to allow the maintainer to modify the types as
necessary and then compare the two versions of the schemas to identify the
changes, thereby focusing on the editing result rather than the editing
process. The advantage is that the maintainer can edit the schemas using a
normal editor, focusing on producing the correct new type definitions
without worrying about the exact process used to create those new defini-
tions. The disadvantage is that the system must now infer how the types
have changed instead of being explicitly told. In this research, we have
developed algorithms to perform these inferences by comparing successive
versions of a schema to identify the changes. The schema comparison
algorithms use naming similarities, structural similarities, and interrela-
tionships among the types from successive versions to infer the type
changes. Experimentation with these algorithms has demonstrated that
they can identify a wide variety of type changes successfully.

As another example of a type change that requires understanding the
impact on multiple types simultaneously, consider adding a new type to a
schema. In most database systems this change is understood in isolation
from other changes. When a new type is added, it has no impact on existing
data. It is quite likely, however, that the addition of a new type actually
represents the reorganization of other types in the schema. For example, an
individual type may be split into two types. The desired effect on the data is
to move the data associated with the fields of the new type from objects of
the old type to new objects. We could define a split-type command to
accomplish this, further complicating the maintainer’s job. Instead, we
develop algorithms to recognize that a type has been added and then look
for modified types that may act as sources of information for objects of this
new type. Similarly, in most database systems, type deletion results in
deletion of objects of the type. Instead, our algorithms look for other

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 87

modified types that may serve as destinations for the data that would
otherwise be deleted.

Of course, it is possible that the algorithms will make incorrect infer-
ences. As a result, it is important for the maintainer to be involved in the
type comparison process. We have incorporated maintainer control into the
type comparison algorithms in several ways. First, the maintainer can
control which types are compared, if desired. Second, the algorithms can
generate multiple inferences of observed type changes from which the
maintainer can choose. Third, the algorithms associate a qualitative as-
sessment with each inference indicating the complexity of the change and
its impact on the data. The maintainer can use these assessments to set
thresholds on the comparison algorithms or to focus attention on the more
complex inferences or those with greater impact on the data. Finally, the
maintainer can ignore the inferences generated by the algorithm and
explicitly tell the system what the impact on the data should be. Using
these techniques the maintainer can guarantee that the type changes have
the appropriate impact on the existing data. Note that this ability to review
the anticipated impact on existing data is useful to remove ambiguity even
if schema modification commands are used, particularly in the case where
there are multiple commands that lead to the same result as in the
move-field example earlier. The questions that must be addressed when
evaluating the type comparison approach are the following. How difficult is
it for the user to make type changes that occur most frequently? How
difficult is it for the user to make complex type changes? Our experimenta-
tion indicates that type comparison algorithms can reliably identify typical
type changes and can often generate correct derivation rules for complex
changes.

When supporting changes local to an individual type, the appropriate
object changes can be performed by modifying each object in isolation. For
example, if a field is deleted from a type, each object of that type can be
modified independently of all other objects. The same is not true when
supporting changes that affect multiple types. Implementing a single
change may require modifying more than one object. Consider moving a
field from one type to another again. To implement this change correctly,
we must move data from one object to another. This implies that we must
identify pairs of objects to operate on. Our algorithms identify collections of
objects in two ways. Objects may be related structurally. That is by
dereferencing fields of one object transitively we may reach other objects
that we need to modify. Alternatively, objects may be related by having a
common value. This is similar to a relational join operation. Identifying
these collections of objects is key to being able to implement complex type
changes.

Most schema evolution research has addressed the problem of how to
update existing data efficiently assuming the type changes are well under-
stood. The emphasis of the research described in this paper is to under-
stand how schemas change during evolution and to develop algorithms that
can recognize those changes. Our goal is to represent the schema changes

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

88 . B. Staudt Lerner

that occur in such a way that their effect on existing data can be accom-
plished using a variety of data translation mechanisms. For example, in
small databases that may belong to an individual user, we can make the
database unavailable temporarily and transform all data in the database at
once. For large, shared databases, we can employ more sophisticated
algorithms such as those developed by Ferrandina et al. [1994] to trans-
form individual objects as they are accessed in order to maintain high
availability. In situations where the data is shared by many programs,
schema changes may also impact a great deal of code. In those cases, we
can use the inferences we produce to define views on the data. Thus, the
emphasis of this research is to develop algorithms that can recognize
complex type changes made by a maintainer. Instead of constraining the
maintainer to perform only supported type changes using a small set of
primitive type change commands, we give the maintainer great flexibility
in how to change the types. We are addressing the front-end problem of
understanding schema changes in a flexible manner to allow integration
with a variety of data translation mechanisms.

The remainder of the paper is organized as follows. In Section 3 we
describe related work in schema evolution. In Section 4 we present the type
model used in this research. In Section 5 we describe a model of how data
changes in response to schema changes. In Section 6 we present a model for
simple type changes. In Section 7 we present our model of compound type
changes. In Section 8 we present an example schema evolution that uses
compound type changes. In Section 9 we describe some algorithms devel-
oped to compare schemas. In Section 10 we describe the prototype imple-
mentation. In Section 11 we summarize the results of our experimental
evaluation. In Section 12 we describe future directions of our research and
conclude in Section 13.

3. RELATED WORK

The problem of schema evolution was first addressed with respect to
traditional database systems. While many database systems support a few
simple changes automatically, such as adding or deleting record fields, only
a few systems [Shu et al. 1975; Navathe 1980; Shneiderman and Thomas
1982] support more general transformations. In these cases, the maintainer
is responsible for explicitly describing how to convert the data from its old
format to its new format using a special purpose data translation language.
This approach is a powerful one, but creation of the transformer is a
manual process.

More recent database systems generate transformation functions based
upon the changes made to the type definitions. Orion [Banerjee et al. 1987;
Kim and Korth 1988] and GemStone [Penney and Stein 1987] are two
object-oriented database systems that provide some evolution support. In
these systems, evolution is defined in terms of primitive operations that
change individual type definitions, such as adding instance variables to a
class, removing instance variables from a class, and renaming instance

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 89

variables. Some type changes are completely automated, but at the expense
of limiting the ways in which a maintainer can change type definitions. For
example, in Orion the type of an instance variable can only be replaced by a
supertype in the type hierarchy. More complex type changes, such as
combining two records, are not supported directly. Instead this change is
accomplished as several independent changes. The maintainer deletes each
instance variable individually from one of the types. The maintainer adds
an equivalent instance variable to the second type for each instance
variable deleted from the first type. The maintainer modifies all references
to the first type to refer to the second type.! Finally, the maintainer deletes
the first type. Since each change is treated individually rather than as a
collection of related changes, deleting the instance variables results in
deleting the data contained in those instance variables. To preserve the
data, the maintainer must develop code to move the data explicitly. In
GemStone the maintainer directly extends the transformer, while in Orion
the maintainer must develop and execute programs to move the data prior
to deleting the instance variables containing the data.

Another approach to schema evolution relies on the simultaneous main-
tenance of multiple versions of types and data [Skarra and Zdonik 1986;
Clamen 1994; Bratsberg 1992; Monk and Sommerville 1992; Tresch and
Scholl 1992; Lautemann 1997a, 1997b; Ra and Rundensteiner 1994]. With
these approaches, multiple versions of the same type exist within a single
database. The advantage is that old and new code can operate on old and
new data without requiring either to be changed. The disadvantage is that
the maintainer must provide routines to make data appear to be of the
version of the type that the code is expecting. This approach admits more
general changes, but it still limits changes to be isolated to individual
types. It also results in significant overhead (in both space and time) for
maintaining and accessing multiple type and data versions. Odberg [1994]
extends the versioning approach to the entire schema, which is versioned
when a type is modified. This allows the description of changes that
simultaneously affect multiple types, but still requires the maintainer to
define the translation routines between versions.

O, [Breche et al. 1995; Breche 1996; Ferrandina and Lautemann 1996] is
an object-oriented database system that supports evolution through an
interesting integration of transformation and maintenance of multiple
views. They minimize the number of schema versions created by categoriz-
ing schema changes into one of three categories: schema extending, compi-
lation safe, and compilation unsafe. Schema extending changes have no
impact on existing applications. Compilation safe changes require applica-
tions to be recompiled, but guarantee that compilation will be successful.
Compilation unsafe changes might require modifications to applications in

Note that if the type being deleted is used as the type of an instance variable, we cannot in
general replace its type with the second type since the second type is not necessarily a
supertype of the first type. In that case, we would need to delete the instance variable and
create a new instance variable of the desired type.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

90 . B. Staudt Lerner

order for them to compile. When schema extending or compilation safe
changes are made, transformation functions are generated to translate the
persistent objects. Since the applications do not need to change, it is
beneficial to have one version of the objects that all applications share.
When compilation unsafe changes are made, however, they create a new
schema version and allow each application to work with the version that
they compile against. They generate conversion functions that allow objects
to be accessible through multiple versions of the schema. O, also provides
higher-level operations to manipulate the class hierarchy better than
previous systems. The high-level operations are defined as a composition of
primitive operations. As a result, they provide better support for the
maintainer in expressing type changes and preserving data. For example,
the abstraction-generalization operation can be used to create a new
superclass that generalizes a set of existing classes. While these high-level
operations support more complex changes than previous systems, defining
type changes via a predefined set of operations necessarily restricts the
kinds of type changes that are supported. In particular, while they have
numerous operations to allow the definition of new classes and migration of
existing objects to these new classes, none of their operations allow simul-
taneous modification of multiple types such as moving a field from one
existing type to another.

TransformGen [Garlan et al. 1994] is a system to support evolution of
abstract syntax grammars used by Gandalf programming environments
[Habermann and Notkin 1986; Habermann et al. 1991]. The abstract
syntax grammars are analogous to type definitions; they define the format
of the abstract syntax trees stored in databases maintained by Gandalf
environments. The abstract syntax changes for which TransformGen auto-
matically generates transformation routines are analogous to the type
changes supported by Orion and GemStone. TransformGen goes beyond
these two systems, however, by allowing the maintainer to modify the
generated transformation using a declarative data manipulation language.
In this way, the maintainer can perform complex type changes using the
primitive operations provided and then easily fix the generated transforma-
tions to have the intended effect. The significance of this extensibility is
that the resulting transformers can handle arbitrary type changes, includ-
ing those involving multiple types, but without requiring the maintainer to
write transformation routines. While the maintainer can extend the trans-
former, there is little guidance in identifying the limits of the generation
process and the situations that require extension. OTGen [Lerner and
Habermann 1990] is a system designed using the concepts developed in
TransformGen to support flexible transformation of object-oriented data-
bases. As such it has many of the features and limitations of Transform-
Gen, but is aimed at a more general type system.

In contrast to existing database systems, we support evolution via type
comparison algorithms rather than editing commands. In essence, we are
performing a smart differencing of versions. This is substantially different

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 91

than the edit distance algorithms typically used to detect differences as
used in Unix diff or spell-checking algorithms [Hall and Dowling 1980;
Kukich 1992; Peterson 1980]. These algorithms operate on a string repre-
sentation and support the four operations of substitution, transposition,
insertion, and deletion. The algorithms are not robust with respect to
ordering changes. Also, they result in identifying changes in terms of string
differences which do not assist in dealing with the semantics of the
changes. Changes to comments bear equal weight to changes in type
definitions. Also, the difficult task of generating transformation routines
based on the changes that occurred requires understanding the semantics
of the changes, not just the syntax of the changes as differencing algo-
rithms do. The algorithms presented here can identify the semantics of the
changes because they perform the differencing by examining the semantics
of the type definitions rather than simply their syntax. Substitution,
reordering, insertion, and deletion are just some of the changes identified
by the type comparison algorithms presented here.

4. TYPE MODEL

Before discussing the details of the type change model, we must first
present the type model that we use. The type model is a language-
independent type model that captures features common to many program-
ming languages. The type comparison algorithms operate on types defined
in this language-independent model. They assume that a translator can
translate from the types of a specific programming language to the lan-
guage-independent type model, thus providing reuse of the algorithms
across a range of languages. We are concerned with the structural aspects
of the type model as those are most relevant to understanding the impact of
schema changes on persistent data. As a result, we do not treat the types as
abstract types, although they may, in fact, be implemented abstractly. In
our examples, we therefore present the type representations used, but not
the interfaces or operations belonging to those types.

A schema consists of a collection of type definitions. Schema changes are
performed by editing types within the schema. Editing a schema is treated
as an atomic operation, independent of how many types are modified in the
process.

The type model includes the predefined types of character, integer,
string, and boolean. Programmers can define new types using the following
constructors: record, bounded and unbounded array, set, multi-set, union,
enumeration, subrange, pointer, and alias. The type model does not include
inheritance. Instead, when translating from a programming language that
has inheritance to the type model, the inheritance is performed by the
translator. That is, all fields that would be inherited by a subtype are
included in the translated subtype’s definition directly. This keeps the type
model simple and allows the algorithms to cope with languages with
varying subtype semantics.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

92 o B. Staudt Lerner

Data is organized into objects. Each instantiation of a type results in the
creation of a new object. Each object has an object identifier to allow objects
to reference each other. Each object is tagged with its type. An object can be
made persistent at any time. When an object is made persistent, all other
objects reachable from that object are also made persistent. Any object can
serve as the root of such a persistent structure.?

Because the type model does not a priori restrict persistence in any way,
the schema evolution support must be very general as it must support
changes to any type within a schema.

5. OBJECT CHANGES

Schema evolution is an interesting and difficult problem not just because
types change, but also because the changes impact existing persistent
objects. Therefore we begin by presenting a model of how objects can
change as a result of schema evolution. Following that, we describe how
types can change and relate type changes to object changes.

There are fundamentally three object operations associated with evolu-
tion: initialization, derivation, and deletion. New objects can be initialized
to a default value. New objects can be derived from existing objects.
Existing objects can be deleted. As derivation is the only technique that
involves both existing and new objects, it is of greatest interest.

Derivation rules define how to derive new objects from existing objects. A
derivation rule specifies a source type, a destination type, and a derivation
function. The source type is a type from the schema before modification. It
identifies the type of an existing object to transform. The destination type is
a type from the schema after modification. It identifies the type of the new
object to create. The derivation function is a function to apply to a source
object to create a destination object. The simplest derivation function
simply copies an existing object unmodified. A more complicated function
might traverse the persistent structure starting at the source object to
perform a more complex derivation such as summing a collection of values
to produce a total or selecting the median from a collection of values, or it
might apply a join operation to combine two related objects into one.

When evolving an object, we apply the derivation rule associated with the
type of the existing object to create a new object. A derivation rule for a
structured type, such as a record, is typically defined using other derivation
rules. For example, to derive a new record object, it is necessary to assign a
value to each new record field. The fields may be initialized to a default
value or themselves derived from existing objects.

2This persistence model could be changed without impacting the research presented here
significantly. For example, the model could allow the maintainer to restrict persistence to a
subset of the types, allow only a subset of the types to be roots of persistent structures, or not
automatically make all objects reachable from a persistent instance persistent.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 93

—Local type changes:
—Creating or deleting a type
—Changing the name of a type
—Changing the type constructor of a type
—Changing an array type to a set or multi-set type, or vice versa.
—Changing a set type to a multi-set type, or vice versa.
—Replacing one scalar type with another.
—Changing a type constructor argument
—Adding an enumeration value, deleting an enumeration value, reordering enumeration val-
ues, or renaming an enumeration value.
—Changing the lower or upper bounds of a subrange type.
—Adding a record field, deleting a record field, reordering record fields, or changing the name
of a record field.
—Adding an array dimension, deleting an array dimension, changing the bounds of an array
dimension, or reordering array dimensions.
—Reference type changes:
—Changing the type referenced by a pointer or alias type.
—Changing the type a subrange is defined over.
—Changing the type of a record field.
—Changing the index type of an array dimension.
—Changing the type of array, set, or multi-set elements.

Fig. 1. Simple type changes.

6. SIMPLE TYPE CHANGES

We categorize simple type changes as being either local type changes or
reference type changes (Figure 1 defines a complete list of all simple type
changes in our type model). A local type change affects the structure of an
individual type, such as adding a record field or changing the bounds of a
subrange. A local type change affects data local to individual objects. The
effects of local type changes can be expressed with derivation rules that
derive each new object from a single old object. For example, a derivation
rule for a record type can capture all local changes to records by initializing
new fields, deleting fields no longer belonging to the record type, and
providing a one-to-one mapping between the fields present in both the old
and new versions of the record. The old and new fields that are paired in a
record derivation rule might have different names, different types, and/or
appear in a different order.

A reference type change replaces a type used within a type constructor
with another type, such as changing the type of a record field or an array
element. To fully understand how the constructed type is changed, it is
necessary to understand the relationship between the old and new refer-
ence types. The effects of each reference type change are described with a
derivation rule from the old reference type to the new reference type. This
separation of concerns makes the derivation rules easier to understand
since each derivation rule describes changes local to an individual object.
For example, when deriving a new record field from an old one, we would
refer to a derivation rule defined between the type of the old field and the
type of the new field.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

94 D B. Staudt Lerner

—Inline — Replace a type reference with its type definition.
—Encapsulate — Create a new type by encapsulating parts of one or more old types.

—Merge — Replace two or more type definitions with a new type that merges the old type
definitions.

—Move — Move part of a type definition from one type to another existing type.
—Duplicate — Duplicate part of a type definition in another type definition.
—Reverse link — Reverse the connection between two types.

—Link addition — Add a link between two existing types.

Fig. 2. Compound type changes.

Since inheritance is removed during the translation from a specific
programming language to the internal representation, changes to super-
types and changes to the inheritance hierarchy appear to be collections of
simple type changes. For example, if a field is added to a supertype, this
appears as a new field in the supertype and each subtype. If a type gains a
new supertype, this appears as a collection of new fields for the type and all
of its subtypes, one field for each field inherited from the supertype.

Existing database systems that support schema evolution interpret all
type changes as simple type changes similar to those outlined above.
Changes that make objects of a type smaller, such as deleting a record
field, result in deletion of data. Those that make objects of a type larger,
such as adding a record field, result in fields initialized to a default.
Reference type changes result in application of the derivation rule for the
reference type. The only derivation rules produced by these systems are
rules that derive new objects by copying values local to the corresponding
old object. Definition of nonlocal derivation rules is left to the maintainer.

7. COMPOUND TYPE CHANGES

For database systems to support nonlocal derivation rules, they must have
a richer model of type changes. These compound type changes modify more
than one type and as a result affect more than one object. Compound type
changes compose three basic kinds of type operations, type deletion, type
creation, and type modification, to produce more complex type changes. As
with simple type changes, the fundamental object change that is desired is
derivation of the value for a new field from the value of one or more old
fields. In the case of compound type changes, however, the old and new
fields belong to different types, not different versions of the same type.
Each compound type change could be modeled as a collection of simple type
changes, where old fields are deleted from their types and the new field is
added to a different type. In doing so, however, the ability to describe
nonlocal derivation is lost. In our model we include compound type changes
whose effects on objects are defined with nonlocal derivation rules. In
Figure 2, we list the compound type changes in our model. In this section
we define the compound type changes provided by our model.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 95

Old version: New version:
type Person is type Person is
name: string; name: string;
address: Address; street: string;
end Person; city: string;

state: string;
zipcode: integer;

t A i
ype Address is end Person;

street: string;

city: string;

state: string;

zipcode: integer;
end Address;

Fig. 3. Inlining.

7.1 Type Deletion

When deleting a type, a database maintainer is either reorganizing the
type system or removing functionality. In the former case, the fields of the
deleted type most likely become associated with another type, either a new
type or an existing type. In these cases, the data associated with the
deleted type should be moved to existing instances of the modified/created
type.

One kind of compound change involving type deletion is inlining. Inlining
involves replacing a use of a type with the type definition. Figure 3
provides an example of inlining. Here the address field is replaced with a
collection of fields previously contained in the Address type. The new field
values are derived from fields of the old Address object. If this compound
type change were viewed as a collection of simple type changes, the new
fields would be uninitialized and the old Address object would be deleted.

Another compound type change involving type deletion is merging.
Merging deletes two or more types and creates a new type that represents
the integration of the deleted types. Figure 4 provides an example of a
merge type change. Here two or more objects must be located and combined
to define a new object. In the example, Personalinfo and Employeelnfo
objects that have the same value in their name field will be combined. This
merge change finds its pairs of objects by joining on the name field. If the
name field does not serve as a key for the two types, the results are
ambiguous.

As these two examples indicate, for complex type changes to be inte-
grated into a schema evolution system, it must be possible to identify
collections of objects to modify instead of individual objects as with simple
type changes. The inlining example showed a relationship between objects
based on a structural connection, while the merging example showed a
relationship based on equivalent values. A database maintainer could
define other relationships as well.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

96 . B. Staudt Lerner

Old version: New version:

type Personallnfo is type Person is

name: string; name: string;

address: Address; address: Address;

phone: Phone; phone: Phone;

marital status: MaritalStatus; marital status: MaritalStatus;

num_children: integer; num_children: integer;
end Personallnfo; id: integer;

salary: integer;

type Employeelnfo is end Person;

name: string;

id: integer;

salary: integer;
end Employeelnfo;

Fig. 4. Merge.

7.2 Type Creation

There are two type creation operations that are analogous to the type
deletion operations. The merging compound type change discussed above
also involves type creation. The second type creation operation is encapsu-
lation. Encapsulation produces the opposite effect of inlining. Here one or
more fields are replaced with a single field. The type of the new field
includes the old field type(s) as reference type(s). An example of encapsula-
tion can be seen by swapping the old and new versions in Figure 3. As with
inlining, the relationship between objects is structural.

7.3 Type Modification

Compound type changes may involve the modification of types without
requiring types to be created or deleted. There are four kinds of type
changes fitting this description: moving, duplication, link reversal, and link
addition.

Both moving and duplication involve deriving a new field from an old
field. The difference is that moving deletes the original field while duplica-
tion maintains the original field. As with simple type changes, the deriva-
tion associated with moving and duplication may derive a new value, not
just copy the old value. Figure 5 shows the address and phone fields being
moved from the Personal_Info type to the Person type. In this case, the
corresponding objects are identified using their structural relationship,
specifically, the Personal_Info and Person objects that are connected using
the Person.personal field are modified together. Figure 6 shows duplication
between objects with a value relationship. Here the id field is duplicated
from the Employeelnfo object to the Personallnfo object with the same
value in their name fields.

Link reversal involves reversing the direction of a pointer. For example,
consider Figure 7. Originally, the Personallnfo type has a pointer to the
Employeelnfo type. In the modified version, Employeelnfo has a pointer to

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 97

0O1d version: New version:
type Person is type Person is
name: string; name: string;
personal: Personal_Info; address: Address;
end Person; home_phone: Phone;

personal: Personal Info;

type Personal_Info is end Person;

address: Address;

phone: Phone; type Personal_Info is
marital_status: MaritalStatus; marital _status: MaritalStatus;
numchildren: integer; num_children: integer;

end Personal_Info; end Personal_Info;

Fig. 5. Moving using a structural relationship.

Old version: New version:

type Personallnfo is type Personallnfo is

name: string; name: string;

address: Address; id: integer;

phone: Phone; address: Address;

marital_status: MaritalStatus; phone: Phone;

num-children: integer; marital status: MaritalStatus;
end Personallnfo; num_children: integer;

end Personallnfo;

type Employeelnfo is

name: string; type Employeelnfo is
id: integer; name: string;
salary: integer; id: integer;

end Employeelnfo; salary: integer;

end Employeelnfo;

Fig. 6. Duplication based on value relationship.

the Personallnfo type. Here we are reversing the structural relationship
between two types.

Link addition involves adding a link between two existing types. The
difference between this change and the simple type change of adding a
record field is that in link addition we expect the value of the new link field
to be an existing object, while when adding a record field we expect to
create a new value for the new field. Once again, we can use either
structural or value relationships to identify pairs of objects to add a link
between. For example, Figure 8 shows the addition of an inverse link
between two structurally connected types.

7.4 Limitations of the Compound Type Change Model

While this model of compound type changes allows a schema evolution
system to develop nonlocal derivation rules, the maintainer still needs to be
involved directly in the definition of derivation rules for two reasons. First,
the default for both local and nonlocal derivation rules is to copy old values.
If the maintainer wants to use a different function, such as summing a

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

98 . B. Staudt Lerner

Old version:

type Personallnfo is
name: string;
address: Address;
phone: Phone;
marital_status: MaritalStatus;
num_children: integer;
emp-info: Employeelnfo;

end Personallnfo;

type Employeelnfo is
id: integer;
salary: integer;

end Employeelnfo;

Fig. 7.

Old version:

type Personallnfo is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num-children: integer;
emp-nfo: Employeelnfo;

end Personallnfo;

type Employeelnfo is
id: integer;
salary: integer;

end Employeelnfo;

Fig. 8.

New version:

type Personallnfo is
address: Address;
phone: Phone;
marital_status: MaritalStatus;
num_children: integer;

end Personallnfo;

type Employeelnfo is
name: string;
id: integer;
salary: integer;
private_info: Personallnfo;
end Employeelnfo;

Link reversal.

New version:

type Personallnfo is
name: string;
address: Address;
phone: Phone;
marital_status: MaritalStatus;
num_children: integer;
emp_info: Employeelnfo;

end Personallnfo;

type Employeelnfo is
id: integer;
salary: integer;
private_info: Personallnfo;
end Employeelnfo;

Link addition.

collection of values or finding a median, the maintainer must provide this
function explicitly. Second, the merge, move, duplicate, and link addition
type changes require finding collections of old objects to operate on. It may
be necessary for the maintainer to indicate how to find matching objects to
operate on, particularly if the relationships are not structural or by
equivalent values.

8. EXAMPLE

Compound type changes can be combined to produce interesting schema
changes whose effects on existing data can be understood following the
model given. In this section, we provide an example of a real schema
evolution and describe how it fits into the compound type change model.

Figure 9 shows consecutive versions of a collection of interrelated types
extracted from TAOS, a software testing tool [Richardson 1993]. In this
example, we see three modified types and four new types.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 99

Old version: New version:

type SaveTestCases is (nada, todo); type TestCaseState is
(Pass, Fail, Untested);

type RandomTestInfo is

MinLength: natural := 0; type SaveTestCases
MaxLength: natural := 0; is array (TestCaseState) of boolean;
NumberRequired: positive := 1;
Persistence: SaveTestCases := todo; type RandomTestInfo is
NumberNonPersistentPassed: MinLength: natural := 0;
natural := 0; MaxLength: natural := 0;
NumberNonPersistentFailed: NumberRequired: positive := 1;
natural := 0; end;
end;

type Saved is (persistent, nonpersistent);
type TestClass is

Extralnfo: RandomTestInfo;

type TestCaseCounts is
end ;

array (Saved, TestCaseState)
of natural;

type TestCasesInfo is
PersistencePreferences: SaveTestCases
:= Default_Persistence;
NumTestCases: TestCaseCounts :=
Default _Counts;
end;

type TestClass is
TestSetInfo : TestCasesInfo := Create;
Extralnfo: RandomTestInfo;

end;

Fig. 9. Schema evolution in TAOS.

If we consider each type in isolation, we see the following simple type
changes: three fields have been deleted from RandomTestinfo , one field
has been added to TestClass , SaveTestCases has changed from an
enumerated type to an array of booleans, and four new types have been
created. Treating these as simple type changes would result in the deletion
of the values associated with the deleted fields of RandomTestinfo , the
initialization of the new field in TestClass to its default value, and the
deletion of values of the SaveTestCases type.

Now, let’s reconsider the example as a sequence of compound type
changes.

—Moving: The Persistence , NumberNonPersistentFailed , and Num-
berNonPersistentPassed fields are moved to the TestClass type
using a structural relationship.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

100 . B. Staudt Lerner

type RandomTestInfo is
MinLength: natural := 0;
MaxLength: natural := 0;
NumberRequired: positive := 1,

end;

type TestClass is
Persistence: SaveTestCases := todo;
NumberNonPersistentPassed: natural := 0;
NumberNonPersistentFailed: natural := 0;
Extralnfo: RandomTestInfo;

end;

—Encapsulation: The NumberNonPersistentFailed and NumberNonPer-
sistentPassed fields are encapsulated into a new field named
NumTestCases whose type is the new TestCaseCounts type. Specifi-
cally, the value of the NumberNonPersistentFailed field is moved to
the TestCaseCounts element indexed by (nonpersistent, Fail) . The
value of the NumberNonPersistentPassed field is moved to the
TestCaseCounts element indexed by (nonpersistent, Pass)

type TestCaseState is (Pass, Fail, Untested);
type Saved is (persistent, nonpersistent);
type TestCaseCounts is array (Saved, TestCaseState) of natural;
type TestClass is
Persistence: SaveTestCases:= todo;
NumTestCases: TestCaseCounts:= Default_Counts;
Extralnfo: RandomTestInfo;
end;

—Encapsulation: The Persistence field is encapsulated into an attribute
named PersistencePreferences whose type is the new SaveTest-
Cases. The value of the field is duplicated in each element of the
SaveTestCases array, translating nada to false and todo to true .

type TestCaseState is (Pass, Fail, Untested);

type SaveTestCases is array (TestCaseState) of boolean;

type TestClass is
PersistencePreferences: SaveTestCases:= Default_Persistence;
NumTestCases: TestCaseCounts:= Default_Counts;
Extralnfo: RandomTestInfo;

end;

—Encapsulation: PersistencePreferences and NumTestCases are en-
capsulated into a new field named TestSetInfo whose type is the new
TestCasesInfo type.

type TestCasesInfo is
PersistencePreferences: SaveTestCases:= Default_Persistence;
NumTestCases: TestCaseCounts:= Default_Counts;
end;
type TestClass is
TestSetInfo: TestCasesInfo:= Create;
Extralnfo: RandomTestInfo;
end;

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 101

This example demonstrates the type change model. It also demonstrates
that describing these type changes via editing commands would be cumber-
some. We have developed type comparison algorithms to support such
changes without requiring the user to specify them explicitly.

9. TYPE COMPARISON

For our type comparison approach to be feasible, we assume that between
successive versions of a system, most type definitions remain mostly the
same. We rely heavily upon the similarities that exist to quickly prune the
space of types that must be compared. Since the types in databases tend to
experience evolutionary change, rather than revolutionary change, we do
not expect this to be a significant problem for most situations. In those
situations in which revolutionary changes occur, the maintainer can and
should provide more guidance rather than relying on the fully automated
control algorithm. In Section 10.1, we describe how the maintainer can
provide guidance in our implementation of the type comparison algorithms.

In this section, we describe derivation rules in more detail. Next, we
describe the algorithm that controls which types are compared. Following
that, we describe the algorithm to recognize simple changes that may occur
in a record definition. Then, we present the algorithm to identify movement
of fields between structurally-connected records, including encapsulation
and inlining. Finally, we explain how derivation rules could be used with a
variety of data translation mechanisms.

9.1 Derivation Rules

A derivation rule describes how to translate data created using one type
definition to a different type definition. For simple values, such as integers
and enumerated types, the derivation rule defines a function to apply to the
old value to compute the new value. In the simplest derivation rules, the
function is simply an identity function. For example, suppose we have a
Counter type in our old and new schema. Assume that this Counter type is
unmodified. The corresponding derivation rule is the following:

Counter = Counter:
new:= old;

Note the use of the keywords old and new. old refers to the existing data
that we are translating from. new refers to the new data that we are
creating. In this case, the new data has the same value as the old data.

For structured types, such as records, the function specifies how to
compute the value for each new substructure of the new type. Usually, the
value of a new substructure is defined in terms of the value of existing
data. As a result, the derivation of most substructures is performed by
applying the derivation rule defined between the types of the corresponding
substructures. A new substructure may be defined using a constant value
or a user-supplied function. For example, Figure 10 is the derivation rule
that corresponds to Figure 5.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

102 . B. Staudt Lerner

Person = Person:
new.name : derive from old.name;
new.address : derive from old.home.address;
new.home_phone : derive from old.home.phone;
new.home : derive from old.home;

Fig. 10. Derivation rule for a structured type.

In this case, the new fields are all derived from existing data. For
example, the value for the new personal field is computed by applying the
derivation rule from the old Personal_Info type to the new Personal_Info
type.

In some cases, we may want to use slightly different derivation rules
between a pair of types depending upon the state of the database. For
example, suppose we replace one type with a collection of types. The intent
may be to partition the existing values so that each value belongs to one of
the new types. To support this, we add conditionals to our derivation rules.
Consider the type change and corresponding derivation rule shown in
Figure 11. Here we will create a different type of new object depending on
the value of an existing field.

A similarity metric is associated with each derivation rule. A similarity
metric is a qualitative description of the impact that applying the deriva-
tion rule would have on existing persistent data. For example, derivation
rules between record types have one of the following similarity metrics:

Each derivation rule has a single metric that describes the worst effect of
applying the rule. Thus a rule with a NewField metric may also have fields
whose names have changed, but it will not have any deleted fields.
Similarity metrics are used within the comparison algorithms to prune the
space of comparisons considered. (In Section 10.1, we will also describe how
similarity metrics are used to focus the maintainer’s attention on the
derivation rules with greatest impact on the data.)

9.2 The Type Comparison Control Algorithm

The input to the type comparison algorithms is the set of type definitions of
consecutive schemas. The algorithms selectively compare the types to
identify how the types have changed and output derivation rules describing
how to transform instances of the old version into instances of the new
version. The type comparison control algorithm is responsible for determin-
ing which types to compare, based primarily on the results of comparisons
done thus far and on naming similarities between old and new types, as
well as which comparison algorithms to use based on the type constructors
used by the types being compared. The algorithms ignore changes to white
space and comments and the order in which the type definitions appear in
the schema.

The fully-automated type comparison control algorithm is shown in
Figure 12. It proceeds through three stages. First, in the name comparison
stage, old and new types that have the same names in both versions are

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

Old version:

type Plane is
engine: EngineType;
nume.-passengers: positive;
maz_speed: positive;
end;

type PlaneFleet is set (Plane);

PlaneFleet = PlaneFleet
for each old_plane in old

A Model for Compound Type Changes

New version:

type Jet is
num_passengers: positive;
maz_speed: positive;
end;

type PropellorPlane is
num-passengers: positive;
maz_speed: positive;
end;

type Glider is
num_passengers: positive;
maz.speed: positive;
end;

103

type Plane is union of (Jet, PropellorPlane, Glider);

type PlaneFleet is set (Plane);

if old_plane.engine == JetEngine
new_plane = new Jet derived from old_plane

else if old_plane.engine == PropellorEngine
new_plane = new PropellorPlane derived from old_plane
else if old_plane.engine == None
new_plane = new Glider derived from old_plane
end if;
insert new_plane in new
end for;
Fig. 11. Conditionals in derivation rules.
Table 1.
Similarity Metric Meaning

Identical
FieldOrderChange
FieldTypeNameChange
FieldNameChange
NewField

DeletedField

No changes to the type
Fields appear in a different order.

Name of the type of a field has changed.

Name of a field has changed.
New type has an extra field.
Old type has an extra field.

compared. For structured types, such as records and arrays, this may
result in further type comparisons. For example, a derivation rule that
derives a new array from an old array requires a derivation rule from the
old array element type to the new array element type. Comparing these
element types is called component comparison. In the second stage, called
use site comparison, types that use types that have been successfully
compared are compared. In the final stage, called exhaustive comparison,
each old type that does not already have a derivation rule is compared to
each new type, first considering only those new types that use the same

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

104 . B. Staudt Lerner

procedure CompareTypes (old_types, new_types) is
begin
— Compare types with the same name.
for each type o in old_types
let n = type in new_types with the same name as o
if Compare (o, n) finds a derivation rule then
add (o, n) to TypePairList
end if;
end for ;

- Check the use sites for each pair of types that have a derivation rule.
for each type pair tp in TypePairList

let 0 = old type in tp

let n = new type in tp

- Find where the old and new type are used.
let old_uses = set of types in old_-types that use o
let new_uses = set of types in new_types that use n

— Compare each pair of use sites.
for each type o_u in old_uses
for each type n_u in new_uses
if Compare (o_u, n_u) finds a derivation rule then
add (o-u, n-u) to TypePairList
end if;
end for ;
end for ;
end for ;

- Exhaustive search
for each type o in old_types
—~ Make sure we have at least one derivation rule for each old type
if there is no derivation rule from o to any type in new_types then
— Compare to new types with the same type constructor.
for each type n in new-types with the same type constructor
if Compare (0, n) finds a derivation rule above threshold then
compare the use sites of 0 and n; break;
end if;
end for ;

~ Compare to new types with different type constructors if no good match to the same type constructor.
if there is no derivation rule from o to any type in new_types then
for each type n in new_types with a different type constructor
if Compare (o, n) finds a derivation rule above threshold then
compare the use sites of o and n; break;
end if;
end for ;
end if;
end if;
end for ;
end;

Fig. 12. Type comparison control algorithm.

type constructor and, if that fails to produce an acceptable derivation rule,
considers all remaining new types. The exhaustive comparison algorithm
also performs component comparisons and use site comparisons as deriva-
tion rules are generated. Thus if a derivation rule is found by exhaustive
comparison, the algorithms immediately compare pairs of types used by the
matched type pair as well as pairs of types using the matched type pair.
This further reduces the search for matching types. Since we do not
compare each pair of types, it is possible that we will miss the correct
mapping. In practice, we have found this to not be a problem, but rather

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 105

type old_record is record type new_record is record
field1: old_field1_type; field1: new_field1_type;
field2: field2_type; field2: field2_type;

end record; end record;

Fig. 13. Component and use site comparisons.

have found that examining type names and structural relationships is
generally sufficient to find the changes we have encountered in real
systems. We will discuss this further in Section 11.

To better understand the stages of the algorithms, consider the type
definitions in Figure 13. old_record is an old type and new_record is the
corresponding new type. Since they have different type names they are not
compared during the name comparison phase. The two versions of
field2_type (not shown) are compared in this phase. Assuming a derivation
rule is found between these types, the use site comparison stage searches
for pairs of types that use field2_type. It finds old_record and new_record
and compares them. To complete the comparison of old_record and ne-
w_record, old_field1_type and new_field1_type are compared during compo-
nent comparison since they have the same field name.

9.3 Recognizing Simple Type Changes: A Sample Algorithm

When looking for simple changes between two types, the algorithm varies
depending upon the type constructors that the types use. For example, a
different algorithm is used to compare two enumerated types than to
compare two record types. We have also developed algorithms to compare
two types that use different type constructors, such as sets and arrays.

In Figure 14 we show the algorithm that compares two records to give
more insight into how the type comparisons proceed. The input to this
algorithm is the type definitions of two record types. The output is a
derivation rule between those record types, such that each record field of
the new type is either derived from an old record field or is initialized to a
default value, and each record field of the old type that is not used in a
derivation is explicitly identified as being deleted.

The record comparison algorithm is quite similar to the algorithm used to
compare the sets of type definitions. First, it compares record fields with
the same name. Next, it compares old unmatched fields with new un-
matched fields with the same type name. If there are multiple old and new
fields with the same type, they will be paired in the order in which they
occur. We could produce multiple mappings, one for each pair of fields with
the same type to account for changes where the name and ordering of the
fields have been changed simultaneously, but this has not been a problem
in practice. Finally, the algorithm compares each old unmatched field to
each new unmatched field. Again, we could produce a mapping for each
permutation of old unmatched fields to new unmatched fields to account for
simultaneous name, order, and type changes to fields. In practice, however,
this is likely to lead only to spurious results. Based on our experience, it

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

106 . B. Staudt Lerner

function CompareRecords (old-record, new_record) return derivation.rule is begin
let r = new derivation rule from old_record to new_record;

- Compare fields with the same name
for each field o_f in old_record
for each field n_f in new_record
if o_f and n_f have the same names
if Compare (type of o_f, type of n_f) finds a derivation rule above threshold
map o-f to n_f in r;
end if;
break;
end if;
end for;
end for;

— Compare fields with the same type name
for each field o_f in old_record
if o_f is not used
for each field n_f in new_record
if n_f is not mapped to any new field and o_f and n_f have different names and
o.f and n_f have the same type names then
if Compare (type of o-f, type of n_f) finds a derivation rule above threshold
map o_f to n_f in r;
end if;
break;
end if;
end for;
end if;
end for;

— Compare unmatched old fields to unmatched new fields
for each field o_f in old_record
if o_f is not used
for each field n_f in new_record
if n_f is not mapped to any new field and o_f and n_f have different names and
o_f and n_f have different type names then
if Compare (type of o.f, type of n_f) finds a derivation rule above threshold
map o-f to n_f in r; break;
end if;
end if;
end for;
if o_f is not mapped to any new field then
mark o_f as deleted; end if;
end if;
end for;

for each field n_f in new_record
if no old field is mapped to n_f then
mark n_f as initialized to default;
end if;
end for;
end;

Fig. 14. Record comparison algorithm.

seems more likely to have a field deletion and addition than a derivation if

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 107

neither the field name, type, nor ordering is preserved. When the algorithm
compares fields, it compares the field names and recursively compares the
field types. If type definitions are recursive, as with linked lists for
example, recursive comparison of field types leads to an infinite loop. To
avoid this, we use an algorithm similar to the one used by Amadio and
Cardelli to check subtyping of recursive types [Amadio and Cardelli 1993],
which limits the recursion performed when comparing recursive types. We
cache the results of type comparisons in a matrix so that we can look up the
results of previous comparisons instead of repeating them.

Upon completion of the record comparison algorithm, any field of the old
type that has not been mapped to a new field represents a field whose value
will be deleted during transformation. Any field of the new type that does
not have an old field mapped to it represents a field whose value will be
initialized to a default value during transformation.

Using algorithms such as the one described here we can recognize
changes equivalent to those supported by databases that provide automatic
support for schema evolution, including Orion and GemStone.

9.4 Recognizing Compound Type Changes: A Sample Algorithm

We have also developed algorithms to recognize compound changes. This
allows us to support type changes not supported by other databases. Figure
15 shows the algorithm for recognizing movement and encapsulation of
fields from one record type to another where the types are structurally
related. This algorithm is passed an old record type, a new record type, and
the derivation rule constructed by the algorithm to detect simple changes
in record types. In this initial derivation rule, the old fields that are
marked as deleted might become sources of movement while the new fields
marked as initialized to default values might become destinations of
movement. After applying this algorithm, the derivation rule identifies the
structural connections that must be traversed to move the data from those
old fields that would be deleted to new fields that would be initialized.

To accomplish this task, the algorithm identifies all the unused fields of
the old type in the derivation rule. It also transitively finds all unused
subfields of any field of the old type. These are fields that might be moved.
It then constructs a dummy record definition whose fields are these unused
fields and subfields. The field names used in these dummy record defini-
tions encode the path to the real subfield so that this information can be
used to identify the source of a moved field. In a similar manner, a second
dummy record definition is created to hold all the unused fields and
subfields of the new type, again encoding the path to the real subfield.
Next, the algorithm applies the record comparison algorithm for recogniz-
ing simple type changes given in Figure 14. Field mappings identified by
comparing these two dummy types necessarily involve a subfield from the
old, new, or perhaps both types, since all mappings between fields of the old
and new type have been identified prior to calling the compound type
comparison algorithm. These mappings correspond to compound type

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

108 . B. Staudt Lerner

procedure RecordFieldMove (old_record, new_record, deriv_rule) is
begin
create an empty record type o
for each field o_f in old_record
if o_f is marked as deleted in deriv_rule then
add o-f to o;
end if;
add deleted fields and subfields of o_f in deriv_rule to o
end for

create an empty record type n
for each field n_f in new_record
if n_f is initialized in deriv_rule then
add n_f to n;
end if;
add initialized fields and subfields of n_f in deriv_rule to n
end for

move_rule = CompareRecords (o, n);
for each field mapping fm in move_rule
copy fm to deriv_rule
end for;
end;

Fig. 15. Record field move algorithm.

changes. Each field mapping identified by this algorithm is then merged
into the original derivation rule. In this way, the derivation rule now
encodes both local and nonlocal changes.

Figure 16 graphically shows the derivation rules that the encapsulation
algorithm finds for a particular set of type definitions. The top of the figure
shows the result of comparing the old and new versions of recordl looking
for only simple type changes. The field2 and field3 fields of the old

version are unused; the encapsulated field of the new version is un-
used. After looking for compound type changes, field2 is mapped to
encapsulated_field.field2 and field3 is mapped to encapsulated
field.field3

Using algorithms such as this one we can recognize compound type
changes where the relationships between the source and destination types
are structural.

9.5 Using Derivation Rules to Perform Data Translation

The derivation rules do not specify when objects are updated or whether
those updates are persistent. This separation is done deliberately to allow
derivation rules to be used by a variety of data translation mechanisms. In
this section, we briefly describe how the derivation rules would be used by
several different data translation mechanisms.

9.5.1 Conversion. In a conversion backend, data are read from their old
format, converted to the new format, and written back to the database.
GemStone and O, are examples of object-oriented database systems that

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 109

type recordl is record type recordl is record
field1: integer: field1: integer;
field2: boolean; encapsulated_field: encapsulated_type;
field3: string; end record;

end record;

type encapsulated_type is record
field2: boolean;
field3: string;

end record;

Before Checking for Encapsulation

type recordl is record type recordl is record
fieldl: integer: fieldl: integer;
field2: boolean; encapsuIated_fieJIdzncapsuIated_typ(%

field3: string; end record;
end record; /

type; encapsulated_tyﬂ)is record
field2: boolean;
field3: string;

end record;

After Checking for Encapsulation

Fig. 16. Encapsulation example.

perform conversion. Conversions can be performed by taking the database
offline, starting at each root object, visiting each object in turn, converting
it, and writing the result to the database.

If the database is large or high availability is required, it may not be
feasible to take the database offline. In these cases, lazy conversion can be
done as in O, [Ferrandina et al. 1994]. With lazy conversion individual
objects are converted as they are accessed. To work with conversion, we
would apply a derivation rule locally, but would only convert components of
structured objects as they were accessed. Ferrandina presents a solution to
the problem of ordering conversions in lazy conversion to ensure that data
is not deleted before it is transformed. Our derivation rules can be used
with his algorithms.

9.5.2 Screening. With screening, information is never deleted from ob-
jects. Instead, the accessing functions hide the appropriate information
based upon the version of the code that is accessing the object. Orion
[Banerjee et al. 1987; Kim and Korth 1988] uses screening to evolve its
objects. To do so, it uses a clever object representation that allows fast
access to objects even after the object’s type has been changed. It also
restricts the kinds of changes to a subset of our local change model. The
changes that they allow minimize the impact on the persistent objects, but
reduce the flexibility available to the maintainer.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

110 . B. Staudt Lerner

Derivation rules can extend the screening approach to more complex type
changes. This is accomplished by applying the derivation rules as objects
are accessed. For example, suppose we want to move data from one object
to another conceptually. When an object is accessed from which data has
moved, the data should be hidden by the accessing function, just as deletion
is managed currently. When an object is accessed to which data has moved,
the accessing function must apply the portion of the derivation rule that
defines where the data comes from to access the data. The advantage of
this approach is that it has minimal impact on the data, just as current
screening techniques. Furthermore, there is no need to take the database
offline. The disadvantage is that accessing objects associated with these
complex type change operations will pay a penalty on each access. Addi-
tionally, we must be careful to not delete objects that contain data that
serves as the source of a data movement operation.

9.5.3 Versioning. In a versioning backend, such as Encore [Skarra and
Zdonik 1986] and O, provide, multiple versions of an object may exist at
one time. The runtime system compares the version of code accessing an
object with the versions available so that the correct version can be
returned. If the correct version does not exist, it is created dynamically by
applying the appropriate derivation rules. Current systems that use ver-
sioning only support local type changes. In order to derive a new version of
an object, one only needs to access an existing version of that object. Our
derivation rules could be used in a similar manner to support nonlocal
derivations.

To support this, derivation rules must be able to translate from newer
versions of a type system to older versions. This could be done by applying
the same comparison algorithms but changing which is being used as the
source and which as the destination. A more straightforward technique
would be to define reverse transformations directly by analyzing the
existing derivation rules.

Thus, we see that the basic notion of derivation rules is quite flexible and
could be used with a variety of data translation mechanisms to address
different database concerns such as minimizing access times, maintaining
high availability, and reducing the impact on existing code.

10. TESS: AN EXPERIMENTAL TYPE COMPARISON SYSTEM

We have implemented type comparison algorithms in a tool called Tess.
Tess can automatically generate derivation rules for all simple type
changes listed in Figure 1. It can also generate derivation rules for inlining,
encapsulation, link reversal, link addition, merging of structurally-con-
nected types, and moving fields between structurally-connected types. The
maintainer has extensive control over what is automated: Tess can operate
in modes ranging from completely manual, as in early database systems, to
fully automated. The combination of powerful derivation rule generation
algorithms and flexible application of those algorithms as determined by a
maintainer leads to a synergism not found in existing systems. In this

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 111

section, we describe the maintainer’s role in running Tess, how Tess
assures that all necessary derivation rules have been provided, and then
discuss experimental results.

10.1 Maintainer Control over Type Comparison

Tess has an interactive user interface that gives the maintainer control
over how type comparisons proceed. There are three dimensions that the
maintainer has control over. First, the maintainer can control which stages
of the comparison control algorithm are used (name comparison, use site
comparison, and exhaustive search).

The second dimension that the maintainer can control is which types get
compared. Here there are three options. All types can be considered at once
(the fully-automated control algorithm shown in Figure 12), a specific old
and new type can be compared, or an individual old type can be compared
with all new types. When schema changes are minor, it is reasonable for
the maintainer to use all stages of type comparison and allow all types to be
compared. When the schema has changed radically, it would be better to
use only the name comparison algorithm on all types to identify the
unchanged types and obvious changes and then complete the transformer
by specifying pairs of types for Tess to develop derivation rules for.

The third dimension involves determining which derivation rules are
automatically accepted as correct and which must be presented to the
maintainer for manual acceptance. This is done by defining a threshold
value for the similarity metric. The most conservative approach accepts
only derivation rules between unchanged types, that is, simple identity
rules. A more liberal policy accepts changes in which all old values still
belong to the new type, such as increasing the size of a subrange. The most
liberal, yet still sensible, policy automatically accepts those changes that
affect the representation of the type within the database, but not its use
within a program, such as reordering the fields of a record. If a schema
contains many unchanged types or trivial changes, the use of similarity
metrics allows the user to quickly focus on the interesting changes.

10.2 Assuring Completeness of Derivation Rules

Since generation of derivation rules is a separate activity from updating
the persistent data, it is important that all the necessary derivation rules
are produced so that they are available when we later attempt to access old
data. In this section, we describe how we ensure this.

Recall that our model of persistence assumes that any type can be the
root of a persistent structure. As a result, we require a root derivation rule
for each old type. The root derivation rule is used to translate an instance
of a type that appears as an old root into a new root defined using the new
schema. Frequently, the old and new types of a root derivation rule have
the same type name, but this is not necessarily so.

Recall also that when we apply a derivation rule that creates a struc-
tured type, it generally assigns values to the components of the structure

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

112 . B. Staudt Lerner

0ld version: New version:
type Person is type Person is
name: string; name: string;
age: integer; birthday: Date;
end Person; end Person;

Fig. 17. Determining which derivation rules are required.

by applying another derivation rule (as in Figure 10). Unlike root deriva-
tion rules, Tess can determine which old and new types the derivation rule
must operate on by examining the types of the components that are paired.
These derivation rules are referred to as reference derivation rules. For
each accepted derivation rule (root or reference), we examine the derivation
rules used within the accepted rule to determine which pairs of types
require reference derivation rules.

For example, consider Figure 17. When Tess identifies the mapping
between the two versions of the Person type, it identifies this as a root
mapping. As a result, if it encounters an object of type Person that is not
referenced by any other object, it will transform it to a new Person object.
The transformation function would translate the old name field to the new
name field. It therefore requires a transformation from string to string.
Similarly, to transform the old age field to the new birthday field, it needs a
transformation function from the integer type to the new Date type.? In this
case, we do not want to transform all integers in the program to dates, but
only those integers used within Person objects. Thus, the derivation rule
from integer to Date is a reference derivation rule. It is quite common for
the same rule to serve as both a root and reference derivation rule.

Using this information, Tess keeps track of which types still require
derivation rules. A user may decide that not all types actually are used as
the roots of structures and thus the user can tell Tess that root derivation
rules are not required for those types. In contrast, the analysis of which
reference derivation rules are required is precise. If a reference derivation
rule is missing, a runtime error would occur if the derivation rule that used
the missing reference derivation rule was applied. Tess displays this status
information to the user, indicating which old types do not yet have root
derivation rules and which type pairs referenced by accepted derivation
rules do not have derivation rules. Requiring completeness ensures that we
will be able to find the appropriate transformation function for any old data
that we might encounter.

11. EVALUATION

The algorithms within Tess generally use three mechanisms to create
derivation rules. First, they use naming similarities. Given the significance

30bviously, this transformation function must be written by a programmer and even then can
only approximate the actual birthdate.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 113

of names to humans, it seems reasonable to expect that derivation rules
that rely on naming similarities are likely to be correct.

Second, they use structural information. Specifically, they examine the
type constructors used by the old and new types and the types of compo-
nents. The former allows Tess to identify situations in which a unique
value is replaced with an array of values of the same type for instance. The
latter is particularly important when the component names have been
changed but their types are unchanged. Given the significance of types for
programmers, we expect these algorithms to yield good results, particularly
in cases where the types involved are user-defined types (not integer, for
example) and where there is only one component using that type in the old
and new types so that ambiguity does not arise.

Third, when all else fails, the algorithms rely upon ordering information.
For example, Tess will attempt to map components with different names
and different types if it has no other alternative. We expect ordering to be
the least useful of the heuristics used.

Currently, the similarity metrics represent the nature of the change that
has been identified but not the nature of the algorithm used (naming,
component typing, or ordering). This ensures that the user will evaluate
derivation rules based upon their effect on the data rather than upon the
way in which the derivation rule was created. As we evaluate Tess’s
performance in this section, however, it is useful to consider the nature of
the algorithms involved in considering their effectiveness. In the remainder
of this section, we present a detailed case study of the use of Tess on a real
application and summarize other experimentation.

11.1 Case Study

Figure 18 shows the results of applying Tess to the example shown in
Figure 9. The compound change from the old TestClass type to the new
TestClass type is correctly identified. If the compound change algorithm
had not been applied, the TestClass to TestClass derivation rule would have
initialized the TestSetInfo field to a default value. With the compound
change algorithm, we see that the Persistence, NumberNonPersistent-
Passed, and NumberNonPersistentFailed fields are moved from the Ran-
domTestInfo type to the TestCasesInfo type. Objects that the data should
move between are connected structurally through the old and new
TestClass type. The data moves from the old TestClass. Extralnfo to the new
TestClass.TestSetInfo field. Of particular interest is the movement of data
from TestClass.Extralnfo.Persistence to TestClass.TestSetInfo.Persistence-
Preferences. The movement is accomplished by applying the reference
derivation rule between the old and new SaveTestCases types. The defini-
tion of the SaveTestCases type has changed considerably, however. In the
old version, it was an enumerated type of two values. In the new version, it
is an array of booleans. The derivation rule generated by Tess specifies that
the old value should be placed in the first element of the new array,
applying the derivation rule between SaveTestCases and boolean to com-
pute the new value.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

114 . B. Staudt Lerner

This is an interesting case study for several reasons. First, it demon-
strates Tess’s ability to recognize complex type changes. Second, it demon-
strates a diverse set of algorithms used to recognize those changes. Third,
its failings demonstrate the need for continued human involvement in the
development of powerful derivation rules.

The algorithm to map the old RandomTestInfo type to the new Random-
TestInfo type relies solely upon matching the type names and the names of
the components within the types. As a result, we expect the rule to be
correct. Since it results in values being deleted, Tess attempts to find a
complex type change that can account for the deleted components. It does
so in the derivation rule from the old TestClass type to the new TestClass
type. Here the types have the same names, whose single old component can
be paired with a new component based upon its name. In this case,
however, we find an additional component, TestSetInfo, that has no old
value mapped to it. The complex type change algorithm identifies the need
to move data, this time, by using similarities between the component types,
rather than the component names, so we have less confidence of this being
correct.

The mappings from Extralnfo.NumberNonPersistentPassed to TestSetIn-
fo.NumTestCases(persistent, Pass), from Extralnfo.NumberNonPersistent-
Failed to TestSetInfo.NumTestCases(persistent, Fail), between the old and
new SaveTestCases type and between the values of the old SaveTestCases-
Type and boolean are based entirely upon ordering information. As a result,
we have less confidence in the correctness of these changes and, indeed,
these are where the errors occur in the automatically derived derivation
rule. Tess did not generate the correct rule between the old and new
versions of the SaveTestCases type. The generated rule takes the old value
and places it in the first element of the new array. The correct derivation
rule would duplicate the old SaveTestCases value into all elements of the
new SaveTestCases array. It is not possible to distinguish between the case
of insertion into a single array element and duplication in more than one
array element by looking at the type definitions alone. It requires a more
semantic understanding of the change and thus we expect the maintainer
to provide this information. Similarly, the mapping from Extralnfo.Number-
NonPersistentPassed and Extralnfo.NumberNonPersistentFailed go to in-
correct elements of the array. Mapping into the array elements was based
upon typing information and this decision was correct. The wrong array
elements were chosen, however, based purely on ordering information. This
case study brings into question the value of using ordering information. A
better solution might be for Tess to provide partial derivation rules in these
cases and explicitly require the programmer to disambiguate them. For
example, Tess might propose mapping the old SaveTestCases type into an
element of the array, but require the programmer to indicate which
element(s) explicitly instead of proposing one based on ordering information.

The similarity metrics on the derivation rules shown result in Tess
requiring approval of the derivation rules before they would be applied (for
any reasonable threshold for automatic acceptance). Out of a total of 37

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 115

TestClass = TestClass: Compound Change
new.Eztralnfo : derive from old. Extralnfo;
new. TestSetinfo. PersistencePreferences: derive from old. Exztralnfo.Persistence;
new. TestSetInfo. NumTestCases(persistent, Pass) : derive from old. Extralnfo. NumberNonPersistentPassed;
new. TestSetInfo. NumTestCases(persistent, Fail) : derive from old. Extralnfo. NumberNonPersistentFailed;

RandomTestInfo = RandomTestinfo: Deletes Old Component
new.MinLength : derive from old. MinLength;
new.MazLength : derive from old. MazLength;
new. NumberRequired : derive from old. NumberRequired;

SaveTestCases = SaveTestCases: Requires New Component
new element indexed by Pass: derive from old;
new element indexed by Fail: uninitialized;
new element indexed by Untested: uninitialized;

SaveTestCases = boolean: Value Change
if old == nada
new = false;
else if old == todo
new = lrue;
end if;

Fig. 18. The derivation rules generated by Tess for the TAOS example.

derivation rules generated by the complete example, only two other deriva-
tion rules required review and both of those derivation rules were correct.
Thus, even though the totally-automated algorithm did not produce a
completely correct set of derivation rules, it did focus the maintainer’s
attention on the few complicated situations that existed. Even in the case
where the derivation rule was wrong, the changes required to correct the
derivation rule were quite minor relative to the overall complexity of the
derivation rules.

This example demonstrates capabilities for which existing evolution
systems provide no automated support. The change of SaveTestCases from
an enumerated type to an array of booleans cannot be done in existing
automated systems. The movement of fields from RandomTestInfo to the
TestSetInfo field of the TestClass type would result in deletion of the
associated data with existing automated evolution systems. Systems that
require the maintainer to provide the transformation routines would allow
proper handling of these transformations, but development of those rou-
tines would be entirely manual.

11.2 Experimentation

We have performed two experiments using Tess. The first experiment
involved extracting old versions of systems that had been saved in a version
control system and using Tess to compare the types in those versions. The
second experiment involved creating examples based upon reengineering
code using design patterns [Gamma et al. 1995]. In this section, we
describe those experiments and the results found.

11.2.1 Comparing Histories of Implemented Systems. In the first exper-
iment, we ran Tess on consecutive versions of the histories of 20 programs

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

116 . B. Staudt Lerner

Table II. Results of Experimentation with Implemented Systems

Type of change Number of occurrences
Compound change 2
Deleted type 3
Deleted record field 13
Field type change 7
New record field 19
Field order change 1
Record field name change 3
Field type name change 23
New union member 1

developed over a period of 5 years. Most of these programs were created
within the Laboratory for Advanced Software Engineering Research at the
University of Massachusetts, Amherst. The most versions there were of a
single program were 5. While it is difficult to know if these program
histories are representative of a larger population, it is the case that many
of the histories were created before Tess was started and all were created
before Tess was ready for use. Therefore, the types of changes made were
not influenced by the types of changes that Tess could handle.

There were two goals to this experiment. The first was to determine the
kinds of type changes that are likely to occur in practice. The second was to
determine whether or not Tess could handle those changes. Table II
summarizes the type changes contained in these files as analyzed by a
human.* Of these, Tess correctly identified all the type changes except for
the type deletions. Tess is programmed to attempt to identify derivation
rules for all types. For each deleted type, instead of indicating that the type
was deleted, it proposed several different mappings that had low similarity
metrics. Since these all had low similarity metrics, the user would be
expected to review the rules and could very easily delete them.

Most type changes encountered in this experiment are simple ones. There
were only two compound type changes. One was described in detail in the
case study in Section 11.1. The second was an encapsulation in which a
field that contained a single instance of a type was replaced with a type
that could hold a set of the original type. Tess created correct derivation
rules for all changes.

11.2.2 Comparing Types Reengineered with Design Patterns. The first
experiment did not exercise the compound type change algorithms much.
To better assess the effectiveness of the compound type change algorithms,
we devised examples based upon the structural design patterns in Gamma
et al. [1995]. For each pattern, we first devised an example that did not use
the pattern. We then reengineered the example using the pattern. In this

4Six of the field type changes were from integer to unsigned integer; one was from unsigned
integer to string. The field type name changes were all situations in which the name of an
externally-defined type was changed, but its definition was not.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 117

way, we were evaluating Tess on examples derived from the literature and
also representative of the kinds of type changes that we might expect to
encounter as programmers incorporate patterns into existing code. The
design patterns are primarily intended for object-oriented languages. Since
our input language does not include inheritance, we modeled these through
the use of variant records. That is, a supertype was modeled as a variant
record with a separate branch for each subtype. All inherited fields are
textually included in the subtypes, rather than the supertype. This gives us
nearly identical structures to a direct object-oriented implementation,
which is essential for our experiment. It is obviously inferior to an object-
oriented implementation in many respects that are irrelevant for this
experiment.

Gamma et al. [1995] includes six structural design patterns. We did not
consider the creational and behavioral patterns because those influence the
interface to the types, rather than the structure of the types. Briefly, the
Bridge, Composite, and Decorator patterns all involved compound type
changes that Tess correctly identified. The Proxy pattern requires user
assistance in choosing which rule generated by Tess is correct. The Fly-
weight and Facade patterns identify a limitation of the current type change
model and implementation. The Adapter pattern is not included because
there was no sensible example that had the semantics of Adapter without
also sharing the structure suggested by the Adapter pattern. The details of
the patterns experiment are described below.

11.2.2.1 The Bridge Pattern. The purpose of the bridge pattern is to
weaken the connection between an abstraction and its implementation. A
common mistake made by people new to object-oriented design is to have
alternative implementations be subclasses of the abstraction. A difficulty
arises when the programmer wants to create multiple related abstractions.
Typically, the result is an explosion in the number of subclasses. The
Bridge pattern solves this by defining an abstraction whose subclasses are
refined abstractions, an implementation whose subclasses are refined im-
plementations, and adding a connection (a bridge) to bind an implementa-
tion to an abstraction. Figure 19 shows type definitions before and after the
introduction of the Bridge pattern. Figure 20 shows the derivation rule
derived for the old XIconWindow type. The remaining derivation rules are
quite similar. In this case each old object that was an instance of some
subclass of Window is broken into two objects, a Window object and a
WindowImp object. This is an example of an encapsulation compound
change, where part of an old type is encapsulated to form a new type.

11.2.2.2 The Composite Pattern. The Composite pattern describes how
to organize types representing collections when collections themselves may
be considered as parts of a collection. This allows a programmer to develop
algorithms that treat collections and components uniformly as much as
possible. Figure 21 shows an example before and after the introduction of
the Composite pattern. Figure 22 shows the derivation rule for the Picture
type. This is an example of a merge compound change, because the new

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

118 . B. Staudt Lerner

Without the pattern: With the pattern:

type Window is type Window is

name: String; name: String;
end Window; impl: WindowlImp;

end Window;

type XWindow extends Window is

gc: GraphicsContext; type IconWindow extends Window is
end XWindow; icon: Picture;

end IconWindow;
type PMWindow extends Window is
pm: PMWindowData; type Windowlmp is
end PMWindow; null;
end WindowImp;
type XlconWindow extends XWindow is
icon: Picture; type XWindow extends WindowlImp is
end XlconWindow; gc: GraphicsContext;
end XWindow;
type PMIconWindow extends PMWindow is
icon: Picture; type PMWindow extends WindowlImp is
end PMIconWindow; pm: PMWindowData;
end PMWindow;

Fig. 19. Bridge pattern.

XIconWindow = IconWindow: Compound Change
new.icon : derive from old.icon;
new impl = new X Window;
new.impl.gc : derive from old.gc;

Fig. 20. Derivation rule for the bridge pattern.

Without the pattern: With the pattern:
type Point is type Graphic is
X : integer; null;
y : integer; end;
end Point;
type Point extends Graphic is
type Line is x : integer;
pointl : Point; y : integer;
point2 : Point; end Point;
end Line;
type Line extends Graphic is
type LinelList is sequence of Line; pointl : Point;
type PointList is sequence of Point; point2 : Point;
end Line;
type Picture is
lines : LineList; type GraphicList is sequence of Graphic
points : PointList;
pictures : PictureList; type Picture extends Graphic is
end Picture; graphics : GraphicList;

end Picture;
type PictureList is sequence of Picture;

Fig. 21. Composite pattern.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 119

Picture = Picture: Compound Change
new.graphics = new GraphicsList;
for each line in old.lines
new_line : derive from line;
append new_line to new.graphics
end for;
for each point in old.points
new_point : derive from point;
append new_point to new.graphics
end for;
for each picture in old.pictures
new_picture : derive from picture;
append new_picture to new.graphics
end for;

Fig. 22. Derivation rule for the composite pattern.

Without the pattern: With the pattern:
type OutputStream is type OutputStream is

fd : FileDescriptor; null;

buffer : CharArray (1..100); end OutputStream;

numInBuffer : integer;

checkSum : integer; type FileOutputStream extends OutputStream is
end OutputStream; fd: FileDescriptor;

end FileOutputStream;

type Filter extends OutputStream is
outStream : OutputStream;
end Filter;

type BufferedOutputStream extends Filter is
buffer : CharArray (1..100);
numlInBuffer : integer;

end BufferedOutputStream;

type CheckedOutputStream extends Filter is
checkSum : integer;
end CheckedOutputStream;

Fig. 23. Decorator pattern.

type, GraphicsList, combines the old list types into a single type. The
separate list objects are merged into a single list.

11.2.2.3 The Decorator Pattern. The Decorator pattern is intended to
allow dynamic extension of a class. This is particularly useful in situations
where it would be desirable to have multiple extensions simultaneously.
Without this pattern, a design either contains a proliferation of subclasses
to allow all combinations or a type that contains more information and
functionality than may be needed at any time. Figure 23 provides an
example without and with the Decorator pattern. Figure 24 shows the
mapping from OutputStream to BufferedOutputStream. An equally valid
mapping would go from OutputStream to CheckedOutputStream. The user
needs to decide which mapping is preferred. This example shows several

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

B. Staudt Lerner

OutputStream = BufferedOutputStream: Compound Change
new.buffer : derive from old.buffer;

new.numinBuffer :

derive from old.numliInBuffer;

new.outStream = new Checked OQutputStream;
new.outStream.checkSum : derive from old.checkSum;
new.outStream.outStream = new FileOutputStream;
new.outStream.outStream.fd : derive from old.fd;

Fig. 24. Derivation rule for the decorator pattern.

Without the pattern:

type Graphic is
null;
end Graphic;

type Image extends Graphic is
fileName : String;
imagelmp : Bitmap;
extent : Rectangle;

end Image;

type GraphicList is sequence of Graphic;

type DocumentEditor is
images : GraphicList;

With the pattern:

type Graphic is
null;
end Graphic;

type Image extends Graphic is
fileName : String;
imagelmp : Bitmap;
extent : Rectangle;

end Image;

type ImageProxy extends Graphic is
fileName : String;
extent : Rectangle;
img : Image;

end DocumentEditor; end ImageProxy;

type GraphicList is sequence of Graphic

type DocumentEditor is
images : GraphicList;
end DocumentEditor;

Fig. 25. Proxy pattern.

Image = ImageProzy : Compound Change
new.fileName : derive from old.fileName;
new.extent : derive from old.ezxtent;
new.img = new Image;
new.img.imagelmp : derive from old.tmagelmp;
new.img.fileName : derive from old.fileName;
new.img.eztent : derive from old.eztent;

Fig. 26. Derivation rule for the proxy pattern.

encapsulation compound changes and the corresponding division of a single
object into multiple objects.

11.2.2.4 The Proxy Pattern. The Proxy pattern is used to allow a stub
object to be a placeholder for a real object until the real object is needed.
This can be useful in situations in which the real object is often not needed
and is expensive or large to keep in memory. For example, it might require
reading a file or communication over a network to get the real value. Figure
25 provides an example without and with the Proxy pattern. Figure 26

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 121

Without the pattern:

type Glyph is
null;
end Glyph;

type Row extends Glyph is
members: sequence of Glyph;
end Row;

type Column extends Glyph is
members: sequence of Glyph;
end Column;

type Font is
fontld : integer;
size : integer;
end Font;

type Char extends Glyph is
charld : integer;
charFont : Font;

With the pattern:

type Glyph is
null;
end Glyph;

type Row extends Glyph is
members: sequence of Glyph;
end Row;

type Column extends Glyph is
members: sequence of Glyph;
end Column;

type Font is
fontld : integer;
size : integer;
end Font;

type Char extends Glyph is
charld : integer;
end Char;

end Char;
type GlyphContext is
index : integer;
fonts : BTree;
end GlyphContext;

Fig. 27. Flyweight pattern.

shows the mapping from Image to ImageProxy. This change involves an
encapsulation to create the new type and duplication of values between the
Image type that continues to exist and the new ImageProxy type. The
derivation rule listed below fits well with the compound type change model
described in this paper. The implementation in Tess, however, does not
currently support duplication. Therefore, the derivation rule produced by
Tess initializes the fileName and extent fields of the ImageProxy, but not
the new Image. This is an example where user assistance is needed to
produce the correct derivation rule.

11.2.2.5 The Flyweight Pattern. The Flyweight pattern is an interesting
example because it demonstrates a type change that it is difficult to
imagine any type evolution system being able to support without signifi-
cant user involvement. The Flyweight pattern recognizes that it is useful to
create new structures to hold small immutable objects and provide a
mechanism to look up the correct value rather than hold references to those
values in multiple places. Figure 27 shows an example before application of
the pattern in which each Char object includes which font it uses. After
application of the pattern, a BTree is created that contains a font object for
each font change between consecutive characters. To determine which font
to use, it is necessary to know an index for the character in question and
then its font can be looked up in the BTree. To construct the appropriate

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

122 . B. Staudt Lerner

BTree requires significant knowledge about the semantics of the type and
the change being performed. We cannot hope to automate this change.

11.3 Value of Exhaustive Search Algorithm

To determine the effectiveness of the various algorithms, we ran Tess with
different algorithms disabled. The original results presented in Table II
were the result of using the name comparison algorithm, use site algo-
rithm, and exhaustive search algorithm. As the name suggests, the exhaus-
tive search algorithm is expensive computationally. We reran both experi-
ments with the exhaustive search algorithm disabled and found very
similar results in the derivation rules produced, but significantly better
performance. Recall that with exhaustive search enabled Tess was not able
to identify three type deletions in the test suite. With the exhaustive search
algorithm disabled, Tess correctly reported that two of the types were
deleted. There were no correct derivation rules missed with the exhaustive
search algorithm disabled.

11.4 Value of Use Site Algorithm

To determine the effectiveness of the use site algorithm, we ran both
experiments again disabling both exhaustive search and the use site
algorithms. In this case, all three instances of deleted types in the input
were correctly identified as such. In addition, two types were now flagged
as deleted when they were transformed to types with different names. This
happened in the test case for the Bridge pattern. In this case an old type
that was not referenced anywhere was split into two new types, neither of
which had the same name as the original type. Since the type’s name
changed and the old type was not used as a component type anywhere, the
name comparison algorithm did not find the appropriate pair of types to
compare. The use site algorithm was developed to address this exact
situation and thus has demonstrated its usefulness.

11.5 Summary

The type comparison algorithms implemented in Tess performed very well
in the experimentation. We found that most type changes are simple ones
that are easy to describe with a simple type change model and are
accurately recognized by the type comparison algorithms. The algorithms
perform extremely well when there are strong naming similarities between
the old types and new types and the old field names and new field names.
The algorithms also perform well when structural similarities are strong
even if the names have changed.

The weaknesses arise when neither naming nor structural similarities
are very strong. This typically leads to situations in which it is necessary
for the user to disambiguate among a number of equally valid derivation
rules. An example of this is when an integer field is replaced with an
enumerated type. If symbolic constants were used to represent the values
in the integer field and those same names are used as the values in the

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 123

enumerated type, then it would be possible to write an algorithm that could
produce the correct derivation rule. If integer constants are used, however,
a default derivation rule might map the integers beginning with 0 or 1 to
the enumerated values in order. It is clear that there are many other
derivation rules to choose from and we cannot hope for an algorithm that
could find the correct derivation rule without user assistance in general.

We found a few instances of compound type changes in the implementa-
tion histories and more instances in the design patterns experiment. As
with simple type changes, the more naming similarities that exist with
compound type changes the better the type comparison algorithms perform.
As the case study in Section 11.1 demonstrates, the compound change
algorithms are able to detect nontrivial changes to the types. The opportu-
nity for ambiguity arises again, particularly in situations where a field that
holds a single value in the old version holds an array of values in the new
version. The ambiguity revolves around where the old value should be
placed in the new array. In particular, should it be placed in a single new
element? If so, which one? Another possibility is that the old value should
serve as the initial value of all the array elements. Obviously, a human
user will need to disambiguate this case.

In the course of the experiment, we found one weakness of the type
change model. Specifically, it does not allow us to express the need to
create a new shared object during transformation. We encountered this
limitation when working with the Facade pattern. The Facade pattern
introduces an object to centralize communication between two subsystems.
This new object must be referenced by all the old objects of one subsystem
that used to point into the internals of the second subsystem. While the
compound type change model allows new objects to be created during
transformation, it does not support the notion of being able to share those
new objects. This is clearly a limitation of the model that needs to be
addressed in future work.

12. FUTURE WORK

The type comparison algorithms currently operate on a type model that
does not have inheritance. The algorithms can still be used with a language
that has inheritance by inlining the inherited fields while translating to the
internal type model. The advantage of this is that languages with different
inheritance semantics can be supported simply by defining the translator
that inlines the correct variables according to the source language’s inher-
itance rules. The disadvantage with this solution is that we lose informa-
tion that would be useful in reducing the number of types that we compare
and the amount of work involved in each comparison. By inlining the
inherited fields, we duplicate their comparisons in each subtype. Also, we
could use the knowledge of supertype-subtype relationships to guide the
order in which we do comparisons, much as we currently use the record-
component relationships now. This would probably not improve the accu-
racy of Tess but would almost certainly improve its performance.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

124 . B. Staudt Lerner

The only serious limitation identified with the type change model is the
inability to create new shared objects during transformation. Clearly, we
must extend the type change model to support this. Also, we would like to
evaluate the model and algorithms on the histories of larger and longer-
lived systems to further evaluate them.

The type comparison algorithms currently implemented in Tess compare
types based upon the structure of those types. Zaremski and Wing have
demonstrated the use of type comparison to locate components in a library
for reuse [Zaremski and Wing 1995a, 1995b]. The type comparison algo-
rithms that they use rely on type signatures and formal specifications.
Since signatures and formal specifications generally change less frequently
than representations, incorporating these algorithms into Tess may im-
prove Tess’s ability to find matching types in old and new versions of a
system. The algorithms to compare types at the representational level are
still required to produce the transformers between the types. Using signa-
tures and formal specifications in comparisons may also make it apparent
that the database must evolve to respond to changing semantics of the
types, even when the representations are unmodified. For example, if a list
type is changed from an unsorted list to a sorted list, the representation
would not be changed, but the existing values would still not be appropriate
to use with the new definition.

Type change is also an issue for dynamic module replacement systems
whose goal is to replace program components without stopping execution of
a program. In this case there is existing data that may need to be
transformed even though it is not necessarily persistent data. Existing
systems (such as Fabry [1976], Frieder and Segal [1991]) recognize the
need for such transformation functions, but leave the development of those
functions to the maintainer. Tess’s comparison algorithms could be used to
generate these transformation functions.

Another situation in which type comparison may be applicable is schema
integration. Here the goal is to develop derivation rules between the types
defined in interoperating databases in order that they can share data. In
this scenario, the role of the maintainer will become more important as the
assumption of naming similarities will most likely be violated. Also, the
maintainer would be able to provide valuable guidance in distinguishing
between types whose data should be shared and types whose data should
remain encapsulated within one database. With the maintainer’s guidance,
derivation rules could be developed between schemas to allow the neces-
sary data sharing to occur.

Finally, the same issues arise in object serialization supported by Java.
Here an object is serialized based upon its type definition in the sender. If
the receiver uses a different version of the type, the receiver is unable to
unserialize the object, resulting in a runtime exception. This occurs both
when reading and writing objects in files and also when sending objects
over the network using RMI. The best solution here would be to set up a
transformation server so that if a version mismatch is encountered when
the object is received, the object and the version number desired by the

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 125

receiver could be sent to the transformation server which would transform
the object to the desired version. In this case, we would want the ability to
transform either to a newer version or an older version. Generating
transformers from new versions to old should be no more difficult than
from old to new and, perhaps, can be even more fully automated once the
derivation rules from old to new have been approved by the user.

13. CONCLUSIONS

During software maintenance, a maintainer is typically expected to in-
crease the functionality of software and improve its performance while
maintaining backward compatibility. Backward compatibility is required so
that existing users will not need to be retrained to use the new version of
the system, and so that existing persistent data can continue to be used.
With traditional approaches to managing persistent data, it is typically
impractical to make major changes to types for which there is persistent
data. This restriction in changing type definitions complicates the design
and implementation of the desired functionality and performance modifica-
tions.

Our research into persistent type evolution addresses the problem of
modifying types for which persistent data exists. Specifically, we have
defined a model of type changes that describes the complex type changes
we have observed in maintenance histories of real systems. We have
developed algorithms to recognize these type changes and to generate
derivation rules that can translate data from an old representation to the
new representation. By doing so, we offer the maintainer much greater
flexibility in the modification of persistent types than traditional database
systems do.

ACKNOWLEDGMENTS

Numerous people have been involved in the design and implementation of
Tess: Tareef Kawaf, David Maryakhin, Steve Battisti, Jai Shan, Adrian
Koren, Heather Conboy, and Yang Wang. I would like to thank Lori Clarke
for her support of this work. Additionally, I would like to thank Lori, Peri
Tarr, Lee Osterweil, Rick Lerner, and the anonymous referees for their
helpful comments on earlier versions of this paper.

REFERENCES

AwmapiO, R. M. AND CARDELLI, L. 1993. Subtyping recursive types. ACM Trans. Program.
Lang. Syst. 15, 4 (Sept.), 575-631.

ArNOLD, K. AND GOSLING, J. 1998. The Java Programming Language. 2nd ed. Addison
Wesley Java series. ACM Press/Addison-Wesley Publ. Co., New York, NY.

ATKINSON, M., BAILEY, P., CHISHOLM, K., COCKSHOTT, W., AND MORRISON, R. 1983. An approach
to persistent programming. Comput. J. 26, 4 (Nov. 1983), 141-146.

BANERJEE, J., Kim, W., Kim, H.-J., AND KorTH, H. F. 1987. Semantics and implementation of
schema evolution in object-oriented databases. In Proceedings of the ACM-SIGMOD
Conference on Management of Data (San Francisco, CA, May), ACM, New York, NY,
311-322.

BRATSBERG, S. 1992. Unified class evolution by object-oriented views. In Proceedings of the
11th International Conference on The Entity-Relationship Approach (Karlsruhe, Germany,

Oct. 7-23), 423-439. .
ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

126 . B. Staudt Lerner

BrecHE, P. 1996. Advanced primitives for changing schemas of object databases. In
Proceedings of the 1996 Conference on CAiSE (Heraklion, Crete, May).

BRrECHE, P., FERRANDINA, F., AND KUKLOK, M. 1995. Simulation of schema change using
views. In Proceedings of the 6th International Conference on Database and Expert Systems
Applications (London, UK, Sept. 1995).

Casars, E. 1990. Managing class evolution in object-oriented systems. In Object Manage-
ment, D. Tsichritzis, Ed. University of Geneva, Geneva, Switzerland, 133-195.

CLAMEN, S. M. 1994. Schema evolution and integration. Distrib. Parallel Databases 2, 1 (Jan.
1994), 101-126.

DowLiNG, G. AND HALL, P. 1980. Approximate string matching. ACM Comput. Surv. 12, 4,
381-402.

FABRY, R. 1976. How to design a system in which modules can be changed on the fly. In
Proceedings of the International Conference on Software Engineering (Los Alamitos,
CA), 470-476.

FERRANDINA, F. AND LAUTEMANN, S. -E. 1996. An integrated approach to schema evolution for
object databases. In Proceedings of the Third International Confernce on Object-Oriented
Information Systems (OOIS, London, UK, Dec.), 280-294.

FERRANDINA, F., MEYER, T., AND ZICARI, R. 1994. Implementing lazy database updates for an
object database system. In Proceedings of the 20th International Conference on Very Large
Data Bases (VLDB’94, Santiago, Chile, Sept.), VLDB Endowment, Berkeley, CA, 261-272.

FRIEDER, O. AND SEGAL, M. E. 1991. On dynamically updating a computer program: from
concept to prototype. J. Syst. Softw. 14, 2 (Feb. 1991), 111-128.

GamMA, E.; HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

GARLAN, D., KRUEGER, C. W., AND LERNER, B. S. 1994. TransformGen: automating the
maintenance of structure-oriented environments. ACM Trans. Program. Lang. Syst. 16, 3
(May 1994), 727-774.

HABERMANN, A N AND NoTKIN, D 1986. Gandalf: software development environments. [EEE
Trans. Softw. Eng. SE-12, 12 (Dec.1986), 1117-1127.

HABERMANN, N., GARLAN, D., AND NOTKIN, D. 1991. Generation of integrated task-specific
software environments. In CMU Computer Science: A 25th Anniversary Commemorative, R.
F. Rashid, Ed. ACM Press anthology series. ACM Press, New York, NY, 69-97.

JOHNSON, R. E. AND OPDYKE, W. F. 1993. Refactoring and aggregation. In Proceedings of the
International Symposium on Object Technologies for Advanced Software (ISOTAS ’93,
Nov.), Springer Lecture Notes in Computer Science Springer-Verlag, New York, NY,
264-278.

Kiv, H.-J. AND KorTH, H. F. 1988. Schema versions and DAG rearrangement views in
object-oriented databases. Tech. Rep. TR-88-05. University of Texas at Austin, Austin, TX.

Kukich, K. 1992. Technique for automatically correcting words in text. ACM Comput. Surv.
24, 4 (Dec. 1992), 377-439.

LAUTEMANN, S. -E. 1997. A propagation mechanism for populated schema versions. In
Proceedings of the International Conference on Data Engineering (Birmingham, UK,
Apr.), IEEE Computer Society, Washington, DC, 67-78.

LAUTEMANN, S. -E. 1997. Schema versions in object-oriented database systems. In Proceed-
ings of the 5th International Conference on Database Systems for Advanced Applications
(Melbourne, Australia, Apr.), R. Topor and K. Tanaka, Eds. World Scientific Publishing Co.,
Inc., River Edge, NJ.

LERNER, B. S. AND HABERMANN, A. N. 1990. Beyond schema evolution to database
reorganization. In Proceedings of the Joint ACM European Conference on Object-Oriented
Programming: Systems, Languages, and Applications (OOPSLA/ECOOP 90, Ottawa, Can-
ada, Oct. 21-25), A. Yonezawa, Ed. ACM Press, New York, NY, 67-76.

LIEBERHERR, K. J., BERGSTEIN, P., AND SILVA-LEPE, I. 1991. Abstraction of object-oriented data
models. In Entity-Relationship Approach: The Core of Conceptual Modelling, H. Kangassalo,
Ed. Elsevier Sci. Pub. B. V., Amsterdam, The Netherlands, 89-102.

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

A Model for Compound Type Changes . 127

MoNK, S. AND SOMMERVILLE, I. 1992. A model for versioning classes in object-oriented
databases. In Proceedings of the Tenth British National Conference on Databases (Aber-
deen, Scotland, 1992).

MOORMANN ZAREMSKI, A. AND WING, J. M. 1995. Signature matching: A tool for using software
libraries. ACM Trans. Softw. Eng. Methodol. 4, 2 (Apr. 1995), 146-170.

MOORMANN ZAREMSKI, A. M. AND WING, J. M. 1995. Specification matching of software
components. In Proceedings of the 17th International Conference on Software Engineering
(ICSE-17, Seattle, WA, Apr. 23-30), D. Perry, Ed. ACM Press, New York, NY.

NAVATHE, S. B. 1980. Schema analysis for database restructuring. ACM Trans. Database
Syst. 5, 2 (June), 157-184.

ODBERG, E. 1994. MultiPerspectives: The classification dimension of schema modification
management for object-oriented databases. In Proceedings of the 1994 Conference on
TOOLS-USA (TOOLS-USA, Santa Barbara, CA, Aug.),

OpPDYKE, W. F. 1991. Refactoring: A program restructuring aid in designing object-oriented
application frameworks. Ph.D. Dissertation. University of Illinois at Urbana-Champaign,
Champaign, IL.

OpPDYKE, W. F. AND JOHNSON, R. E. 1993. Creating abstract superclasses by refactoring. In
Proceedings of the 1993 ACM Conference on Computer Science (CSC ’93, Indianapolis, IN,
Feb. 16-18), S. C. Kwasny and J. F. Buck, Eds. ACM Press, New York, NY, 66-73.

PENNEY, D. J. AND STEIN, J. 1987. Class modification in the GemStone object-oriented
DBMS. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA ’87, Orlando, FL, Oct. 4-8), N. Meyrowitz, Ed. ACM
Press, New York, NY, 111-117.

PATERSON, J. 1980. Computer programs for detecting and correcting spelling
errors. Commun. ACM 23, 676—687.

RA, Y. G. AND RUNDENSTEINER, E. A. 1994. A transparent object-oriented schema change
approach using view evolution. Tech. Rep.. University of Michigan, Ann Arbor, MI.

RICHARDSON, D. J. 1994. TAOS: Testing with analysis and oracle support. In Proceedings of
the 1994 International Symposium on Software Testing and Analysis (ISSTA ’94, Seattle,
WA, Aug. 17-19), T. Ostrand, Ed. ACM Press, New York, NY, 138-153.

SHLAER, S. AND MELLOR, S. J. 1992. Object Lifecycles:: Modeling the World in States. Yourdon
Press Computing Series. Yourdon Press, Upper Saddle River, NJ.

SHNEIDERMAN, B. AND THOMAS, G. 1982. An architecture for automatic relational database
system conversion. ACM Trans. Database Syst. 7, 2 (June), 235-257.

SHu, N. C., HouseL, B. C., anp Lum, V. Y. 1975. CONVERT: A high level translation
definition language for data conversion. Commun. ACM 18, 10, 557-567.

SJOBERG, D. I. K. 1993. Thesaurus-based methodologies and tools for maintaining persistent
application systems. Ph.D. Dissertation. University of Glasgow, Glasgow, Scotland, UK.
SKARRA, A. H. AND ZDONIK, S. B. 1986. The management of changing types in an object-
oriented database. In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPLSA ’86, Portland, OR, Sept. 29-Oct. 2), N.

Meyrowitz, Ed. ACM Press, New York, NY, 483—-495.

TARR, P. AND CLARKE, L. A. 1993. Pleiades: an object management system for software
engineering environments. SIGSOFT Softw. Eng. Notes 18, 5 (Dec. 1993), 56-70.

TRrRESCH, M. AND ScHOLL, M. H. 1992. Meta object management and its application to database
evolution. In Proceedings of the 11th International Conference on The Entity-Relationship
Approach (Karlsruhe, Germany, Oct. 7-23), 299-321.

WILEDEN, dJ. C., WOLF, A. L., FISHER, C. D., AND TARR, P. L. 1988. Pgraphite: an experiment in
persistent typed object management. SIGPLAN Not. 24, 2 (Feb.), 130-142.

Zuu, J. AND MAIER, D. 1989. Computational objects in object-oriented data models. In
Proceedings of the Second International Workshop on Database Programming Languages
(Gleneden Beach, OR, June 4-8), R. Hull, R. Morrison, and D. Stemple, Eds. Morgan
Kaufmann Publishers Inc., San Francisco, CA, 139-160.

Received: June 1996; revised: April 1999; accepted: November 1999

ACM Transactions on Database Systems, Vol. 25, No. 1, March 2000.

