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Abstract. Due to the proliferation of database applications, the integration of ex- 
isting databases into a distributed or federated system is one of the major chal- 
lenges in responding to enterprises' information requirements. Some proposed in- 
tegration techniques aim at providing database administrators (DBAs) with a view 
definition language they can use to build the desired integrated schema. These 
techniques leave to the DBA the responsibility of appropriately restructuring 
schema elements from existing local schemas and of solving inter-schema conflicts. 
This paper investigates the assertion-based approach, in which the DB~s  action is 
limited to pointing out corresponding elements in the schemas and to defining the 
nature of the correspondence in between. This methodology is capable of: en- 
suring better integration by taking into account additional semantic information 
(assertions about links); automatically solving structural conflicts; building the in- 
tegrated schema without requiring conforming of initial schemas; applying inte- 
gration rules to a variety of data models; and performing view as well as database 
integration. This paper presents the basic ideas underlying our approach and fo- 
cuses on resolution of structural conflicts. 

Keyworfls. Database design and integration, distributed databases, federated 
databases, heterogeneous databases, schema integration, conceptual modeling. 

1. Introduction 

Interoperability is becoming one of the most critical issues for medium to large size 

enterprises. Due to the complexity and worldwide span of economy today, enter- 

prise management often needs access to several local as well as remote information 

resources. Moreover, "even a single enterprise may have heterogeneous information 
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bases for reasons of history or departmental autonomy"(Kaul, 1990). The user com- 

munity is therefore experiencing the need for interconnection of existing, possibly het- 
erogeneous, databases, to provide more data to their applications, as well as the need 

for enforcing a better consistency among databases containing related information 

(for instance, a manufacturing database including data on employee's activities and a 

personnel database). 

A variety of approaches to interoperability have been proposed, aiming at differ- 
ent levels of integration (Sheth, 1990). The loosest degree of integration characterizes 

the multidatabase 1 approach (Litwin, 1984, 1990), in which users can query different 

databases with a single request, but have to specify where data are located. Federated 

approaches (Landers, 1982; Larson, 1989) support location transparency (users may 

ignore the actual location of data and nevertheless query distributed data). The major 
goal is site autonomy: each site controls the evolution of its local database (updates, 

restructuring) as well as the usage of its data from other sites (usually through the defi- 

nition of export schemas). In such a system, one or more global views are built on each 
site, each one extending the local database with selected parts of external databases. 

Conversely, in integrated approaches, local databases are integrated into a sin- 

gle distributed database (DDB). A distributed DBMS (DDBMS) is built to manage 
the DDB. Most of DDBMS are monolingual: they support a single data manipula- 

tion language, which has to be used to query and update the DDB (Ferrier, 1982; 
Stocker, 1984) Any existing program on a local database has to be rewritten using the 

distributed DDL,fDML. To avoid this burden, some authors advocated that integrated 

systems should be multilingual, i.e., should offer at each participating site the ability 
to access the DDB through the particular DDL and DML in use at that site (Spac- 
capietra, 1982; Demurjian, 1988; Kim, 1989). Besides user friendliness, this allows 

existing programs to continue operating after the DDB has been installed. Of course, 
the DDBMS has to be complemented with a set of DDL/DML translators. 

Except in the multidatabase case, a mechanism is needed to derive a new schema 

(whether a global view or the DDB schema) from existing specifications. This pro- 

cess is called database integration. It is similar to view integra~on, a process in classical 

database design deriving an integrated schema from a set of user views. Because of 

similarities, a generic term, schema integration (Batini, 1986), has been used to indis- 
tinctly refer to both processes. However, there are differences which might preclude 

from using a view integration technique for database integration, and vice versa. These 

differences may be briefly sketched as follows. 

1. As there is no standard taxonomy, terms like multidatabase,  federated, o r  integrated receive different 

definitions depending on the author.  
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View integration methodologies cope with a situation in which views: 

• are usually homogeneous, i.e., based on the same data model; 

• have no associated recorded extension (it still is in the real world); 

• have no coded program using them; 

• are not necessarily implementable per se; they might therefore be expressed 

using any desirable conceptual model, regardless of any future transformation 
to make them acceptable by some DBMS. 

On the contrary, in database integration, the initial (local) schemas: 

• may be based on different data models; 

• have an associated extension, i.e., they describe data which are actually stored 

in a database; 

• support a number of application programs (whether directly or through some 
view); 

• are implemented in an existing DBMS. 

Current database integration methodologies do not really cope with heterogeneity. 

They assume that, before integration starts, all existing schemas are translated into 

equivalent schemas based on a unique data model. The choice of the unique data 
model varies, of course, from one proposal to the other. As it deals with existing data- 

bases, database integration may be limited to support mainly modeling concepts from 
current DBMSs. However, in order to ensure proper understanding of the semantics 

of the input schemas, additional information has to be provided by the DBA (Data 

Base Administrator) before integration is performed (Biskup, 1986; Templeton, 1987; 
Siegel, 1989). Finally, existence of extensions and programs is the most important 

peculiarity of database integration versus view integration. Because of this, and its 
economical impact, database integration methodologies should carefully avoid mod- 

ification of existing schemas (more precisely, avoid modification of existing views on 
these schemas). This fundamental requirement makes that most of view integration 

methodologies do not apply here, as they use schema modification to solve conflicts 

among initial specifications. 
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Figure 1. The generic framework for schema integration 

input schemas - - ~ [  

inter-schema 
correspondence 
assertions 
(directly stated by 
the DBA) 

Investigator 

I inter-schema correspondence 
assertions (discovered by the 
investigator, confirmed by the DBA) 

~[ Integrator ~ integrated scbema 

mappings between 
the input schemas 
and the integrated 
schema 

integration rules 

Generally speaking, schema integration is a two phases process (see Figure 1). 
First, commonalities and discrepancies among input schemas have to be determined. 
We call this the investigation phase. In traditional DB design methodology, this phase 
is manual. The DBA examines input schemas and defines the applicable set of inter- 
schema correspondences. Alternatively, automated reasoning may be used to discover 
correspondences. The basic idea is to evaluate some degree of similarity between two 
descriptions, mainly based on matching of names, structures and constraints (Navathe, 
1982; Batini, 1984; Sheth, 1988; Bouzeghoub, 1990; Hayne, 1990; Siegel, 1991). The 
extent to which these CASE tools are effective depends on the amount of available 
knowledge about the semantics of the input schemas. The investigator's goal is to 
identify plausible correspondences and prompt the DBA for confirmation or denial of 
the findings. 

Second, integration is performed. The integrated schema is built semi-automat- 
ically, according to the inter-schema correspondences and available integration rules. 
Interaction with the DBA is required to solve conflicts among input schemas each time 
the integrator does not have the knowledge to do it. Conflicts arise whenever corre- 
sponding concepts are modeled with different representations. The extent to which 
conflicts are solved automatically is a measure of the power the integration method- 
ology. 
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This paper is a contribution towards more powerful methodologies for the inte- 
gration phase. No hypothesis is made about how the investigation phase is performed. 
The methodology simply assumes, as an initial point, that the correspondences are 

defined. The distinguishing features of our proposal are: 

• it extends the scope of automatic integration by: 1) solving new cases of con- 
flict, such as integration of object types and attributes, 2) integrating not only 

elements (object types, attributes) but also links between elements. This is 
achieved by defining appropriate integration rules; 

• as a consequence of the former, it performs integration without requiring initial 

schemas to be modified. This also relies on adequate mapping functionalities; 

• it supports heterogeneity of input schemas through a data-model-independent 

description of inter-schema correspondences and generic integration rules. For 

instance, a relational schema may be directly compared with an object-oriented 
schema. This requires the DBA to master various modeling techniques, a rea- 
sonable requirement compared to the advantage of avoiding systematic homog- 
enization of the input schemas; 

• it may be easily tailored to either view or database integration. 

The paper is organized as follows. The next section briefly reviews past work on data- 

base integration. Section 3 defines a taxonomy of conflicts between schemas. As we 
focus on structural conflicts, this section includes examples of such conflicts in cur- 
rent data modeling techniques. Section 4 introduces our approach and sets the formal 
framework for integration. Integration rules are discussed and illustrated on various 
data models through Sections 5 to 9. Finally, the conclusion points out ongoing or 
future work we plan on this topic. 

2. Review of Past Work 

There has been a large amount of work in the integration area: a detailed survey by 
Batini et al. (1986) discussed twelve methodologies for view or database integration 
(or both), and new contributions continuously appear in the literature (deSouza, 1986; 
Deen, 1987; Civelek, 1988; Fankhauser, 1988; Sheth, 1988, 1989; DeMichiel, 1989; 
Diet, 1989; Jardine, 1989; Larson, 1989; Siegel, 1989, 1991; Bouzeghoub, 1990; Hayne, 
1990; Kaul, 1990; Kent, 1991) and many more in (Kambayashi, 1991). 

An analysis of current methodologies shows a prevalent dichotomy of approach. 
Most of view integration papers attempt to establish a semi-automated technique for 
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deriving an integrated schema from a set of integration assertions relating correspond- 

ing objects in the views. We qualify these approaches as semi-automatic. They aim at 

building an integrator, as discussed in section 1. 

On the contrary, database integration methodologies aim at providing a tool al- 

lowing the DBA to build, by himself, the integrated schema, as a view over the initial 

schemas. A restructuring manipulation language is defined, whose functionalities al- 

low selection and restructuring of schema elements from existing local schemas. We 

qualify these approaches as manual. As the integrated schema is implemented as a 

view over the initial schemas, manual approaches do not apply to view integration. 

2.1 Manual integration methodologies. A manual database integration methodol- 
ogy was first developed by Motro and Buneman (1981). The integrated schema is built 

as a view, called "superview," over existing schemas of local databases. Both the input 

schemas and the superview are described using a functional model augmented with 

generalization. A superview results from a DBA-driven schema editing process. This 

process defines a sequence of operations (a program), each one performing a modili- 

cation or a restructuring transformation to be applied to initial schemas. Basically, the 

restructuring operators allow to build or modify an object hierarchy (introducing ei- 

ther a supertype or a subtype common to two existing types, merging a subtype and its 
supertype), as well as to modify the attribute structure (introducing new aggregations 

or removing existing ones). 

A later paper (Motto, 1987) shows how "a mapping of the superview into the 
individual databases is derived from the editing process and stored with the superview 

as a virtual database." This mapping "is used to decompose each query into a set 

of queries against the individual databases, and recompose the answers to form an 
answer to the original query." Finally, Motro suggests that heterogeneity be dealt 

with by translating all existing schemas into his functional model, as a pre-integration 

step. 

The MULTIBASE approach (Landers, 1982; Hwang, 1984) also features all usual 

integration steps: homogenization of local schemas, building of the integrated schema, 

automatic derivation of mappings, use of these mappings for automatic query modi- 
fication. MULTIBASE also assumes a functional model, making extensive usage of 
generalizations to build the integrated schema. A QUEL-Iike language is defined for 

superview definition and as user query language. The authors advocate that this choice 
results in a more powerful and more versatile integration methodology. 

A similar approach may be found in the PRECI* distributed database system 

(Deen, 1987). Its authors are concerned with integration of relational databases. An 

algebraic restructuring language is proposed, resulting in mappings expressed as alge- 
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braic transformations. In the authors' opinion, this greatly facilitates query modifica- 
tion. 

Integration of relational databases also is the goal of the MERMAID system 

(Templeton, 1987). Their approach is still mainly manual, although the DBA is some- 

how assisted by the system. In a first step, the DBA has to extend existing schemas 

with the definition of all underlying semantic domains. This allows the system to de- 
termine which relations share some semantic domain: these relations are presented 

to the DBA. Confronted with such a set of relations, the DBA chooses which relations 

and which attributes have to be included into the superview. 

More general and more powerful than MERMAID semantic domains, abstract 

data types have been proposed (Siegel, 1989) to add semantics to a relational schema. 
The authors also discuss how these abstract data types are used for a domain matching 

process which includes both static and behavioral aspects of data. More about domain 

matching may be found in (DeMichiel, 1989; Larson, 1989; Sheth, 1989). 

Finally, the recent converging of the programming languages and databases 
paradigms has generated several efforts to develop superview definition languages us- 
ing an object-oriented approach (Fankhauser, 1988; Kaul, 1990; Bertino, 1991; 

Czejdo, 1991). 

2.2 Semi-automatic integration methodologies. A second stream of research has 
investigated the feasibility of automating database integration. In fact, these method- 

ologies are proposed for both view and database integration. They use assertions to 
state correspondences between objects in different schemas. To each type of assertion 

corresponds an integration rule, so that the system knows what to do to build the in- 

tegrated schema from the initial schemas. Interaction with the DBA is invoked only 

if unresolvable conflicts are detected (then the DBA instructs the system on how to 

solve the conflict). 

This basic framework may be found, for instance, in (Mannino, 1984). The au- 

thors introduce matching techniques for both object types and attributes. Object types 

integration builds various generalization hierarchies based on which set relationship 
(equality, inclusion, intersection, disjointedness) holds between the extensions of the 

related object types. Attribute integration is mainly based on semantic equivalences 
defined by the DBA. An algorithm to check the consistency and completeness of at- 

tribute assertions is also provided. 

Concepts for matching of objects, relationships and attributes have been refined 
and formally defined in a series of papers by Navathe, Elmasri and Larson, who may 

be regarded as the major contributors to this field (with papers from Navathe, 1982 to 
Larson, 1989, based on the ECR entity relationship model defined in Elmasri, 1985). 
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Implementation of integration tools, based on their methodology, has been reported 

in (Hayne, 1990) and (Sheth, 1988). Larson (1989) presents a detailed analysis of 

possible attribute equivalences. These are the basis on which object and relationships 

equivalences may be stated. Attribute integration strategies are discussed, as well as 
their application to both object and relationship integration. Ultimately, an attempt 

is made to integrate an object type with a relationship type, showing a first concern 
to solve structural differences. Additional criteria for attribute integration have later 

been proposed (Sheth, 1989). 

2.3 A comparison of the approaches. To illustrate the difference between the two 

approaches, let us consider an integration example proposed in (Motto, 1987). The 

schemas to be integrated are as follows (an arrow represents an attribute function, a 

double-headed arrow represents an is-a link): 

Faculty Student Thesis 

I ~PersOn~ 1 / ~  / %  
Rank Pin Name GPA Phd-advisor Phd-student Title 

The integrated schema is: 
Thesis 

Phd-advisor Phd-student Title 

Faculty Student 

P e r s o n  
/ \  

Rank Pin Name GPA 

Motro's approach needs a 14-operations program (using 6 operators) to produce the 

final result. An assertion-based approach, as proposed in this paper, only needs two 
statements, one to assert that Phd advisors are faculty members, the second one to 

assert that Phd students are students. 

The manual approach leaves to the user the responsibility (and the burden!) of 
solving structural conflicts. This, we believe, is fairly unsatisfactory. First, it means 

that we are only able to provide users with a toolkit (the restructuring manipulation 

language), up to them to use it properly. Second, although most of the conflicts may 

be similar in nature, users will have to "program" again and again the appropriate 
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restructuring (no powerful macros are available at the moment). Examples from the 

literature show that these "programs" may be fairly complex. Third, the proposed 

language may be inappropriate if a different data model is adopted (portability of the 

integration technique has not been investigated). 

For these reasons we give our preference to the semi-automatic approach. Its 

current state of the art shows that only some types of conflicts have been tackled. The 

taxonomy in the next section identifies which conflicts remain to be supported. 

3. Conflicts Between Schemas 

Conflicting representations are a major challenge for integration methodologies. Two 

designers modeling the same universe of discourse, or two overlapping universes of 
discourse, will probably describe the common real-world objects in different ways. De- 

signers might have different perceptions, different information needs or use different 

tools to express their perception of the universe of discourse. At the moment, there is 

no standard classification of the possible types of conflicts between two schemas, and 

the terminology is somewhat confusing. The following subsection defines the terms 

we use to discuss conflicts. 

3.1 A Taxonomy of Conflicts. We emphasize four reasons leading to the design of 

different representations for common real-world objects. 

1. The two designers do not perceive exactly the same set of real world objects, 

but instead they visualize overlapping sets (included or intersecting sets). For 

instance, a "Student" object class may appear in one schema, while a more 

restrictive "CS-Student" object class (grouping students majoring in computer 

science) is in another schema. 

This is the first kind of conflicts, called semantic conflicts. The generalization 
concept has been extensively used as a solution to semantic conflicts (Mannino, 

1984) (except in works based on the relational model). For instance, the "CS- 

Student" class will be integrated as a subclass of the "Student" class. 

2. When describing related sets of real-world objects, two designers do not per- 
ceive exactly the same set of properties. For instance, let us assume two rela- 

tional schemas, S1 and $2, describing the same set of expensive car models: 

I SI: Expensive_car (modelname, manufacturer, maximumspeed, price) 

• $2: Car_model (name, horsepower, fuelconsumption, price) 
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Designers of S1 and $2 recorded different items, because of their different in- 

terest in the many available pieces of information on car models in the real 
world (one designer may have to keep data for advertisements in a fine arts 

journal, while the other is concerned with advertisements in a technical jour- 

nal, for instance). 

We call this second kind of conflicts, descriptive conflicts. Descriptive conflicts 

include naming conflicts due to homonyms and synonyms (Navathe, 1982; Ba- 
tini, 1984), attribute domain, scale, constraints, operations, et cetera (Larson, 

1989). 

3. The designers use different data models, for example a relational one and an 

object-oriented one. This is called a heterogeneity conflicL 

4. Lastly, even if they use the same data model, they can choose different con- 
structs to represent commpn real-world objects. For instance, in object- 

oriented models when a designer describes a component of an object type O, 

(s)he has to choose between creating a new object type or adding an attribute 

to O. We call this kind of conflict a structural conflicL 

The extent to which structural conflicts may arise is related to the semantic rel- 

ativism of the data model in use, i.e., to its ability to support different, although 
equivalent, representations of the same reality. Semantic and object-oriented 

models have more semantic relativism than the relational model. Therefore, 

the ability to solve structural conflicts is likely to be of ever-increasing impor- 

tance for integration methodologies. 

These conflicts are orthogonal and can be cumulative. Discrepancies between schemas 
usually show a mix of conflict types. Different data models, or different sets of real- 

world objects generate different structures. As an example, consider the following 

entity relationship diagrams 2 which represent related universes of discourse: 

S3 [ U S c u s t o m e r ~ . - .  ~ Product  I 
I l I 

name C# date quantity P# 

Order ~ < ~  Product ] $4 ] C u s t ° m e r ~ ' ~ - ~ ' ~  I I  I ~ I 
name O# Odate qty p# 

2. A single plain line denotes a 1:1 cardinality of the entity type in the relationship type. Combination of a 

plain and a dotted line denotes a I:N cardinality. 
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Both represent some information about customers who order products from an en- 
terprise. $4 includes all customers, while $3 only considers a subset of the customers 
(semantic conflict). Customer's attributes differ between $3 and $4 (descriptive con- 

flict). The information about an order is given in $3 as a direct relationship between 

a customer and a product (s)he ordered. $4 favored a more detailed representation 

based on order's materialization as an Order entity type (structural conflict). 

The first two kinds of conflicts have been dealt with in earlier research. This pa- 

per concentrates on the last two kinds of conflicts. For heterogeneityl we simply allow 

heterogeneous schemas to be directly related to each other, as in the homogeneous 

cease. A data-model-independent formalism is used to express inter-schema corre- 

spondences. This formalism and integration rules are defined through the use of a 
generic data model. Additional rules define how integration is tailored to the spe- 

cific data models underlying input schemas. Such a customization is described in this 

paper. 
Structural conflicts, although well known in literature (Elmasri, 1979), have re- 

ceived little attention. No automated strategy for their resolution has been proposed. 

Existing methodologies rely on the DBA (.purposely in Navathe, 1986) for conforming 

of schemas, a process in which views are modified by forcing related concepts to be 
represented by the same structural construct. Input modification is not suitable for 

database integration, where existing schemas continue to be in use after integration. 

3.2 Examples of Structural Conflicts. Our main contribution, in this paper, is de- 
voted to the automatic resolution of structural conflicts. This section gives some exam- 
pies which show that such structural conflicts may arise irrespective of the data model 
which is used for data description. To emphasize structural conflicts, the examples 
show only structural conflicts. They all represent the same universe of discourse: per- 
sons, cars and ownerships. The first ones, $5 and $6, illustrate conflicting relational 

databases. 

• S5: Car (registration#, color, horsepower, owner ID) 

Person (p/n, name, sex, birthdate) 

Inclusion dependency: Person.pin _D Car.owner ID 

• $6: Car (registration#, horsepower, color) 

Carownership (registration#, pin) 

Person (p/n, name, sex, birthdate) 
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I n c l u s i o n  d e p e n d e n c i e s :  

P e r s o n . p i n  _~ C a r o w n e r s h i p . p i n  

C a r . r e g i s t r a t i o n #  D C a r o w n e r s h i p . r e g i s t r a t i o n #  

$5  uses  o n e  r e l a t i o n  to  h o l d  i n f o r m a t i o n  o n  ca r s  a n d  t h e i r  o w n e r s h i p s ,  w h i l e  $6  has  

sp l i t  th i s  i n f o r m a t i o n  o v e r  two  r e l a t i o n s  c o n s t r a i n e d  by  a n  i n c l u s i o n  d e p e n d e n c y .  

L e t  us c o n s i d e r  a n  o b j e c t - o r i e n t e d  m o d e l .  C a r  o w n e r s h i p  m a y  n o w  b e  r e p r e s e n t e d  

in  six d i f f e r e n t  ways ,  $7  to  S12, w h i c h  c o r r e s p o n d  to  six d i f f e r e n t  ways  o f  d e f i n i n g  a 

r e l a t i o n s h i p  in  a n  o b j e c t - o r i e n t e d  m o d e l .  

$ 7 :  C l a s s  C a r  t u p l e  < 

r e g i s t r a t i o n # :  • • • 

c o l o r : .  • • 

h o r s e p o w e r :  . . .  

o w n e r :  t u p l e  < p in :  • • . ,  n a m e :  • • . ,  sex:  • • • ,  b i r t h d a t e :  • • • > 

> 

$ 8 :  C l a s s  P e r s o n  t u p l e  < 

pin:..- 
n a m e :  • • • 

sex: • • • 

b i r t h d a t e :  • • • 

ca rs :  s e t o f  t u p l e  < r e g i s t r a t i o n # :  • • . ,  co lor :  • • . ,  h o r s e p o w e r :  • • • > 
> 

$ 9 :  C l a s s  P e r s o n  t u p l e  < C l a s s  C a r  t u p l e  < 

p i n :  • . .  r e g i s t r a t i o n # :  . . .  

n a m e :  • • • co lo r :  • • • 

sex:  • • • h o r s e p o w e r :  • • • 

b i r t h d a t e :  • • • > 

> 

C l a s s  C a r o w n e r s h i p  t u p l e  < 

car:  C a r  

o w n e r :  P e r s o n  
> 

SIO: Class  P e r s o n  t u p l e  < Class  C a r  t u p l e  < 

p i n :  . . .  r e g i s t r a t i o n # :  • . .  

n a m e :  • • • co lor :  • • • 

sex:  • • • h o r s e p o w e r :  • • • 

b i r t h d a t e :  • .  • > 

cars :  s e t o f  C a r  
> 
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S l l :  C l a s s  P e r s o n  t u p l e  < C las s  Ca r  t u p l e  < 

p i n :  • • • r e g i s t r a t i o n # :  • • • 

n a m e :  • • • color :  • • • 

sex: • • • h o r s ep o wer :  • • • 

b i r t hda t e :  . . .  owner :  P e r s o n  
> > 

S12: C las s  P e r s o n  t u p l e  < Class Car  t u p l e  < 
p i n :  • . .  r e g i s t r a t i o n # :  . - -  

n a m e :  • • • color :  • • • 

sex: • • • h o r s e p o wer :  • • • 

b i r t h d a t e :  - . .  owner :  P e r s o n  

cars:  se tof  C a r  > 
> 

As  in  the  r e l a t i o n a l  case,  we a re  c o n f r o n t e d  wi th  d i f fe ren t  s t ruc tu re s  express ing  equ iv-  

a l e n t  schemas .  T h e s e  six poss ibi l i t ies  a re  d u e  to the  o b j e c t - o r i e n t e d  flexibility in  im-  

p l e m e n t i n g  l inks  t h r o u g h  re fe rences .  T h e y  r e d u c e  to t h r ee  if we c o n s i d e r  a s e m a n t i c  

m o d e l i n g  a p p r o a c h ,  as, for  ins tance ,  a n  e x t e n d e d  en t i ty  r e l a t i o n s h i p  ( E R )  mode l .  T h e  

fo l lowing  d i a g r a m s  i l lus t ra te  t h e  t h r e e  e q u i v a l e n t  v iewpoin ts .  A n  e x t e n d e d  E R  mode l ,  

s u p p o r t i n g  c o m p l e x  objects ,  is a s s u m e d  (Paren t ,  1985, 1992). L ine s  a re  d r a w n  accord -  

ing  to m i n i m u m  a n d  m a x i m u m  card ina l i t i e s  o f  the  l ink:  a s ing le  d o t t e d  l ine  s t ands  for  

0:1, a s ing le  p l a in  l ine  s tands  for  1:1, a d o u b l e  d o t t e d  l ine  s t ands  for 0:n,  a n d  a d o u b l e  

l ine ,  o n e  p la in ,  o n e  do t t ed ,  s t a n d s  for  l : n .  

S13: 

Car I ..... Person I 
I I I / \ 

registration# colour horsepower ~ name sex birthdate 

$14:  

Car I !/ / \ ,, 
registration# colour horsepower owner 

- / / \ \  
pin name sex birthdate 
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S15: 

Person ] 

/ /  I \ .:::, 
name sex birthdate cars 

registration# eolour horsepower 

In these car ownership examples, the conflicts are due to different representations of 

the real-world associations (the car ownership links) between persons and cars. In- 

deed, an association may be represented: 

as a nesting of the linked objects ($7, $8, S14, S15). This is not possible in 

the relational approach, due to normalization rules (but is possible in non-first 

normal form approaches (Schek, 1986); 

ii as a reference from one of the linked objects to the other one ($5, S10, Sl l ,  

S12) for data models supporting this kind of reference concept; 

iii as an additional object-bearing references on the linked objects ($6, $9, S13). 

The relational model supports representations ii) and iii); ER models support i) and 

iii); object-oriented models support i), ii) and lii). 

4. A Generic Description of Inter-Schema Correspondences 

Basically, our approach to schema integration relies on the idea of moving knowledge 

from outside the integrator into the integrator. Current integrators do not know how 

to map schemas to each other if structural conflicts are involved, hence, they call onto 

the DBA for conforming of input schemas. Putting knowledge about schema transfor- 

mations into the integrator allows it to take care of schema conforming and to solve 

structural conflicts. Similarly, current integrators have no knowledge of different data 

models. Hence, the need to transform all input schemas into the integrator's data 
model before integration can start. Putting knowledge about data models into the in- 

tegrator allows it to manage correspondences between constructs from different data 
models. 

In the approach that we propose, the core of the integration methodology (de- 

scription of commonalities between schemas, integration rules) is defined in terms of 
a few generic concepts, abstracting from any specific data model. In addition to this 
abstract framework, our integrator knows how to tailor the framework to cope with the 
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Figure 2. Framework for proposed integration methodology 

generic integration tailoring rules 
rules 

inter-schema ~ i 
correspondence Ib] integrated schema 

asseruons / ~ (data model Z) 
(all types of conflicts) / 

heterogeneous / | Integrator ~ mappingSinput schemasbetweenand 
input schemas ~ the integrated schema 

(data models X, Y ) t  

constraints inherent to specific data models. In other words, it knows how to deal with 

a statement about commonalities depending on the particular data model of the input 
schemas. It also knows how to explicit the resulting integrated schema in different 

data models. Moreover, integration rules have been defined to deal with correspon- 

dences between concepts with different structural behavior. This supports resolution 

of structural conflicts. The framework specific to our methodology is illustrated in 

Figure 2. 
Our approach starts with the hypothesis that commonalities between input sche- 

mas have been identified and checked with the DBA and the users. These commonali- 
ties are defined using inter-schema correspondence assertions. An inter-schema corre- 

spondence assertion is a declarative statement asserting that something in one schema 

is somehow related to something in another schema. Assertions precisely identify, if 

applicable, which semantic, descriptive, and structural conflicts exist within the corre- 

spondence. Hereinafter the term assertion is used to denote an inter-schema corre- 

spondence assertion. 
The integrator receives as input two (or more) schemas and the assertions in 

between 3. The set of assertions is scanned and ordered for processing. Each assertion 

is then considered and the appropriate integration rule is applied, taking into account 
the data models of the input schemas. Integration rules define which constructs have 
to be built into the integrated schema and how these constructs are mapped to the 

corresponding constructs in the input schemas. 

3. In this paper we do not discuss the problem of checking the consistency of the set of assertions 
relating two schemas. 
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Generic data modeling concepts we use are defined in Section 4.1. Section 4.2. 

defines their real-world counterpart, a concept needed to define the semantics of as- 

sertions. Assertions are then discussed in section 4.3. 

4.1 The Generic Data Model (GDM). GDM is a set of modeling concepts which 

allows us to reason about integration of conflicting schemas. It is a tool to define the 

generic assertions and integration rules. The GDM discussed in this paper is a basic 

one, showing the major concepts: objects, value attributes, and reference attributes 

(defined below). Completeness of the approach would require additional generic con- 

cepts (generalization, for instance), but this is beyond the scope of this paper. GDM 

is able to model complex objects, i.e., objects with a complex data structure, possibly 

including other objects as their components. This simplifies the expression of  asser- 

tions. It also bears the potential for structural conflicts we are interested in, as what 

is one component in one schema may be considered as a self-standing object in an- 

other schema. GDM offers three modeling concepts: objects, value attributes, and 

reference attributes. 4 

A GDM object is an object identity complemented with a data structure consisting 

of a tuple of attributes. For each attribute its minimum and maximum cardinalities 

define the number of values it may bear (at least, at most): zero, one or more. An 

attribute is either atomic or complex. A complex attribute is a tuple of attributes. 

Atomic attributes are either value attributes (the associated domain is a value domain, 

like integer, characters or date) or reference attributes (the associated domain is an 

object type). Reference attributes are regarded as bidirectional: adding to an object 

type O1 a reference attribute pointing at object type 0 2  is equivalent to adding to 

0 2  a reference attribute pointing at O1. In the sequel, we use the term element to 

indistinctly refer to objects and attributes. 

GDM is structurally object oriented, but it is not identical to the object-oriented 

model used in examples $7 to S12. The main difference is that GDM abstracts from ac- 

cess paths: GDM reference attributes are non-directed binary relationships between 

two objects. On the contrary, in most object-oriented models, as in the one of the ex- 

amples, links between a compound object (for instance Car in $11) and its component 

objects (Person in S l l )  are one way links from the compound object to its compo- 

nents. Another, minor, difference between GDM and object-oriented models is that, 

in GDM, cardinalities of attrz~utes are precisely defined, in order to be used during 

integration of links. 

4. This is similar to the notions of object, own attribute, and ref attribute (Carey, 1988). 
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Besides modeling concepts, we also identify an additional concept: the link. We 

use the term link to denote any direct connection between two elements: attribute 

link between an element and one of its value or complex attributes, reference link 

between an element and an object through a reference attribute. We do not discuss 

generalization links in this paper. The two kinds of links that we consider are defined 

below. 

Definition DI: Link 

let X and Y be object types, value or complex attributes, then X - - Y  (also noted Y - - X )  

is a link if: 

• either Y is a value or complex attribute of X; then X - - Y  is called an attribute 
lin~ 

r 
• or  X holds a reference attribute, named r, pointed at object type Y; then X Y 

is called a reference link. If there is no ambiguity (only one reference exists 
r 

between X and Y) X Y may be simply denoted X--Y.  [] 

Cardinalities of links are used in the integration process. Minimum/maximum 

cardinalities of X in the X - - Y  link are the minimum/maximum number o f y E  Y which 

may be reached from a x E  X through the X - - Y  link. Conversely for cardinalities of  

Y in the X - - Y  link. X - - Y  cardinalities are hereinafter denoted as: min(X):max(X), 

min(Y):max(Y). These cardinalities are as follows: 

min(X):max(X) = 

minimum: maximum cardinality of  the Y attribute, if X - - Y  
r 

of the r attribute, if X Y 

min(Y):max(Y) = l:n, i f X - - Y  (n = 1 i fY  is an identifier of  X) 
r 

O:n, if X - - Y  

Examples: 
ownerID 

$5: Car Person is a reference link, with cardinalities O:l,O:n. 

$6: Car--color  and sex--Person are attribute links. 

Car---color has cardinalities O:l,l:n. Sex--Person has cardinalities l:n,O:l. 
. .  p i n  

Carownership registration# Car, t~a rownersmp- - re r son  are reference links. 

car owner 
S9: Carownersh ip- -Car ,  Carownership Person are reference links. 

S13: Car--Carownership and Carownership--Person are reference links. 
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Two elements in a schema may be bound directly by a link, or indirectly by a compo- 

sition of links, called path. For example, Car and Person in $6 are bound through the 
path: Car--Carownership--Person. 

Definition D2: Path 

let X l ,  X2,..., Xn be elements (object types, complex or value attributes) in a schema 

such that ViE 1,2,...,n-I, Xi is linked to Xi+i, either by an attribute link or by a refer- 
ence link, then X1--X2...X~, is a path. [] 

Cardinalities of the X1--X2--. . .--Xn path equal the product (lII) of the corre- 

sponding cardinalities in the component links: 

minimum cardinality of X 1 = l~iE[l:n_l] minimum cardinality of X/in X/--X/+I 

maximum cardinality of X1 = l~IiE[l:n-1 ] maximum cardinality of  Xi in X i - - X i +  1 

minimum cardinality of Xn = lIIi~[2:n] minimum cardinality of X/ in  X/_ i - -X/  

maximum cardinality of Xn = HiE[2:n ] maximum cardinality of Xi in Xi-l--Xi 

Erample from $6: 
sex--Person--Carownership---Car--color is a path associating the sex of a person to 

the color of the car the person owns. Cardinalities of this path are 0:n, 0:n. 

4.2. Real world s la tes .  As previously stated, the semantics of correspondence as- 

sertions is defined by referring to the real-world counterpart of the involved elements. 

Larson (1989) introduced the "real-world state" of an object class O, RWS(O), as the 

set of real-world instances of object class O at a given moment in time. We extend 

this RWS concept to attributes, links and paths, in order to deal with every concept of 

GDM (and of any data model). This will allow us to establish the meaning of corre- 

spondence assertions relating elements of different types (object types and attributes), 

or paths and links, in the next section. 

The RWS of a complex or value attribute A may be defined, like the RWS of an 
object type, as the set of real-world objects that the set of the present values of A 

represents. In the case of a multi-valued attribute, the set of its present values is made 
up of single values, not of sets of values. For instance, if color was a multi-valued 

attribute of an entity type Car which contained two cars, a green one and a black- 

yellow one, its RWS would be: 

RWS(color) = {green, black, yellow} 

One may wonder about the real objects described by a color or horsepower at- 

tribute. One could think of a lexical RWS, where the perception is related to attribute 

values, and a non-lexical RWS, where the perception abstracts from the present val- 
ues to refer to objects implicitly referenced through those values. For instance, refer 
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to the simple value attribute registration# of the class Person in $8. Its RWS can be 

viewed either as the set of string characters which represent the plate numbers, or as 

the set of real cars which are owned by a person. However, when an attribute is stated 

as corresponding to an object type, this always refers to the non-lexical RWS of the 

attribute. 

Definition D3: Real world state of an element (object type, complex or value at- 

tribute) 

The RWS of an object type O (respectively a complex or value attribute A) is the set 

of real-world objects that the set of the present occurrences of O (respectively values 

of A) represents. [] 

There is a one-to-one mapping between the RWS and the set of the present oc- 

currences (or values) of the object type (or attribute). An attribute may have the same 

value in several different objects of the database. Nevertheless, when one looks at 

the set of the present values of an attribute, abstracting from duplicates, each value 

describes exactly one real object of its RWS. 

In the previous definition of RWS we did not dealwith reference attributes. Refer- 

ence attributes do not bear values, and thus they cannot be perceived as corresponding 

to objects, but to other links or paths. For this reason we are not interested in their 
RWS as elements, but in the RWS of the link they express. The latter is defined below. 

A link X--Y, or generally a path X--...--Y, is a connection between two object 

types, X and Y. Its RWS is made up of pairs of real objects, one described by X and 

one by Y, such that these two real objects are in the real world bound by an association 

which the link (or path) represents. 

Definition D4: Real world state of a path. 

The real-world state of path X1--X2-...-Xr`, RWS(X1-X2-...-Xr`), is the bag of 

real-world object pairs (01,or,), such that ol ERWS(X1) and or, ERWS(Xr,), There 

exist objects o2,o3,...,or,-1 such that ViE1,2,...,n-1, oi ERWS(X/), with oi and oi+1 

linked by the real-world association represented by the Xi--Xi_l. 1 link. [] 

Example from $6: 
RWS(sex--Person--Carownership---Car--~.olor) is a bag of pairs of type (sex, color), 

associating, for each person in RWS(Person), his/her sex to the color of one of his/her 

cars. 
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4.3. Correspondence assertions. There are two types of correspondence asser- 

tions: those relating two elements, and those relating two paths or links. Assertions 
between elements identify the semantic, descriptive and structural conflicts, if any, 

between the two related elements: 

i) if one of the elements is an object type and the other one is an attribute, this denotes 

a structural conflict; 

ii) depending on the set relationship which relates the RWS of the elements, there is 

no semantic conflict in between (=--), or there is one (_D, N, ~) ;  

iii) an additional clause in the assertion specifies if and how the attributes of the two 

elements are related to each other. A descriptive conflict appears if there is either 
at least one attribute in one element with no corresponding attribute in the other 

element, or at least one pair of related, but not equal, attributes. 

4.3.1 Element correspondence assertions. We first illustrate the four possible set 

relationships between the RWS of corresponding elements. The formal definition is 

given next to the examples. Let us consider an enterprise with several local databases 

operating in different departments that have to be integrated. Various local databases 
may include the product catalog, describing all products sold by the enterprise. The 
catalog is the same for all departments: an equivalence assertion will relate product 

catalogs together. Suppose each local database maintains a file of department employ- 

ees, using the same format, and suppose an employee works in only one department. 

Employee object types will be asserted as corresponding but disjointed. Suppose now 

that each department maintains a customer file. Different departments may share 
some customers: Customer object types will be related by an intersection correspon- 

dence. Finally, suppose each department has its suppliers, but suppliers have to be 
chosen from a global file maintained at the head office. Local Supplier object types 

will intersect each other, but they will be asserted as inclusion correspondences with 

respect to Supplier in the head office database. 

Definition D5: Element correspondence assertions 

Let X1, X2, be two elements (object types, complex or value attributes), X1 from 

schema $1, X2 from schema $2. A correspondence between X1 and X2 may be as- 

serted as one of the following: 

• X 1 and X2 are equivalent, expressed as: X1 ~ X2 

which states that at any time RWS(X1) = RWS(X2) ; 

• X1 contains X2, expressed as: X1 2 X2 
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which states that at any time RWS(X1) _~ RWS(X2); 

• X1 and X2 intersect, expressed as: Xlf"l X2 

which states that at some time RWS(X1)f'IRWS(X2)~ Q; 

• X1 and X2 are disjoint, expressed as: X1 ~ X2 

which states that at any time RWS(X1)f-I RWS(X2)= Q. D 

This last assertion means that, although disjoint, their semantics is related, and the 

DBA wants to merge them into a more generic element in the integrated schema. 

4.3.2 Corresponding attributes assertions. Whenever two elements are asserted as 

corresponding, complementary assertions about attribute correspondences are need- 

ed to direct the integrator towards the production of the integrated structure, i.e., 

what are its attributes. In our model, these assertions about corresponding attributes 

of corresponding elements X and Y are stated for reference attributes as path asser- 

tions, and for value and complex attributes as part of the correspondence assertion 

between X and Y, using a "with corresponding attributes" clause. This clause defines 

the descriptive conflict, if any. 

Similar to element correspondences, the set relationship between the sets of values 

of two attributes is one of the following: 

i = the attributes have the same values; 

ii _~ the value(s) of one attribute include the value(s) of the other attribute. If 

both attributes are monovalued, either they both have the same value, or the 

included attribute has a null value; 

iii n the two attributes are multi-valued and their sets of values intersect; 

iv ~ the values of the attributes are always different, but they are related. The 

DBA wants to merge them into a broader one, union of the two attributes. 

The "with corresponding attributes" clause defines for each attribute correspondence, 

which is the set relationship, and, if any, the function mapping one domain into the 

other. Different types of functions may be involved: 

a 1:1 mapping defining a translation of the domains. A matching table may 

be used for this purpose. For example, Swiss francs may be converted into US 

dollars. 
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an aggregate function deft ning the value of a mono-valued attribute as the result 

of the aggregation of the set of values of a multi-valued attribute. For example, 
an attribute children--number is equal to the count of values of an attribute 

children of another database. 

a tuple function defining the value of an attribute as the result of the Cartesian 

product of several attributes. For example, an attribute address is equal to the 

Cartesian product of attributes number, street and city of another database. 

More facets to be considered have been suggested (Larson, 1989): integrity and se- 
curity constraints, allowable operations. We will not discuss these additional facets, 

as they do not change the nature of the problem. The reader interested in attribute 

matching may also refer to DeMichiel (1989) or Sheth (1989), who specifically deal 
with this topic. 

Because our aim is not to analyze those many facets, Definition D6 deals only 

with the set relationships between the value sets of two attributes. Each Ali m a y  be 

replaced by f(Ali) (translation of domains or aggregation function), by f(A1il,Ali2,..., 

Alip) (tuple function) or by any composition of these functions, and similarly for A21. 

Definition D6: Corresponding value attributes assertions. 

Let X1 ( cor )5 X2 be an element correspondence assertion. Let All ,  A12,...,Aln be 

value attributes o f  X1, and A21 , A22,. . . ,A2n be value attributes o f X  2 (if X1 or X2 is an 
atomic attribute, it is implicitly considered here as having itself as unique component). 

Let us call 0 any element common to both X1 and X2 real-world states, oERWS 

(X1)NRWS(X2) ~, and el, e2 be the occurrences representing 0 in the databases de- 

scribed by $1, $2. Then: 
X1 ( cor ) X2 with corresponding attributes: 

a ttcorl (A 11, A21 ), attcor2 (A12, A22),...,attcori (A1 n, A2 n ) 
is also a correspondence assertion which states that: 

X1 ( cor ) X2 is true, and for each attcori(Ali, A2i): 

• ifattcori(Ali, A2i ) is A l i =  A2i  

then at any time, for any oERWS(X1)ARWS(X2): el.Ali=e2.A2i; 

5. (co,)::=  121 n I# 
6. If X 1 and X 2 are disjointed, we consider o to be a hypothetical element contradicting the disjointedness 

(i.e., if such a o would exist, oE RWS(X 1)ARWS(X2) , then ...) 
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• if attcori(All, A21) is Ali D A21 

then at any time, for any oERWS(X1)flRWS(X2): el .Al i  ~e2.A21; 

• i fa t tcor i (Al i ,  A2i) is AliM A2i 

then it is possible that for some oERWS(X1)MRWS(X~): el.Aline2.A2i ~ 

• ffattcori(Ali , A2i) is Ali ~A2i 

then at any time, for any oERWS(X1)NRWS(X2): el.Aline2.A2i =J~, 

but the two attributes are semantically related and the DBA wants to merge 

them into a broader one, a union of the two. [] 

Attribute correspondences should not contradict correspondences asserted for their 

parent elements (Larson, 1989). Each element correspondence assertion involving 

a mapping of occurrences of different databases, i.e., element equivalence, inclusion 

or intersection assertion, must contain a 1 to 1 attribute equality assertion relating 
identifiers: 

Ali = A2i or A2i = bijective function (Ali). 

4.3.3 Path correspondence assertions. The analysis of the inter-schema relation- 
ships also calls for the identification of the correspondences among paths. Refer to 
S14 and S15. I f  we suppose that the two schemas see exactly the same objects (cars 
and persons), the element correspondence assertions between S14 and $15 are: 

Car~cars with corresponding attributes: 

registration# = registration#, color = color, 

horsepower = horsepower 

owner~Person with corresponding attributes: 

pin = pin, name = name, sex = sex, birthdate = birthdate 

These two assertions will generate two entity types, Car and Person, in the inte- 

grated schema. Nothing in the above assertions states that the real-world associations 
between cars and persons, described by S14 and S15, are one and the same ownership 

association. Consequently, the integrator will generate in the integrated schema two 
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relationship types between Car and Person, one to express the Car-owner S14 link and 
the other to express the Person-cars S15 link: 

mcistration# colour horsepower ~ .... . . . . . .  ,Y / ~ name sex binhdam 

In order to allow the integrator to integrate those two links into a unique relation- 
ship type (producing S13 as integrated schema), the DBA has to state that both finks 

have the same semantics. In our methodology, the DBAwill define the following path 
correspondence assertion (which is explained below): 

Car--owner ~ cars--Person. 

Two paths or links may be asserted as corresponding only if they relate correspond- 
ing elements. That is why the definition of path assertions refers not to the whole RWS 
of the corresponding elements, but to the subset of this RWS which involves only the 
objects that have a corresponding object in the other database. In definition D7, we 
call this subset RWS ~. 

Definition D7: Path equivalence assertion. 

Let X1--X2--.. .--Xn be a path in schema S, and Y1--Y2--...--Yp be a path in schema 
S ~, such that there is a correspondence assertion relating X1 to Y1 and an assertion 

relating Xn to Yp. 

Let RWS~(X1) be the subset of RWS(X]) defined by its restriction to X1 objects 
which are involved in the asserted correspondence with Y1 objects. Let RWS~(Y1), 

RWSt(Xn) and RWS~(Yp) be similar restrictions of the corresponding RWS. 

Let RWSt(X]--X2--.. .--Xn) be the subbag of RWS(X1--X2--. . .~Xn) defined 
by its restriction to object pairs in RWS~(X1) × RWS/(Xn), and similarly for RWS/(Y1 - 

Y2--...--Yp). 

The assertion that the two paths are equivalent, expressed by the statement: 

X l - - X 2 - - ' " - - X n  ~ Y]--Y2--...--Yn 
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states that at any time: 

RWS' (Xi - -X2- - . . . - -Xn)  = RWS'(Y1Y2--...--Y~,). 12 

The other assertions, path inclusion, intersection and exclusion, may be defined 

in the same way as for element assertions. 

Example relating $3 and S4: 
USCustomer C Customer with corresponding attributes: name =name 

Ordered --z Ordline with corresponding attributes: quanti ty=qty 

Product  _~ Product with corresponding attributes: P # = P #  

Ordered • date ~ Order • Odate 

Ordered- -da te  ~ Ordline---Order---Odate 

CustomermOrdered =-- Cus tomer - -P l aces iOrde r - -Ord l ine  

Product - -Ordered  ~ Product--Ordl ine 

The last three assertions are path assertions which respectively state that: 

• the date of  Ordered in $3 is the same as the date of the Order  linked to the 

corresponding Ordline of $4; 

• the Ordered occurrences which link a customer in $3 are equivalent to the Or- 

dline occurrences which link the corresponding customer of  $4 through Order 

and Places; 

• the Ordered occurrences which link a product in $3 are equivalent to the Ord- 

line occurrences which link the corresponding product of $4. 

4.3.4 Conclusion. Until nowwe have defined two kinds of correspondence assertions: 

between elements with their corresponding attributes, and between paths. They cover 

all the concepts of GDM, and can describe most of the current inter-schema corre- 

spondences involving one occurrence or value of  each database. Other  correspon- 

dence assertions have to be defined when a set of occurrences (or values) is corre- 

sponding to an occurrence (or value), as in the famous convoy of ships example. Even 

in the one to one mapping, full integration of complex attributes at any depth will 

require more precise correspondence assertions. 

As we have seen, correspondence assertions can be used with any kind of data 

model (object-oriented, relational, ER). Moreover, they can state correspondences 

between two heterogeneous schemas, as in the following example. 
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Example relating the relational schema $5 and the object-oriented schema $9. 

Car ~ Car with corresponding attributes: 

registration# = registration#, color = color, horsepower=horsepower 

Person =-- Person with corresponding attributes: 

pin = pin, name = name, sex = sex, birthrate = birthdate 

Car--Person ~_ CCar--Carownership---Person 

5. Schema Integration 

This section and the following ones discuss the integration rules which govern the defi- 

nition of the integrated schema from the initial schemas and the correspondence asser- 

tions among them. Not to overload the paper and the reader, we only consider here- 

inafter the equivalence correspondence assertions r. We also restrict the discussion to 

atomic attributes and complex attributes with only atomic component attributes. Fi- 

nally, our rules assume a binary integration strategy (integration of two schemas at a 

time). However, their extension to a n-ary integration strategy (integration of several 

schemas in one step) is rather straightforward. 

Each integration rule is first stated according to our generic model GDM. Cus- 

tomization of the rule is then shown on relational, entity relationship and object- 

oriented models. When applying a generic rule to a particular model, constraints 

which are specific to this model are taken into account. Those constraints are: 

• existence dependencies, 

• for most of object-oriented models, the fact that reference attributes are di- 

rected: a link A-+B and a link A~--B do not provide the same facilities to the 

use r s ,  

• for ER models, the fact that reference attributes are mandatory and monoval- 

ued: they cannot have a null value, they must always point at some unique, 

existing object. 

For each initial schema element and link, the database integration process has to: 

• define what elements have to be inserted into the resulting schema, 

7. Those interested in how inclusion, intersection, and exclusion assertions behave with respect to equiva- 

lence assertions may refer to Larson (1989), Mannino (1984), and a different viewpoint in Jardine (1989). 
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I define the distribution information attached to these elements, showing on 
which local database which subset of the corresponding population may be 
found, 

define the mappings between the initial schemas and the integrated schema. 8 

These mappings support the translation of global queries on the integrated 
schema, into local queries on the local schemas. In our approach, the map- 
ping definitions are based on the ERC+ algebra (Parent, 1985). This algebra 

extends the relational algebra to deal with entity types, relationship types and 
complex attribute structures. 

DilIerent algorithms may be designed to perform the integration process. The choice 
depends on whether integration adopts a binary strategy or a more efficient n-ary strat- 

egy. The algorithm also depends on the degree of interaction with the DBA. On one 
extreme, the DBA states all assertions and the integration process integrates the in- 
put schemas in one shot, showing the final result. On the other extreme, integration 
may proceed one assertion at a time, for instance with the DBA pointing on the two 
corresponding elements on a screen and describing the correspondence, and the in- 

tegrator immediately displaying the result of processing that particular assertion. For 
this reason, this paper does not suggest any particular algorithm 9. 

This section first explains the principles governing our integration rules. Next, it 
introduces how two value attributes are merged, which is needed for the definition of 
an extended join operator, which we call integrate-join, used in the integration rules 
to build the structure resulting from the merging of two corresponding structures. Fi- 
nally, the very first integration rule is stated, governing integration of elements which 
are local to one of the input schemas. 

5.1 Integration principles. The rule definitions are based on two basic principles, 

which are model independent: 

1. The scope of integration rules has to include both elements and finks integration, 

2. Whenever there is a structural conflict between two schemas, the integrated schema 
will hold the more unconstrained structure: the one which has less existence de- 

pendencies. 

8. When n schemas are integrated using a binary strategy, the intermediate integrated schemas are used 
as input to the next integration step. In this case it is preferable to generate correspondence assertions 
(instead of mappings) to meet initial conditions for the next step (i.e., two schemas and the correspondence 
assertions in between). 

9. An algorithm for integration of ER views is proposed in Spaccapietra (1992). 
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The rationale for the first principle has been given in section 4.3.3. The ratio- 

nale for the second principle is that the integrated schema has to support queries and 

updates on all underlying databases. If different constraints hold on related data in 

different databases, the integrated constraint has to be the weakest one, so that no 

access request is unduly rejected at the integrated level. For instance, if the age of 

persons is limited to the 20--50 range in database DB1, and database DB2 has more 

persons than DB1, with age ranging from 20 to 65, the integrated schema will hold a 

20-65 age range constraint. The 20-50 restriction will be enforced on DB1 through 

the mapping between the integrated schema and DB1. The same reasoning holds for 

data structures. The identification of the most unconstrained structure depends on 

the data model in use, as follows. 

GDM and object-oriented models: GDM element types are object types and attributes. 

They differ in two aspects: object types have an identity, attributes don't. Object types 

have no existence dependency: they can be linked to other object types and to at- 

tributes, but this is not mandatory. On the other hand, attributes have to be linked 

to one and only one other element, their parent element (object type or complex at- 

tribute). These dependencies can be summarized in the following table. 

Existence dependencies in GDM and object-oriented models: 

object type attribute 

object type 0:n 0:n 

attribute 1.'1 or 1:1 

where n:p in line i and column j means that any element of type i must be linked to at 

least n and at most p elements of type j. The two 1:1 figures in the attribute line are 

linked by an exclusive or (an attribute is either attached to an object type or to another 

attribute). 

The most unconstrained structure is the object type. When an object type O1 of 

schema S1 is corresponding to a value or complex attribute A2 of schema $2, an object 

type O will be put into the integrated schema and a link will be added to bind O to the 

integrated parent element of A2, as is shown in the following figure. 

Schema $1 Schema $2 

~bu~ of Ol / ~o~t~b~t~ o~O2 
-umwmmm~ 

attfibute~ of A2 

Integrated Schema 

integrated auribuu~s other attributes of O2 
ofOl  ~md A2 
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Relational model. 

Existence dependencies 

relation 

attribute 

relation attribute 

0:n l:n 

1:1 0:0 

Moreover, both attributes and relations have no identity. 

structure is the relation. 

The most unconstrained 

Entity relationship models: Here, we refer to entity relationship models, as ERC+,  

where entity types and relationship types have an identity while attributes don't. 

Existence dependencies 

entity type 
relationship type 

attribute 

entity type relationship type attribute 

0:0 O:n O:n 
2:n 0:0 O:n 

1:1 or 1:1 or 1:1 

When an entity type of schema S1 corresponds to an attribute or to a relationship type 

of schema $2, the more unconstrained structure is the entity type. In the integrated 

schema, an entity type is generated together with the relationships which express the 

attribute link or role links of $2. 

When a relationship type and an attribute correspond, their existence dependen- 

cies are not compatible: a relationship type has to be linked to at least two entity types, 

an attribute to at most one entity type. They will be integrated into an entity type plus 

relationship types expressing the attribute and role links. 

5.2 Basic definitions for merging attribute structures. We first define how two 

atomic value attributes are merged to produce an integrated attribute. 

Definition D8: Integration of two corresponding value attributes of two equivalent 

elements. 

Let El, E2 be two corresponding elements (object types or complex attributes) of 

schemas S1 and SZ Let A1 and A2 be atomic value attributes of E1 and E2 respec- 

tively. If it is asserted that A1 and A2 correspond to each other: 

E1 ~ E2 with corresponding attributes: attcor(A1, A2) 
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then integration of A1 and A2 is defined as a simple attribute A, such that: 

• its name is A1, except if the DBA chooses another one 1°, 

• its domain is defined as follows: 

if attcor(A1, A2) is A1 =A2 or A1DA2 then domain(A1) 

if attcor(A1, A2) is Alf lA2 or A I ~ A 2  then domain(A1)Udomain(A2) 

• its cardinalities are defined as follows: 

if attcor(A1, A2) is A I = A 2  or A1DA2 orA2 = (A1) 

then cardmin(A)=cardmin(A1), cardmax(A)=cardmax(A1) 

if attcor(A1, A2) is Alf'IA2 

then cardmin(A) = Max(cardmin(A1),cardmin(A2)) 

cardmax(A) =cardmax(A1) +cardmax(A2) 

if attcor(A1, A2) is A1 =A2 

then cardmin(A) =cardmin(A1) +cardmin(A2) 

cardmax(A) =cardmax(A1) + cardmax(A2) [] 

We can now define the integrate-join operator, merging two composite elements, ob- 
ject types, or complex attributes. 

Definition D9: Integrate-join. 

Let El,  with value attributes ( A l l  ..... A l j ,  B1,...Bk), and E2, with value attributes 
(A21,..., A2~, Cb  ...Ch), be two elements (object types or complex attributes) of data- 
bases S1 and $2, asserted to be equivalent to each other: 

E1 ~ E2 with corresponding attributes: 
attcorl (All,  A21), at tcor2 (A12, A22),..., a ttcorj (At j ,  A2j ). 

Let attcorl(AH, A21) be the assertion which specifies the 1:1 mapping between the 
identifiers of E1 and E2. Then the operation: 

E:= integratejoin (El, E2, attcorl (All,  A21), attcor2(A12, A22),..., attcorj(A U, 
A2j) ) 

10. For DBA users of the future global database, a relevant criterion may be understandability. Which 

linguistic and ergonomic considerations would be useful is beyond the scope of this paper. 
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creates a new object type E defined as follows: 

• its structure consists of the union of E1 and E2 attributes, defined as: 

1. an attrl'bute B~ for each attribute Bi of E1 which has no counterpart in 
E2; its domain and cardinalities are equal to those of Bi 

2. an attribute C~ for each attribute q of E2 which has no counterpart in 
El; its domain and cardinalities are equal to those of Ci 

3. an attribute A/ fo r  each attcori(Ali, A2i); A/ is  the integration of Ali 

and A2i 

• its population contains one occurrence, e, for each real-world object of the RWS 
of E1 and E2. The value of e is defined as the merging of the values of the E1 
and E2 occurrences describing this real-world object and which are linked by 

the 1:1 mapping attcoh(A11, A21): 

for each attribute B~: e.B~ = el.Bi 

for each attribute C~: e . ~ / =  e2.Ci 

for each attribute A/ 

if attcori(Ali, A2i) is Ali =A2i or All _~A2i 

then e .A/=  el.Ali 

if attcori(Ali, A2i) is AliNA2i or All ~A21 

then e .A/=  el.AilUe2.A2i 13 

5.3 Integration of local elements and links. A first, quite evident, model indepen- 

dent integration rule applies to elements and links which appear in only one of the 
schemas to be integrated. 

Integration rule 1: 
Each element X1, of schema S1, which has no counterpart in the other schema, is 
added, as element X, to the integrated schema. The type of X is the same as the one 
of X1. 

Correspondence assertion: X_=X1. 
Mapping: X := X1. 
Distribution: X is X1 on database S1. 

Each link, X1--Y1, of schema S1, which has no counterpart in the other schema, is 
added, as link X--Y, to the integrated schema, where X and Y are the integrated 
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elements corresponding to X1 and Y1. The type of XY depends on the types of X and 
Y (see the discussion in section 7). 

Correspoadence assertion: X--Y_=X1--Y1. 
Mapping: X--Y := rename [XI~Y1]. 
Distribution: X--Y is on database S1. O 

6. Integration of Two Object Types 

This section only considers value attributes within the object types. Reference at- 
tributes participate in link or path correspondence assertions. Their integration is 
therefore discussed in the next sections. 

Integration rule 2: 

Let XI, with value attributes (Alb..., Alj ,  Bi,...Bk), and X2, with value attributes 
(A21,..., A2j, C1,...Ch) be two object types in two schemas, X1 ES1, X2 ES2, such 
that: 

X1 ~ X2 with corresponding attributes: 

attcorl (All, A21), attcor2 (A12, A22),..., attcorj(Alj,  A2j) 
the element in the integrated schema resulting from the integration of X1 and X2 is 
an object type X, such that: 

• its name is Xl'S one, except if the DBA chooses another one; 

• its structure consists of the union of X1 and X2 attributes, as defined by the 
integrate-join of X1 and X2. 

Correspondence assertions relating X to Xl and X2 are obvious: 
X ~ X ]  with corresponding attributes: 

attcorl (A1, All) ,  attcor2(A2, A12),..., attcorj (Aj, Al j )  
attcorl al), attcor2(a[, B2),..., attcor (BL Bk) 

X~X2 with corresponding attributes: 
attcorl (A1, A21), attcor2(A2, A22),..., attcorj (Aj, A2j) 
attcorl (C~, C1), attcor2 (C~, C2),..., attcorh (C~, Ch) 

Mappings between X, X1 and X2 may be defined as: 
X: = integratejoin (X1, X2, attcorl (A11, A21), attcor2 (A12, A22),..., attcorj (Axj, 

A2j) ) 
X1 := project ' ' [A1,..., Aj, B1,...Bk] X. 
X2:= rename [A1 :A21,..., Aj:A2j] project [A1,..., Aj,  C~, ...C~] X. 
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Description of actualdistribution records that X is stored in both databases, S1 and $2. 
More precisely, X is split into fragments (vertical partition)" 

project ' [B1,..., B~] X is in database S1 
project [C~,..., C~] X is in database $2 
for each A/, if attcori(Ali, A21) iS: 

Ali = A2i then Ai is duplicated in both databases, 

Ali ~A2i then Ai is on site S1, and some values are duplicated in database $2, 

Alif"IA21 then A/is partially duplicated, 

Ali ~A2i then A/is distributed between databases 81 and S 2. [] 

Example: Referring to schemas S1 and $2 (section 3), let us suppose that the two 
databases describe the same set of cars. The correspondence assertions would be: 

Expensive_ear--zCar_model with corresponding attributes: 
modelname = name, price = price 

The integrated schema would be: 
Expensive_Car (modelname, manufacturer, maximumspeed, price, horsepower, 

fuelconsumption) 

Indeed, integration rule 2 can be applied directly: 

• for relational models, to integration of relations without any external key, 

• for ER models, to integration of entity types, 

• for object-oriented models, to integration of object types without any reference 
attribute. 

More integration rules, dealing with links and paths, have to be defined in order to 
be able to integrate ER relationship types, object-oriented reference attributes, and 
relational relations with external keys. 

7. Integration of Two Links 

Integration rule 3 deals with elementary finks (attribute and reference links), and al- 
lows the integration of two equivalent finks which bind equivalent elements. Rule 4 
deals with paths which are composed of several links. 
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Integration rule 3: 
Let A1 and B1 be two linked elements (object types, value or complex attributes) in 

schema $1, A2 and B2 be two linked elemenls (object types, value or complex at- 

tributes) in schema $2, with the following correspondence assertions: 

A1 ~ A 2  
B1 ~ B2 
A1---~1 -~ A2--B2 

Let A be the integrated element in the integrated schema corresponding to A1 and 
A2, let B be the integrated element in the integrated schema corresponding to B1 and 

B2. The integration of A1--Bi and A2--B2 links is then a link A--B. The type of the 
link depends upon those of A and B: 

• ff A or B is a value attribute then A--B is an attribute link 

• ff A and B are object types then A--B is a reference link: a reference attribute, 

named B is added to A, or vice-versa. 

As the three correspondence assertions are equivalence ones, the cardinalities of the 

two links, A1--B1 and A2--B2, are necessarily the same, and the cardinalities of the 
integrated link, A--B, are also the same. 

Correspondence assertions are obvious: 

A ~ B ~ A 1 - - B  1 

A B~A:2--B 2 

Mappings: 
A--B: = rename [A1--B1] 

A--B: = rename [A2--B2] 

Distribution: the A--B link is dupliccated: it is stored in both databases, S1 and $2. [] 

Let us now discuss how rule 3 applies to the different models. 

Relational model: 

As the relational model has no existence constraint on its reference attributes (a rela- 

tion may have zero, one or several external keys), rule 3 applies without modification. 

Example: 

S18: 

Man (manlD, name, address, wife) 

Woman (womanlD, name, address) 

Woman.womanlD D Man.wife 

S19: 

Man (manlD, name, address) 

Woman (womanlD, name, address, husband) 

Man.manlD D Woman.husband 
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Correspondence assertions between S18 and S19: 

Man =-- Man with corresponding attributes: 

manlD = manlD, name = name, address = address 

Woman =_ Woman with corresponding attributes: 

womanlD = womanlD, name = name, address = address 

Man- -Woman  _= Man--Woman 

The integrated schema is S18 or S19, plus an integrity constraint which defines the 

cardinalities of  the integrated link. These cardinalities are deduced from those of the 

two corresponding links. In S18, the link Man--Woman has cardinalities 0:1, 0:n (wife 

is an external key which must either reference one Woman, or bear a null value). In 

S19, the link Man- -Woman has the inverse cardinalities: 0:n, 0:1. Therefore,  the inte- 

grated link will have cardinalities 0:1, 0:1. These cannot be expressed in the relational 

model. An integrity constraint is needed. For instance, the integrated schema will 

be S18 plus the following integrity constraint: there are no two men with the same wife 

(i.e., there are no two Man tuples with the same wife value). Without the link corre- 

spondence assertion, integration of S18 and S19 would have generated two redundant  

external keys, wife and husband. 

Object oriented models: 

Integration rule 3 has to be modified in order to deal with the directed links of  most 

object-oriented models. Suppose an object-oriented model where reference attri- 

butes, as value attributes, are directed. By "directed" we mean that a reference at- 

tribute allows direct access only from the parent element to the referenced object, and 

not in the other way around. Rule 3 is adjusted as follows. 

Object oriented rule 3: Integration of  two equivalent directed links: 

A1 ---+B1 ~ A2 ---~B2 
generates a directed link A-~B.  If B is a value attribute, A--*B is an attribute link. If 

B is an object type, A---~B is a reference link: A holds a reference attribute pointing 

at B. [] 

Opposite directed links, like A1 ---~B1 versus B2 ---~A2, cannot be asserted as cor- 

responding. Therefore,  rule 3 will not apply and the two links are integrated through 

rule 1. As local elements, both will be added to the integrated schema. 

Example: refer to schemas S10 and S l l  of section 3. 

Correspondence assertions between S10 and S l l  are: 

Car ~ Car with corresponding attributes: 

registration# = registration#, color = color, horsepower = horsepower 

Person =-- Person with corresponding attributes: 

pin = pin, name = name, sex = sex, birthdate = birthdate 
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Integration only calls for rules 1 and 2, and results in schema S12. 

Entity relationship models: 
Integration rule 3 may be directly applied to ER models in order to integrate role links 
between entity types and relationship types. Using both rules 3 and 1 allows us to de- 
fine deduced rules integrating object types with reference attributes, i.e., relationship 
types. Equivalent reference links are integrated 11, and local reference links are added. 
Applying these two rules to ER models, consistently with the basic principle of choos- 
ing the more unconstrained structure (the entity type) in case of structural conflict, 
produces the following rule: 

ER rule 1+3: Integration of an entity type E1 and an equivalent n-ary relationship 
type R2 is an entity type E and n binary relationship types linking E and the entity 
types that R2 links. Integration of two equivalent relationship types, R1 and R2, is a 
relationship type which finks all the entity types that R1 or R2 link. El 

Example: integration of an entity type and a relationship type 

$20: 

i I I / I 
name orename contract# ~ type colour 

$21: 

I C o n t r a c t  I 

/ \ 
insurance co. 

Correspondence assertion between $20 and $21: Insures _= Contract with correspond- 
ing attributes: contract# ~ contract# 

The integrated schema is12: 

! p°rsoo Car I 
I / / . I # l  

name forename insurance co. contracts reglst type colour 

11. The  limited cardinalities of role links (each role link of any relationship must  always point at  exactly 
one existing entity) must be taken into account when choosing the type of integrated link. 

12. This schema could be simplified (by merging Signs+Cont rac t+Insures  into one relationship type) if no 
other  relationship comes on Contract. This would be done in a final refinement step, not  discussed here. 
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Example: integration of two relationship types 

$22: 

Person Car 

I i I 
name forename retist# type colour 

$23: 

I Person ~ Car t 

I } I 
Rill name forename I, date resist# type colour 

I', [Insurance ¢o,1 
/ N  

name address 

Correspondence assertions between $22 and $23: 

Person ~ Person with corresponding attributes: 
pin ~ pin, name ~ name, forename ~ forename 

Car ~ Car with corresponding attributes: 
registration# ~ registration#, type ~_ type, color ~ color 

Insures --z Insures 
Person--Insures ~_ Person--Insures 

Insures--Car ~ InsuresNCar 

The integrated schema is $23. 

8. Integration of Links and paths 

The integration process should not generate redundant information in the integrated 
schema. When integrating links and paths, we have to know if each one bears inde- 
pendent information, or if one can be deduced from the other. Two cases may happen: 

a link A1--B 1 is equivalent to a path A2--...--B2; therefore keeping in the 
integrated schema only A2--...--B2 is enough. The direct link will be deduced 
by composition of the components links of A2--...--B2. 

two paths A1--...--B1 and A2N...--~2 are equivalent, then both paths must 
be kept in the integrated schema. Deleting one path would delete all its com- 
ponent finks which are not equivalent to any other link or path. An integrity 
constraint stating that the two paths are equivalent is added to the integrated 
schema. 
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Integration rule 4." links and paths integration rule: 

Let A1, B1, ... D1 be elements in schema Sl, let A2, B2, ... D2 be elements in schema 
$2, with the two correspondence assertions: 

Ai ~ A2, Di ~ D2. 
Let A (respectively D) be the integrated element in the integrated schema correspond- 
ing to A1 and A2 (respectively to Di and D2), then: 

I. the correspondence assertion between a link and a path: 

A imDI  ~ A2mB2--...mD2 

generates in the integrated schema the path A--B~m. . .~D (where B~ is the 
integrated element corresponding to B2); 

2. the correspondence assertion between two paths: 

Ai - -BI~ . . . - -D1  --= A2--B2--...--D2 

generates in the integrated schema the two paths: 

A i ~ B ~ . . . - - D I  ~ D and Az--B2--. . . --  2 

(where B~ and B~ are the integrated elements corresponding to BI and B2), and 
an integrity constraint which states that the two paths link the same occurrences. 

In both cases, the generated paths are created according to the modeling concepts of 
the linked elements, as in rule 3. 12 

Integration rule 4 includes integration rule 3. 

The schema will be integrated to the extent that the DBA describes the correspon- 
dence assertions. For example, let two schemas be related by the following correspon- 
dence assertions: 

A1 ~ A 2 ,  C1 ~ C2, F1 ~ F 2  
Av--C1 --= A2--...--C2 

C1--F1 =-- C2--...--F2 
If, instead of stating the two path assertions, the DBA only asserts: 

A1--.. .--Ci--. . .--Fx ~ A2--...--C2m...--F2 
then less knowledge is given to the integrator and the integration will be less advanced. 

Relational model: 

Integration rule 4, as rule 3, applies without modification. 

Example: refer to schemas $5 and $6, with the following correspondence assertions in 

between: 
Car _= Car with corresponding attributes: 

registration# = registration#, color = color, horsepower = horsepower 
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Person --z Person with corresponding attributes: 

pin = pin, name = name, sex = sex, birthdate= birthrate 
Car--Person ~ Car--Carownership--Person 

The integrated schema is $6. 

Object-oriented models: 

Integration rule 4, as rule 3, has to be adjusted in order to integrate finks and paths 

which are oriented in the same direction. 

Entity relationship models: 

Integration rule 4, as rule 3, applies without modification. 

9. Integration of an object type and an attr ibute 

One of our basic integration principles is that whenever conflicting descriptions exist 

in different views, the integrated schema will hold the more unconstrained representa- 

tion in order to be able to derive the other descriptions through restrictive mappings. 
Integration of an object type O and a value or complex attribute A produces an object 
type whose structure results from the merging of the structures of O and A as in rule 2. 
The distribution and mappings are also similar to those of rule 2. The main dilIerence 

is that the integrated object is linked via a reference attribute to the parent element 

of A. 

Integration rule 5: integration of an object type and a value or complex attribute: 

Let X1, with value attributes (All,..., A]j, B1, .... Bk), be an object type of schema 
S1; let X2 be a complex attribute of element ~ of schema $2 with component value 

attributes (A21,..., A2j, C1,..., Ch), or an atomic-value attribute. In this latter case, we 

consider that X2 has itself as component attribute; let the correspondence assertion 

be: 
X1 ~ X2 with corresponding attributes: 

attcorl(All, A21), attcor2(A12, A22), ..., attcorj (Aij, A2j). 
Let E be the element corresponding to E 2 in the integrated schema, the elements in 
the integrated schema resulting from the integration of X1 and X2 are an object type 
X, and a reference link between E and X, such that: 

• the attribute X2 of E2 is transformed into a reference attribute X'2 referencing 

X; cardinalities of X'2 are equal to those of X2, 

• the name of X is the same as the one of X1, unless the DBA chooses another 

one, 

• the structure of X consists of the union of the attributes of X 1 and X2, as defined 
by the integrate-join of X1 and X2. 
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Correspondence assertions relating X to X1 and X2 are obvious: 

X ~ X 1 with corresponding attributes: 

attcorl (A1, All) ,  attcor2(A2, A12),..., attcorj (Aj, Al j )  

attcorl (B~, B1), attcor2 (B~, B2), ..., attcork (B~, Bk) 
X ~ X2 with corresponding attributes: 

attcoh (A~, A21), attcor2(A2, A22),..., attcorj (Aj, A2j) 
at tcoh (C~, C1), attcor2 (C~, C2), ..., attcorh (COb, Ch) 

E - -X  ~ E~--X2 

Mappings between the integrated schema, S1 and $2 may be defined as: 

X:= integrate-join (X1, X2, attcor1(A11, A21), attcor2 (A12, A22),..., attcorj(Alj,  

A2j)) 
E- -X:=  rename[E2--X2] 

X1 := project ~ [Ab .... Aj,  B 1,...Bk] X 

X2:-- rename [A1 :A21,..., As:Ass] project [A1,..., Aj,  C~,...C~] X 

Distribution: 

X is stored in both databases, $1 and $2; it is split into fragments as in rule 2. The 
E- -X link is on database $2 only. [] 

If X1 and/or X2 have reference attributes, rule 1 or 3 is activated in order to add or 
integrate those reference links. 

Relational model: 
Rule 5 applies as follows. 

Relational rule 5: 
Integration of a relation R1 of schema S1 and a value attribute A2 of relation R2 of 
schema $2, generates in the integrated schema a relation R with the attributes of R1 
and a reference integrity constraint binding the relation R2 ~ (the integrated relation 
corresponding to R2) to R. [] 

Example: 
$24: Car (registration#, color, power, owner#) 

S25: Person (pin, name, address) 

Correspondence assertion between $24 and $25: 
owner# ~ Person with corresponding attributes: owner# = pin 

Under these assumptions, the integrated schema is: 
Car (registration#, color, power, owner#) 

Person (pin, name, address) 
Person.pin D Car.owner# 
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Relational rule 5 transforms the value attribute owner# of $24 into a reference at- 
tribute; i.e., owner# in the integrated schema is an external key referencing Person. 

Entity relationship models: 

Rule 5, as rule 3, has to be adjusted to entity relationship models as follows. 

Entity relationship rule 5: 
Integration of an entity type X1 of database S1 and an attribute X2 (whose parent 

element is entity type E2) of database $2 generates an object type X and a link E--X 

(where E is the entity type corresponding to E2 in the integrated schema). As entity 

type X1 may be bound by a relationship in S1, X must be an entity type, and the E--X 

link is a binary relationship binding entity types E and X. O 

Examples: 
Rules 5 and 3 (link integration rule) allow us to integrate S14 and S15 of section 3. If 

the two databases are equivalent, and if the equivalence of the two links, Car---owner 

and cars--Person, is asserted, the integrated schema is $13. 

In the same way, integrating S13 and S14 also generates $13. 

Object-oriented models: 

Rule 5 applies without modification. 

Example: refer to schemas $7 and Sl l  of section 3. 

Correspondence assertions between $7 and S l l  are: 

Car -- Car with corresponding attributes: 
registration# = registration#, color = color, horsepower = horsepower 

owner -- Person with corresponding attributes: 

pin = pin, name = name, sex = sex, birthdate = birthdate 
Car--Downer _= Car--~Person 

The integrated schema is Sll .  

10. Conclusion and Future Work 

There is an ever-increasing need for building integrated or federated systems from var- 

ious heterogeneous database systems that are already in operation. A semi-automatic 

database integration methodology would significantly alleviate the integration task, 

which is presently a manual task. From an economic perspective, this integration, 
while opening the way to new federated database services, should also allow the con- 
tinued usage of existing databases and application programs. 
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This paper introduces a database integration methodology, designed to meet the 
above objectives. Our approach is based on the following major features: 

• consideration of links in the integration process, 

• automatic resolution of structural conflicts (arising because of different repre- 
sentations of the same real-world objects), 

• conflict resolution performed without modification of initial views, 

• applicability to a variety of data models. 

The first three features are distinguishing. The semantics of links is out of the scope of 
current methodologies. Structural conflicts necessarily arise from user requirements, 
based on the different needs that exist in the real world. Instead of forcing schemas 

to conform to a unique representation, as presently required, our approach relies on 
the idea that the complexity inherent to structural conflicts should be supported by 
establishing appropriate, powerful mapping facilities among initial schemas and the 

integrated schema. 
The fourth feature is of special interest when heterogeneous databases have to 

be integrated. To that extent, we defined data model independent integration rules, 
which are customized to the various classical data models. This approach ensures that 
the integration strategy is consistent over the various models. Moreover, it is feasi- 
ble to allow the description of inter-schema correspondences directly on the existing 
schemas, i.e., without requiring a preliminary step to translate all e:.dsting schemas 
into their equivalent version based on some common model. The whole integration 

process becomes much simpler for the DBA. The resulting system can be made user- 
friendly through the support of a multimodel interface, allowing each user to interact 

with the new DBMS through his/her preferred data model. 

Irrespective of the data model, the schemas can be interpreted as graphs, i.e., sets 
of nodes and edges. We focused on defining integration rules for these two sorts, which 
we called elements and links. 

Additional features are common with other existing approaches: 

• use of a formal declarative approach for the definition of inter-schema corre- 

spondences, 

automatic generation of structural and operational mappings between the ini- 

tial schemas and the integrated schema. Operational mappings provide support 
to allow users to query and update the database through their own view. 



123 

To implement a formal declarative approach, we defined a model for descn'bing corre- 
spondence assertions. These assertions instruct the integrator tool about similarities 
in the semantics of the schemas. For each assertion, formal rules state how to derive 
the constructs which are to be inserted into the integrated schema and the mappings 
between the integrated schema and the initial ones. 

Finally, the methodology proposed in this paper is applicable to the view integra- 
tion process, a crucial step in classical database design. Our scheme allows the users 
to state their views without being constrained by requirements from other users, and 
without being forced to modify their definition if a conflict arises with some other view. 

In the future our research will be devoted to: 

• the integration of inclusion, intersection, and exclusion assertions. We intend 
to analyze when and how it is appropriate to build generalization hierarchies in 
the integrated schema, 

• consideration of generalization links in correspondence assertions and integra- 
tion rules, 

• detailed analysis of the integration of complex attributes, 

• integration of l:n correspondences, in which one object in one view/schema 
corresponds to a set of objects in the other view/schema. 

As far as view integration is concerned, our plans include the specification and im- 
plementation of an intelligent view definition facility, so that most of the integration 
problems in an actual situation are solved at view-definition time, rather than at times 
when views are to be integrated. 
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