
VLDB Journa~t, 81-126 (1992) Joachim Schmidt, Editor
©VLDB

J

Model Independent Assertions

(,~ r " ' ' ' 'i

for Integration of Heterogeneous Schemas

Stefano Spaccapietra, Christine Parent, and Yann Dupont

81

Received February 15, 1991; revised version received October 9, 1991; accepted December
4, 1991.

Abstract. Due to the proliferation of database applications, the integration of ex-
isting databases into a distributed or federated system is one of the major chal-
lenges in responding to enterprises' information requirements. Some proposed in-
tegration techniques aim at providing database administrators (DBAs) with a view
definition language they can use to build the desired integrated schema. These
techniques leave to the DBA the responsibility of appropriately restructuring
schema elements from existing local schemas and of solving inter-schema conflicts.
This paper investigates the assertion-based approach, in which the DB~s action is
limited to pointing out corresponding elements in the schemas and to defining the
nature of the correspondence in between. This methodology is capable of: en-
suring better integration by taking into account additional semantic information
(assertions about links); automatically solving structural conflicts; building the in-
tegrated schema without requiring conforming of initial schemas; applying inte-
gration rules to a variety of data models; and performing view as well as database
integration. This paper presents the basic ideas underlying our approach and fo-
cuses on resolution of structural conflicts.

Keyworfls. Database design and integration, distributed databases, federated
databases, heterogeneous databases, schema integration, conceptual modeling.

1. Introduction

Interoperability is becoming one of the most critical issues for medium to large size

enterprises. Due to the complexity and worldwide span of economy today, enter-

prise management often needs access to several local as well as remote information

resources. Moreover, "even a single enterprise may have heterogeneous information

Stefano Spaccapietra is Professor, and Yann Dupont is Research Assistant, Ecole Polytechnique F6d6rale de
Lausanne, DI-Laboratoire Bases de Donn6es, IN-Ecublens, 1015 Lausanne, Switzerland. Christine Parent
is Professor, Universit6 de Bourgogne, D6partemcnt Informatique, B.R 138--21004 Dijon Cedex, France.
(Reprint requests to Prof. Spaccapietra, D6partement d'Informatique, Laboratoire de Base de Donn6es,
EPFL-Ecublens, CH-1015, Lausanne, Switzerland.)

82

bases for reasons of history or departmental autonomy"(Kaul, 1990). The user com-

munity is therefore experiencing the need for interconnection of existing, possibly het-
erogeneous, databases, to provide more data to their applications, as well as the need

for enforcing a better consistency among databases containing related information

(for instance, a manufacturing database including data on employee's activities and a

personnel database).

A variety of approaches to interoperability have been proposed, aiming at differ-
ent levels of integration (Sheth, 1990). The loosest degree of integration characterizes

the multidatabase 1 approach (Litwin, 1984, 1990), in which users can query different

databases with a single request, but have to specify where data are located. Federated

approaches (Landers, 1982; Larson, 1989) support location transparency (users may

ignore the actual location of data and nevertheless query distributed data). The major
goal is site autonomy: each site controls the evolution of its local database (updates,

restructuring) as well as the usage of its data from other sites (usually through the defi-

nition of export schemas). In such a system, one or more global views are built on each
site, each one extending the local database with selected parts of external databases.

Conversely, in integrated approaches, local databases are integrated into a sin-

gle distributed database (DDB). A distributed DBMS (DDBMS) is built to manage
the DDB. Most of DDBMS are monolingual: they support a single data manipula-

tion language, which has to be used to query and update the DDB (Ferrier, 1982;
Stocker, 1984) Any existing program on a local database has to be rewritten using the

distributed DDL,fDML. To avoid this burden, some authors advocated that integrated

systems should be multilingual, i.e., should offer at each participating site the ability
to access the DDB through the particular DDL and DML in use at that site (Spac-
capietra, 1982; Demurjian, 1988; Kim, 1989). Besides user friendliness, this allows

existing programs to continue operating after the DDB has been installed. Of course,
the DDBMS has to be complemented with a set of DDL/DML translators.

Except in the multidatabase case, a mechanism is needed to derive a new schema

(whether a global view or the DDB schema) from existing specifications. This pro-

cess is called database integration. It is similar to view integra~on, a process in classical

database design deriving an integrated schema from a set of user views. Because of

similarities, a generic term, schema integration (Batini, 1986), has been used to indis-
tinctly refer to both processes. However, there are differences which might preclude

from using a view integration technique for database integration, and vice versa. These

differences may be briefly sketched as follows.

1. As there is no standard taxonomy, terms like multidatabase, federated, o r integrated receive different

definitions depending on the author.

83

View integration methodologies cope with a situation in which views:

• are usually homogeneous, i.e., based on the same data model;

• have no associated recorded extension (it still is in the real world);

• have no coded program using them;

• are not necessarily implementable per se; they might therefore be expressed

using any desirable conceptual model, regardless of any future transformation
to make them acceptable by some DBMS.

On the contrary, in database integration, the initial (local) schemas:

• may be based on different data models;

• have an associated extension, i.e., they describe data which are actually stored

in a database;

• support a number of application programs (whether directly or through some
view);

• are implemented in an existing DBMS.

Current database integration methodologies do not really cope with heterogeneity.

They assume that, before integration starts, all existing schemas are translated into

equivalent schemas based on a unique data model. The choice of the unique data
model varies, of course, from one proposal to the other. As it deals with existing data-

bases, database integration may be limited to support mainly modeling concepts from
current DBMSs. However, in order to ensure proper understanding of the semantics

of the input schemas, additional information has to be provided by the DBA (Data

Base Administrator) before integration is performed (Biskup, 1986; Templeton, 1987;
Siegel, 1989). Finally, existence of extensions and programs is the most important

peculiarity of database integration versus view integration. Because of this, and its
economical impact, database integration methodologies should carefully avoid mod-

ification of existing schemas (more precisely, avoid modification of existing views on
these schemas). This fundamental requirement makes that most of view integration

methodologies do not apply here, as they use schema modification to solve conflicts

among initial specifications.

84

Figure 1. The generic framework for schema integration

input schemas - - ~ [

inter-schema
correspondence
assertions
(directly stated by
the DBA)

Investigator

I inter-schema correspondence
assertions (discovered by the
investigator, confirmed by the DBA)

~[Integrator ~ integrated scbema

mappings between
the input schemas
and the integrated
schema

integration rules

Generally speaking, schema integration is a two phases process (see Figure 1).
First, commonalities and discrepancies among input schemas have to be determined.
We call this the investigation phase. In traditional DB design methodology, this phase
is manual. The DBA examines input schemas and defines the applicable set of inter-
schema correspondences. Alternatively, automated reasoning may be used to discover
correspondences. The basic idea is to evaluate some degree of similarity between two
descriptions, mainly based on matching of names, structures and constraints (Navathe,
1982; Batini, 1984; Sheth, 1988; Bouzeghoub, 1990; Hayne, 1990; Siegel, 1991). The
extent to which these CASE tools are effective depends on the amount of available
knowledge about the semantics of the input schemas. The investigator's goal is to
identify plausible correspondences and prompt the DBA for confirmation or denial of
the findings.

Second, integration is performed. The integrated schema is built semi-automat-
ically, according to the inter-schema correspondences and available integration rules.
Interaction with the DBA is required to solve conflicts among input schemas each time
the integrator does not have the knowledge to do it. Conflicts arise whenever corre-
sponding concepts are modeled with different representations. The extent to which
conflicts are solved automatically is a measure of the power the integration method-
ology.

85

This paper is a contribution towards more powerful methodologies for the inte-
gration phase. No hypothesis is made about how the investigation phase is performed.
The methodology simply assumes, as an initial point, that the correspondences are

defined. The distinguishing features of our proposal are:

• it extends the scope of automatic integration by: 1) solving new cases of con-
flict, such as integration of object types and attributes, 2) integrating not only

elements (object types, attributes) but also links between elements. This is
achieved by defining appropriate integration rules;

• as a consequence of the former, it performs integration without requiring initial

schemas to be modified. This also relies on adequate mapping functionalities;

• it supports heterogeneity of input schemas through a data-model-independent

description of inter-schema correspondences and generic integration rules. For

instance, a relational schema may be directly compared with an object-oriented
schema. This requires the DBA to master various modeling techniques, a rea-
sonable requirement compared to the advantage of avoiding systematic homog-
enization of the input schemas;

• it may be easily tailored to either view or database integration.

The paper is organized as follows. The next section briefly reviews past work on data-

base integration. Section 3 defines a taxonomy of conflicts between schemas. As we
focus on structural conflicts, this section includes examples of such conflicts in cur-
rent data modeling techniques. Section 4 introduces our approach and sets the formal
framework for integration. Integration rules are discussed and illustrated on various
data models through Sections 5 to 9. Finally, the conclusion points out ongoing or
future work we plan on this topic.

2. Review of Past Work

There has been a large amount of work in the integration area: a detailed survey by
Batini et al. (1986) discussed twelve methodologies for view or database integration
(or both), and new contributions continuously appear in the literature (deSouza, 1986;
Deen, 1987; Civelek, 1988; Fankhauser, 1988; Sheth, 1988, 1989; DeMichiel, 1989;
Diet, 1989; Jardine, 1989; Larson, 1989; Siegel, 1989, 1991; Bouzeghoub, 1990; Hayne,
1990; Kaul, 1990; Kent, 1991) and many more in (Kambayashi, 1991).

An analysis of current methodologies shows a prevalent dichotomy of approach.
Most of view integration papers attempt to establish a semi-automated technique for

86

deriving an integrated schema from a set of integration assertions relating correspond-

ing objects in the views. We qualify these approaches as semi-automatic. They aim at

building an integrator, as discussed in section 1.

On the contrary, database integration methodologies aim at providing a tool al-

lowing the DBA to build, by himself, the integrated schema, as a view over the initial

schemas. A restructuring manipulation language is defined, whose functionalities al-

low selection and restructuring of schema elements from existing local schemas. We

qualify these approaches as manual. As the integrated schema is implemented as a

view over the initial schemas, manual approaches do not apply to view integration.

2.1 Manual integration methodologies. A manual database integration methodol-
ogy was first developed by Motro and Buneman (1981). The integrated schema is built

as a view, called "superview," over existing schemas of local databases. Both the input

schemas and the superview are described using a functional model augmented with

generalization. A superview results from a DBA-driven schema editing process. This

process defines a sequence of operations (a program), each one performing a modili-

cation or a restructuring transformation to be applied to initial schemas. Basically, the

restructuring operators allow to build or modify an object hierarchy (introducing ei-

ther a supertype or a subtype common to two existing types, merging a subtype and its
supertype), as well as to modify the attribute structure (introducing new aggregations

or removing existing ones).

A later paper (Motto, 1987) shows how "a mapping of the superview into the
individual databases is derived from the editing process and stored with the superview

as a virtual database." This mapping "is used to decompose each query into a set

of queries against the individual databases, and recompose the answers to form an
answer to the original query." Finally, Motro suggests that heterogeneity be dealt

with by translating all existing schemas into his functional model, as a pre-integration

step.

The MULTIBASE approach (Landers, 1982; Hwang, 1984) also features all usual

integration steps: homogenization of local schemas, building of the integrated schema,

automatic derivation of mappings, use of these mappings for automatic query modi-
fication. MULTIBASE also assumes a functional model, making extensive usage of
generalizations to build the integrated schema. A QUEL-Iike language is defined for

superview definition and as user query language. The authors advocate that this choice
results in a more powerful and more versatile integration methodology.

A similar approach may be found in the PRECI* distributed database system

(Deen, 1987). Its authors are concerned with integration of relational databases. An

algebraic restructuring language is proposed, resulting in mappings expressed as alge-

87

braic transformations. In the authors' opinion, this greatly facilitates query modifica-
tion.

Integration of relational databases also is the goal of the MERMAID system

(Templeton, 1987). Their approach is still mainly manual, although the DBA is some-

how assisted by the system. In a first step, the DBA has to extend existing schemas

with the definition of all underlying semantic domains. This allows the system to de-
termine which relations share some semantic domain: these relations are presented

to the DBA. Confronted with such a set of relations, the DBA chooses which relations

and which attributes have to be included into the superview.

More general and more powerful than MERMAID semantic domains, abstract

data types have been proposed (Siegel, 1989) to add semantics to a relational schema.
The authors also discuss how these abstract data types are used for a domain matching

process which includes both static and behavioral aspects of data. More about domain

matching may be found in (DeMichiel, 1989; Larson, 1989; Sheth, 1989).

Finally, the recent converging of the programming languages and databases
paradigms has generated several efforts to develop superview definition languages us-
ing an object-oriented approach (Fankhauser, 1988; Kaul, 1990; Bertino, 1991;

Czejdo, 1991).

2.2 Semi-automatic integration methodologies. A second stream of research has
investigated the feasibility of automating database integration. In fact, these method-

ologies are proposed for both view and database integration. They use assertions to
state correspondences between objects in different schemas. To each type of assertion

corresponds an integration rule, so that the system knows what to do to build the in-

tegrated schema from the initial schemas. Interaction with the DBA is invoked only

if unresolvable conflicts are detected (then the DBA instructs the system on how to

solve the conflict).

This basic framework may be found, for instance, in (Mannino, 1984). The au-

thors introduce matching techniques for both object types and attributes. Object types

integration builds various generalization hierarchies based on which set relationship
(equality, inclusion, intersection, disjointedness) holds between the extensions of the

related object types. Attribute integration is mainly based on semantic equivalences
defined by the DBA. An algorithm to check the consistency and completeness of at-

tribute assertions is also provided.

Concepts for matching of objects, relationships and attributes have been refined
and formally defined in a series of papers by Navathe, Elmasri and Larson, who may

be regarded as the major contributors to this field (with papers from Navathe, 1982 to
Larson, 1989, based on the ECR entity relationship model defined in Elmasri, 1985).

88

Implementation of integration tools, based on their methodology, has been reported

in (Hayne, 1990) and (Sheth, 1988). Larson (1989) presents a detailed analysis of

possible attribute equivalences. These are the basis on which object and relationships

equivalences may be stated. Attribute integration strategies are discussed, as well as
their application to both object and relationship integration. Ultimately, an attempt

is made to integrate an object type with a relationship type, showing a first concern
to solve structural differences. Additional criteria for attribute integration have later

been proposed (Sheth, 1989).

2.3 A comparison of the approaches. To illustrate the difference between the two

approaches, let us consider an integration example proposed in (Motto, 1987). The

schemas to be integrated are as follows (an arrow represents an attribute function, a

double-headed arrow represents an is-a link):

Faculty Student Thesis

I ~PersOn~ 1 / ~ / %
Rank Pin Name GPA Phd-advisor Phd-student Title

The integrated schema is:
Thesis

Phd-advisor Phd-student Title

Faculty Student

P e r s o n
/ \

Rank Pin Name GPA

Motro's approach needs a 14-operations program (using 6 operators) to produce the

final result. An assertion-based approach, as proposed in this paper, only needs two
statements, one to assert that Phd advisors are faculty members, the second one to

assert that Phd students are students.

The manual approach leaves to the user the responsibility (and the burden!) of
solving structural conflicts. This, we believe, is fairly unsatisfactory. First, it means

that we are only able to provide users with a toolkit (the restructuring manipulation

language), up to them to use it properly. Second, although most of the conflicts may

be similar in nature, users will have to "program" again and again the appropriate

89

restructuring (no powerful macros are available at the moment). Examples from the

literature show that these "programs" may be fairly complex. Third, the proposed

language may be inappropriate if a different data model is adopted (portability of the

integration technique has not been investigated).

For these reasons we give our preference to the semi-automatic approach. Its

current state of the art shows that only some types of conflicts have been tackled. The

taxonomy in the next section identifies which conflicts remain to be supported.

3. Conflicts Between Schemas

Conflicting representations are a major challenge for integration methodologies. Two

designers modeling the same universe of discourse, or two overlapping universes of
discourse, will probably describe the common real-world objects in different ways. De-

signers might have different perceptions, different information needs or use different

tools to express their perception of the universe of discourse. At the moment, there is

no standard classification of the possible types of conflicts between two schemas, and

the terminology is somewhat confusing. The following subsection defines the terms

we use to discuss conflicts.

3.1 A Taxonomy of Conflicts. We emphasize four reasons leading to the design of

different representations for common real-world objects.

1. The two designers do not perceive exactly the same set of real world objects,

but instead they visualize overlapping sets (included or intersecting sets). For

instance, a "Student" object class may appear in one schema, while a more

restrictive "CS-Student" object class (grouping students majoring in computer

science) is in another schema.

This is the first kind of conflicts, called semantic conflicts. The generalization
concept has been extensively used as a solution to semantic conflicts (Mannino,

1984) (except in works based on the relational model). For instance, the "CS-

Student" class will be integrated as a subclass of the "Student" class.

2. When describing related sets of real-world objects, two designers do not per-
ceive exactly the same set of properties. For instance, let us assume two rela-

tional schemas, S1 and $2, describing the same set of expensive car models:

I SI: Expensive_car (modelname, manufacturer, maximumspeed, price)

• $2: Car_model (name, horsepower, fuelconsumption, price)

90

Designers of S1 and $2 recorded different items, because of their different in-

terest in the many available pieces of information on car models in the real
world (one designer may have to keep data for advertisements in a fine arts

journal, while the other is concerned with advertisements in a technical jour-

nal, for instance).

We call this second kind of conflicts, descriptive conflicts. Descriptive conflicts

include naming conflicts due to homonyms and synonyms (Navathe, 1982; Ba-
tini, 1984), attribute domain, scale, constraints, operations, et cetera (Larson,

1989).

3. The designers use different data models, for example a relational one and an

object-oriented one. This is called a heterogeneity conflicL

4. Lastly, even if they use the same data model, they can choose different con-
structs to represent commpn real-world objects. For instance, in object-

oriented models when a designer describes a component of an object type O,

(s)he has to choose between creating a new object type or adding an attribute

to O. We call this kind of conflict a structural conflicL

The extent to which structural conflicts may arise is related to the semantic rel-

ativism of the data model in use, i.e., to its ability to support different, although
equivalent, representations of the same reality. Semantic and object-oriented

models have more semantic relativism than the relational model. Therefore,

the ability to solve structural conflicts is likely to be of ever-increasing impor-

tance for integration methodologies.

These conflicts are orthogonal and can be cumulative. Discrepancies between schemas
usually show a mix of conflict types. Different data models, or different sets of real-

world objects generate different structures. As an example, consider the following

entity relationship diagrams 2 which represent related universes of discourse:

S3 [U S c u s t o m e r ~ . - . ~ Product I
I l I

name C# date quantity P#

Order ~ < ~ Product] $4] C u s t ° m e r ~ ' ~ - ~ ' ~ I I I ~ I
name O# Odate qty p#

2. A single plain line denotes a 1:1 cardinality of the entity type in the relationship type. Combination of a

plain and a dotted line denotes a I:N cardinality.

91

Both represent some information about customers who order products from an en-
terprise. $4 includes all customers, while $3 only considers a subset of the customers
(semantic conflict). Customer's attributes differ between $3 and $4 (descriptive con-

flict). The information about an order is given in $3 as a direct relationship between

a customer and a product (s)he ordered. $4 favored a more detailed representation

based on order's materialization as an Order entity type (structural conflict).

The first two kinds of conflicts have been dealt with in earlier research. This pa-

per concentrates on the last two kinds of conflicts. For heterogeneityl we simply allow

heterogeneous schemas to be directly related to each other, as in the homogeneous

cease. A data-model-independent formalism is used to express inter-schema corre-

spondences. This formalism and integration rules are defined through the use of a
generic data model. Additional rules define how integration is tailored to the spe-

cific data models underlying input schemas. Such a customization is described in this

paper.
Structural conflicts, although well known in literature (Elmasri, 1979), have re-

ceived little attention. No automated strategy for their resolution has been proposed.

Existing methodologies rely on the DBA (.purposely in Navathe, 1986) for conforming

of schemas, a process in which views are modified by forcing related concepts to be
represented by the same structural construct. Input modification is not suitable for

database integration, where existing schemas continue to be in use after integration.

3.2 Examples of Structural Conflicts. Our main contribution, in this paper, is de-
voted to the automatic resolution of structural conflicts. This section gives some exam-
pies which show that such structural conflicts may arise irrespective of the data model
which is used for data description. To emphasize structural conflicts, the examples
show only structural conflicts. They all represent the same universe of discourse: per-
sons, cars and ownerships. The first ones, $5 and $6, illustrate conflicting relational

databases.

• S5: Car (registration#, color, horsepower, owner ID)

Person (p/n, name, sex, birthdate)

Inclusion dependency: Person.pin _D Car.owner ID

• $6: Car (registration#, horsepower, color)

Carownership (registration#, pin)

Person (p/n, name, sex, birthdate)

92

I n c l u s i o n d e p e n d e n c i e s :

P e r s o n . p i n _~ C a r o w n e r s h i p . p i n

C a r . r e g i s t r a t i o n # D C a r o w n e r s h i p . r e g i s t r a t i o n #

$5 uses o n e r e l a t i o n to h o l d i n f o r m a t i o n o n ca r s a n d t h e i r o w n e r s h i p s , w h i l e $6 has

sp l i t th i s i n f o r m a t i o n o v e r two r e l a t i o n s c o n s t r a i n e d by a n i n c l u s i o n d e p e n d e n c y .

L e t us c o n s i d e r a n o b j e c t - o r i e n t e d m o d e l . C a r o w n e r s h i p m a y n o w b e r e p r e s e n t e d

in six d i f f e r e n t ways , $7 to S12, w h i c h c o r r e s p o n d to six d i f f e r e n t ways o f d e f i n i n g a

r e l a t i o n s h i p in a n o b j e c t - o r i e n t e d m o d e l .

$ 7 : C l a s s C a r t u p l e <

r e g i s t r a t i o n # : • • •

c o l o r : . • •

h o r s e p o w e r : . . .

o w n e r : t u p l e < p in : • • . , n a m e : • • . , sex: • • • , b i r t h d a t e : • • • >

>

$ 8 : C l a s s P e r s o n t u p l e <

pin:..-
n a m e : • • •

sex: • • •

b i r t h d a t e : • • •

ca rs : s e t o f t u p l e < r e g i s t r a t i o n # : • • . , co lor : • • . , h o r s e p o w e r : • • • >
>

$ 9 : C l a s s P e r s o n t u p l e < C l a s s C a r t u p l e <

p i n : • . . r e g i s t r a t i o n # : . . .

n a m e : • • • co lo r : • • •

sex: • • • h o r s e p o w e r : • • •

b i r t h d a t e : • • • >

>

C l a s s C a r o w n e r s h i p t u p l e <

car: C a r

o w n e r : P e r s o n
>

SIO: Class P e r s o n t u p l e < Class C a r t u p l e <

p i n : . . . r e g i s t r a t i o n # : • . .

n a m e : • • • co lor : • • •

sex: • • • h o r s e p o w e r : • • •

b i r t h d a t e : • . • >

cars : s e t o f C a r
>

93

S l l : C l a s s P e r s o n t u p l e < C las s Ca r t u p l e <

p i n : • • • r e g i s t r a t i o n # : • • •

n a m e : • • • color : • • •

sex: • • • h o r s ep o wer : • • •

b i r t hda t e : . . . owner : P e r s o n
> >

S12: C las s P e r s o n t u p l e < Class Car t u p l e <
p i n : • . . r e g i s t r a t i o n # : . - -

n a m e : • • • color : • • •

sex: • • • h o r s e p o wer : • • •

b i r t h d a t e : - . . owner : P e r s o n

cars: se tof C a r >
>

As in the r e l a t i o n a l case, we a re c o n f r o n t e d wi th d i f fe ren t s t ruc tu re s express ing equ iv-

a l e n t schemas . T h e s e six poss ibi l i t ies a re d u e to the o b j e c t - o r i e n t e d flexibility in im-

p l e m e n t i n g l inks t h r o u g h re fe rences . T h e y r e d u c e to t h r ee if we c o n s i d e r a s e m a n t i c

m o d e l i n g a p p r o a c h , as, for ins tance , a n e x t e n d e d en t i ty r e l a t i o n s h i p (E R) mode l . T h e

fo l lowing d i a g r a m s i l lus t ra te t h e t h r e e e q u i v a l e n t v iewpoin ts . A n e x t e n d e d E R mode l ,

s u p p o r t i n g c o m p l e x objects , is a s s u m e d (Paren t , 1985, 1992). L ine s a re d r a w n accord -

ing to m i n i m u m a n d m a x i m u m card ina l i t i e s o f the l ink: a s ing le d o t t e d l ine s t ands for

0:1, a s ing le p l a in l ine s tands for 1:1, a d o u b l e d o t t e d l ine s t ands for 0:n, a n d a d o u b l e

l ine , o n e p la in , o n e do t t ed , s t a n d s for l : n .

S13:

Car I Person I
I I I / \

registration# colour horsepower ~ name sex birthdate

$14:

Car I !/ / \ ,,
registration# colour horsepower owner

- / / \ \
pin name sex birthdate

94

S15:

Person]

/ / I \ .:::,
name sex birthdate cars

registration# eolour horsepower

In these car ownership examples, the conflicts are due to different representations of

the real-world associations (the car ownership links) between persons and cars. In-

deed, an association may be represented:

as a nesting of the linked objects ($7, $8, S14, S15). This is not possible in

the relational approach, due to normalization rules (but is possible in non-first

normal form approaches (Schek, 1986);

ii as a reference from one of the linked objects to the other one ($5, S10, Sl l ,

S12) for data models supporting this kind of reference concept;

iii as an additional object-bearing references on the linked objects ($6, $9, S13).

The relational model supports representations ii) and iii); ER models support i) and

iii); object-oriented models support i), ii) and lii).

4. A Generic Description of Inter-Schema Correspondences

Basically, our approach to schema integration relies on the idea of moving knowledge

from outside the integrator into the integrator. Current integrators do not know how

to map schemas to each other if structural conflicts are involved, hence, they call onto

the DBA for conforming of input schemas. Putting knowledge about schema transfor-

mations into the integrator allows it to take care of schema conforming and to solve

structural conflicts. Similarly, current integrators have no knowledge of different data

models. Hence, the need to transform all input schemas into the integrator's data
model before integration can start. Putting knowledge about data models into the in-

tegrator allows it to manage correspondences between constructs from different data
models.

In the approach that we propose, the core of the integration methodology (de-

scription of commonalities between schemas, integration rules) is defined in terms of
a few generic concepts, abstracting from any specific data model. In addition to this
abstract framework, our integrator knows how to tailor the framework to cope with the

95

Figure 2. Framework for proposed integration methodology

generic integration tailoring rules
rules

inter-schema ~ i
correspondence Ib] integrated schema

asseruons / ~ (data model Z)
(all types of conflicts) /

heterogeneous / | Integrator ~ mappingSinput schemasbetweenand
input schemas ~ the integrated schema

(data models X, Y) t

constraints inherent to specific data models. In other words, it knows how to deal with

a statement about commonalities depending on the particular data model of the input
schemas. It also knows how to explicit the resulting integrated schema in different

data models. Moreover, integration rules have been defined to deal with correspon-

dences between concepts with different structural behavior. This supports resolution

of structural conflicts. The framework specific to our methodology is illustrated in

Figure 2.
Our approach starts with the hypothesis that commonalities between input sche-

mas have been identified and checked with the DBA and the users. These commonali-
ties are defined using inter-schema correspondence assertions. An inter-schema corre-

spondence assertion is a declarative statement asserting that something in one schema

is somehow related to something in another schema. Assertions precisely identify, if

applicable, which semantic, descriptive, and structural conflicts exist within the corre-

spondence. Hereinafter the term assertion is used to denote an inter-schema corre-

spondence assertion.
The integrator receives as input two (or more) schemas and the assertions in

between 3. The set of assertions is scanned and ordered for processing. Each assertion

is then considered and the appropriate integration rule is applied, taking into account
the data models of the input schemas. Integration rules define which constructs have
to be built into the integrated schema and how these constructs are mapped to the

corresponding constructs in the input schemas.

3. In this paper we do not discuss the problem of checking the consistency of the set of assertions
relating two schemas.

96

Generic data modeling concepts we use are defined in Section 4.1. Section 4.2.

defines their real-world counterpart, a concept needed to define the semantics of as-

sertions. Assertions are then discussed in section 4.3.

4.1 The Generic Data Model (GDM). GDM is a set of modeling concepts which

allows us to reason about integration of conflicting schemas. It is a tool to define the

generic assertions and integration rules. The GDM discussed in this paper is a basic

one, showing the major concepts: objects, value attributes, and reference attributes

(defined below). Completeness of the approach would require additional generic con-

cepts (generalization, for instance), but this is beyond the scope of this paper. GDM

is able to model complex objects, i.e., objects with a complex data structure, possibly

including other objects as their components. This simplifies the expression of asser-

tions. It also bears the potential for structural conflicts we are interested in, as what

is one component in one schema may be considered as a self-standing object in an-

other schema. GDM offers three modeling concepts: objects, value attributes, and

reference attributes. 4

A GDM object is an object identity complemented with a data structure consisting

of a tuple of attributes. For each attribute its minimum and maximum cardinalities

define the number of values it may bear (at least, at most): zero, one or more. An

attribute is either atomic or complex. A complex attribute is a tuple of attributes.

Atomic attributes are either value attributes (the associated domain is a value domain,

like integer, characters or date) or reference attributes (the associated domain is an

object type). Reference attributes are regarded as bidirectional: adding to an object

type O1 a reference attribute pointing at object type 0 2 is equivalent to adding to

0 2 a reference attribute pointing at O1. In the sequel, we use the term element to

indistinctly refer to objects and attributes.

GDM is structurally object oriented, but it is not identical to the object-oriented

model used in examples $7 to S12. The main difference is that GDM abstracts from ac-

cess paths: GDM reference attributes are non-directed binary relationships between

two objects. On the contrary, in most object-oriented models, as in the one of the ex-

amples, links between a compound object (for instance Car in $11) and its component

objects (Person in S l l) are one way links from the compound object to its compo-

nents. Another, minor, difference between GDM and object-oriented models is that,

in GDM, cardinalities of attrz~utes are precisely defined, in order to be used during

integration of links.

4. This is similar to the notions of object, own attribute, and ref attribute (Carey, 1988).

97

Besides modeling concepts, we also identify an additional concept: the link. We

use the term link to denote any direct connection between two elements: attribute

link between an element and one of its value or complex attributes, reference link

between an element and an object through a reference attribute. We do not discuss

generalization links in this paper. The two kinds of links that we consider are defined

below.

Definition DI: Link

let X and Y be object types, value or complex attributes, then X - - Y (also noted Y - - X)

is a link if:

• either Y is a value or complex attribute of X; then X - - Y is called an attribute
lin~

r
• or X holds a reference attribute, named r, pointed at object type Y; then X Y

is called a reference link. If there is no ambiguity (only one reference exists
r

between X and Y) X Y may be simply denoted X--Y. []

Cardinalities of links are used in the integration process. Minimum/maximum

cardinalities of X in the X - - Y link are the minimum/maximum number o f y E Y which

may be reached from a x E X through the X - - Y link. Conversely for cardinalities of

Y in the X - - Y link. X - - Y cardinalities are hereinafter denoted as: min(X):max(X),

min(Y):max(Y). These cardinalities are as follows:

min(X):max(X) =

minimum: maximum cardinality of the Y attribute, if X - - Y
r

of the r attribute, if X Y

min(Y):max(Y) = l:n, i f X - - Y (n = 1 i fY is an identifier of X)
r

O:n, if X - - Y

Examples:
ownerID

$5: Car Person is a reference link, with cardinalities O:l,O:n.

$6: Car--color and sex--Person are attribute links.

Car---color has cardinalities O:l,l:n. Sex--Person has cardinalities l:n,O:l.
. . p i n

Carownership registration# Car, t~a rownersmp- - re r son are reference links.

car owner
S9: Carownersh ip- -Car , Carownership Person are reference links.

S13: Car--Carownership and Carownership--Person are reference links.

98

Two elements in a schema may be bound directly by a link, or indirectly by a compo-

sition of links, called path. For example, Car and Person in $6 are bound through the
path: Car--Carownership--Person.

Definition D2: Path

let X l , X2,..., Xn be elements (object types, complex or value attributes) in a schema

such that ViE 1,2,...,n-I, Xi is linked to Xi+i, either by an attribute link or by a refer-
ence link, then X1--X2...X~, is a path. []

Cardinalities of the X1--X2--. . .--Xn path equal the product (lII) of the corre-

sponding cardinalities in the component links:

minimum cardinality of X 1 = l~iE[l:n_l] minimum cardinality of X/in X/--X/+I

maximum cardinality of X1 = l~IiE[l:n-1] maximum cardinality of Xi in X i - - X i + 1

minimum cardinality of Xn = lIIi~[2:n] minimum cardinality of X/ in X/_ i - -X/

maximum cardinality of Xn = HiE[2:n] maximum cardinality of Xi in Xi-l--Xi

Erample from $6:
sex--Person--Carownership---Car--color is a path associating the sex of a person to

the color of the car the person owns. Cardinalities of this path are 0:n, 0:n.

4.2. Real world s la tes . As previously stated, the semantics of correspondence as-

sertions is defined by referring to the real-world counterpart of the involved elements.

Larson (1989) introduced the "real-world state" of an object class O, RWS(O), as the

set of real-world instances of object class O at a given moment in time. We extend

this RWS concept to attributes, links and paths, in order to deal with every concept of

GDM (and of any data model). This will allow us to establish the meaning of corre-

spondence assertions relating elements of different types (object types and attributes),

or paths and links, in the next section.

The RWS of a complex or value attribute A may be defined, like the RWS of an
object type, as the set of real-world objects that the set of the present values of A

represents. In the case of a multi-valued attribute, the set of its present values is made
up of single values, not of sets of values. For instance, if color was a multi-valued

attribute of an entity type Car which contained two cars, a green one and a black-

yellow one, its RWS would be:

RWS(color) = {green, black, yellow}

One may wonder about the real objects described by a color or horsepower at-

tribute. One could think of a lexical RWS, where the perception is related to attribute

values, and a non-lexical RWS, where the perception abstracts from the present val-
ues to refer to objects implicitly referenced through those values. For instance, refer

99

to the simple value attribute registration# of the class Person in $8. Its RWS can be

viewed either as the set of string characters which represent the plate numbers, or as

the set of real cars which are owned by a person. However, when an attribute is stated

as corresponding to an object type, this always refers to the non-lexical RWS of the

attribute.

Definition D3: Real world state of an element (object type, complex or value at-

tribute)

The RWS of an object type O (respectively a complex or value attribute A) is the set

of real-world objects that the set of the present occurrences of O (respectively values

of A) represents. []

There is a one-to-one mapping between the RWS and the set of the present oc-

currences (or values) of the object type (or attribute). An attribute may have the same

value in several different objects of the database. Nevertheless, when one looks at

the set of the present values of an attribute, abstracting from duplicates, each value

describes exactly one real object of its RWS.

In the previous definition of RWS we did not dealwith reference attributes. Refer-

ence attributes do not bear values, and thus they cannot be perceived as corresponding

to objects, but to other links or paths. For this reason we are not interested in their
RWS as elements, but in the RWS of the link they express. The latter is defined below.

A link X--Y, or generally a path X--...--Y, is a connection between two object

types, X and Y. Its RWS is made up of pairs of real objects, one described by X and

one by Y, such that these two real objects are in the real world bound by an association

which the link (or path) represents.

Definition D4: Real world state of a path.

The real-world state of path X1--X2-...-Xr`, RWS(X1-X2-...-Xr`), is the bag of

real-world object pairs (01,or,), such that ol ERWS(X1) and or, ERWS(Xr,), There

exist objects o2,o3,...,or,-1 such that ViE1,2,...,n-1, oi ERWS(X/), with oi and oi+1

linked by the real-world association represented by the Xi--Xi_l. 1 link. []

Example from $6:
RWS(sex--Person--Carownership---Car--~.olor) is a bag of pairs of type (sex, color),

associating, for each person in RWS(Person), his/her sex to the color of one of his/her

cars.

100

4.3. Correspondence assertions. There are two types of correspondence asser-

tions: those relating two elements, and those relating two paths or links. Assertions
between elements identify the semantic, descriptive and structural conflicts, if any,

between the two related elements:

i) if one of the elements is an object type and the other one is an attribute, this denotes

a structural conflict;

ii) depending on the set relationship which relates the RWS of the elements, there is

no semantic conflict in between (=--), or there is one (_D, N, ~) ;

iii) an additional clause in the assertion specifies if and how the attributes of the two

elements are related to each other. A descriptive conflict appears if there is either
at least one attribute in one element with no corresponding attribute in the other

element, or at least one pair of related, but not equal, attributes.

4.3.1 Element correspondence assertions. We first illustrate the four possible set

relationships between the RWS of corresponding elements. The formal definition is

given next to the examples. Let us consider an enterprise with several local databases

operating in different departments that have to be integrated. Various local databases
may include the product catalog, describing all products sold by the enterprise. The
catalog is the same for all departments: an equivalence assertion will relate product

catalogs together. Suppose each local database maintains a file of department employ-

ees, using the same format, and suppose an employee works in only one department.

Employee object types will be asserted as corresponding but disjointed. Suppose now

that each department maintains a customer file. Different departments may share
some customers: Customer object types will be related by an intersection correspon-

dence. Finally, suppose each department has its suppliers, but suppliers have to be
chosen from a global file maintained at the head office. Local Supplier object types

will intersect each other, but they will be asserted as inclusion correspondences with

respect to Supplier in the head office database.

Definition D5: Element correspondence assertions

Let X1, X2, be two elements (object types, complex or value attributes), X1 from

schema $1, X2 from schema $2. A correspondence between X1 and X2 may be as-

serted as one of the following:

• X 1 and X2 are equivalent, expressed as: X1 ~ X2

which states that at any time RWS(X1) = RWS(X2) ;

• X1 contains X2, expressed as: X1 2 X2

101

which states that at any time RWS(X1) _~ RWS(X2);

• X1 and X2 intersect, expressed as: Xlf"l X2

which states that at some time RWS(X1)f'IRWS(X2)~ Q;

• X1 and X2 are disjoint, expressed as: X1 ~ X2

which states that at any time RWS(X1)f-I RWS(X2)= Q. D

This last assertion means that, although disjoint, their semantics is related, and the

DBA wants to merge them into a more generic element in the integrated schema.

4.3.2 Corresponding attributes assertions. Whenever two elements are asserted as

corresponding, complementary assertions about attribute correspondences are need-

ed to direct the integrator towards the production of the integrated structure, i.e.,

what are its attributes. In our model, these assertions about corresponding attributes

of corresponding elements X and Y are stated for reference attributes as path asser-

tions, and for value and complex attributes as part of the correspondence assertion

between X and Y, using a "with corresponding attributes" clause. This clause defines

the descriptive conflict, if any.

Similar to element correspondences, the set relationship between the sets of values

of two attributes is one of the following:

i = the attributes have the same values;

ii _~ the value(s) of one attribute include the value(s) of the other attribute. If

both attributes are monovalued, either they both have the same value, or the

included attribute has a null value;

iii n the two attributes are multi-valued and their sets of values intersect;

iv ~ the values of the attributes are always different, but they are related. The

DBA wants to merge them into a broader one, union of the two attributes.

The "with corresponding attributes" clause defines for each attribute correspondence,

which is the set relationship, and, if any, the function mapping one domain into the

other. Different types of functions may be involved:

a 1:1 mapping defining a translation of the domains. A matching table may

be used for this purpose. For example, Swiss francs may be converted into US

dollars.

102

an aggregate function deft ning the value of a mono-valued attribute as the result

of the aggregation of the set of values of a multi-valued attribute. For example,
an attribute children--number is equal to the count of values of an attribute

children of another database.

a tuple function defining the value of an attribute as the result of the Cartesian

product of several attributes. For example, an attribute address is equal to the

Cartesian product of attributes number, street and city of another database.

More facets to be considered have been suggested (Larson, 1989): integrity and se-
curity constraints, allowable operations. We will not discuss these additional facets,

as they do not change the nature of the problem. The reader interested in attribute

matching may also refer to DeMichiel (1989) or Sheth (1989), who specifically deal
with this topic.

Because our aim is not to analyze those many facets, Definition D6 deals only

with the set relationships between the value sets of two attributes. Each Ali m a y be

replaced by f(Ali) (translation of domains or aggregation function), by f(A1il,Ali2,...,

Alip) (tuple function) or by any composition of these functions, and similarly for A21.

Definition D6: Corresponding value attributes assertions.

Let X1 (cor)5 X2 be an element correspondence assertion. Let All , A12,...,Aln be

value attributes o f X1, and A21 , A22,. . . ,A2n be value attributes o f X 2 (if X1 or X2 is an
atomic attribute, it is implicitly considered here as having itself as unique component).

Let us call 0 any element common to both X1 and X2 real-world states, oERWS

(X1)NRWS(X2) ~, and el, e2 be the occurrences representing 0 in the databases de-

scribed by $1, $2. Then:
X1 (cor) X2 with corresponding attributes:

a ttcorl (A 11, A21), attcor2 (A12, A22),...,attcori (A1 n, A2 n)
is also a correspondence assertion which states that:

X1 (cor) X2 is true, and for each attcori(Ali, A2i):

• ifattcori(Ali, A2i) is A l i = A2i

then at any time, for any oERWS(X1)ARWS(X2): el.Ali=e2.A2i;

5. (co,)::= 121 n I#
6. If X 1 and X 2 are disjointed, we consider o to be a hypothetical element contradicting the disjointedness

(i.e., if such a o would exist, oE RWS(X 1)ARWS(X2) , then ...)

103

• if attcori(All, A21) is Ali D A21

then at any time, for any oERWS(X1)flRWS(X2): el .Al i ~e2.A21;

• i fa t tcor i (Al i , A2i) is AliM A2i

then it is possible that for some oERWS(X1)MRWS(X~): el.Aline2.A2i ~

• ffattcori(Ali , A2i) is Ali ~A2i

then at any time, for any oERWS(X1)NRWS(X2): el.Aline2.A2i =J~,

but the two attributes are semantically related and the DBA wants to merge

them into a broader one, a union of the two. []

Attribute correspondences should not contradict correspondences asserted for their

parent elements (Larson, 1989). Each element correspondence assertion involving

a mapping of occurrences of different databases, i.e., element equivalence, inclusion

or intersection assertion, must contain a 1 to 1 attribute equality assertion relating
identifiers:

Ali = A2i or A2i = bijective function (Ali).

4.3.3 Path correspondence assertions. The analysis of the inter-schema relation-
ships also calls for the identification of the correspondences among paths. Refer to
S14 and S15. I f we suppose that the two schemas see exactly the same objects (cars
and persons), the element correspondence assertions between S14 and $15 are:

Car~cars with corresponding attributes:

registration# = registration#, color = color,

horsepower = horsepower

owner~Person with corresponding attributes:

pin = pin, name = name, sex = sex, birthdate = birthdate

These two assertions will generate two entity types, Car and Person, in the inte-

grated schema. Nothing in the above assertions states that the real-world associations
between cars and persons, described by S14 and S15, are one and the same ownership

association. Consequently, the integrator will generate in the integrated schema two

104

relationship types between Car and Person, one to express the Car-owner S14 link and
the other to express the Person-cars S15 link:

mcistration# colour horsepower ~ ,Y / ~ name sex binhdam

In order to allow the integrator to integrate those two links into a unique relation-
ship type (producing S13 as integrated schema), the DBA has to state that both finks

have the same semantics. In our methodology, the DBAwill define the following path
correspondence assertion (which is explained below):

Car--owner ~ cars--Person.

Two paths or links may be asserted as corresponding only if they relate correspond-
ing elements. That is why the definition of path assertions refers not to the whole RWS
of the corresponding elements, but to the subset of this RWS which involves only the
objects that have a corresponding object in the other database. In definition D7, we
call this subset RWS ~.

Definition D7: Path equivalence assertion.

Let X1--X2--.. .--Xn be a path in schema S, and Y1--Y2--...--Yp be a path in schema
S ~, such that there is a correspondence assertion relating X1 to Y1 and an assertion

relating Xn to Yp.

Let RWS~(X1) be the subset of RWS(X]) defined by its restriction to X1 objects
which are involved in the asserted correspondence with Y1 objects. Let RWS~(Y1),

RWSt(Xn) and RWS~(Yp) be similar restrictions of the corresponding RWS.

Let RWSt(X]--X2--.. .--Xn) be the subbag of RWS(X1--X2--. . .~Xn) defined
by its restriction to object pairs in RWS~(X1) × RWS/(Xn), and similarly for RWS/(Y1 -

Y2--...--Yp).

The assertion that the two paths are equivalent, expressed by the statement:

X l - - X 2 - - ' " - - X n ~ Y]--Y2--...--Yn

105

states that at any time:

RWS' (Xi - -X2- - . . . - -Xn) = RWS'(Y1Y2--...--Y~,). 12

The other assertions, path inclusion, intersection and exclusion, may be defined

in the same way as for element assertions.

Example relating $3 and S4:
USCustomer C Customer with corresponding attributes: name =name

Ordered --z Ordline with corresponding attributes: quanti ty=qty

Product _~ Product with corresponding attributes: P # = P #

Ordered • date ~ Order • Odate

Ordered- -da te ~ Ordline---Order---Odate

CustomermOrdered =-- Cus tomer - -P l aces iOrde r - -Ord l ine

Product - -Ordered ~ Product--Ordl ine

The last three assertions are path assertions which respectively state that:

• the date of Ordered in $3 is the same as the date of the Order linked to the

corresponding Ordline of $4;

• the Ordered occurrences which link a customer in $3 are equivalent to the Or-

dline occurrences which link the corresponding customer of $4 through Order

and Places;

• the Ordered occurrences which link a product in $3 are equivalent to the Ord-

line occurrences which link the corresponding product of $4.

4.3.4 Conclusion. Until nowwe have defined two kinds of correspondence assertions:

between elements with their corresponding attributes, and between paths. They cover

all the concepts of GDM, and can describe most of the current inter-schema corre-

spondences involving one occurrence or value of each database. Other correspon-

dence assertions have to be defined when a set of occurrences (or values) is corre-

sponding to an occurrence (or value), as in the famous convoy of ships example. Even

in the one to one mapping, full integration of complex attributes at any depth will

require more precise correspondence assertions.

As we have seen, correspondence assertions can be used with any kind of data

model (object-oriented, relational, ER). Moreover, they can state correspondences

between two heterogeneous schemas, as in the following example.

106

Example relating the relational schema $5 and the object-oriented schema $9.

Car ~ Car with corresponding attributes:

registration# = registration#, color = color, horsepower=horsepower

Person =-- Person with corresponding attributes:

pin = pin, name = name, sex = sex, birthrate = birthdate

Car--Person ~_ CCar--Carownership---Person

5. Schema Integration

This section and the following ones discuss the integration rules which govern the defi-

nition of the integrated schema from the initial schemas and the correspondence asser-

tions among them. Not to overload the paper and the reader, we only consider here-

inafter the equivalence correspondence assertions r. We also restrict the discussion to

atomic attributes and complex attributes with only atomic component attributes. Fi-

nally, our rules assume a binary integration strategy (integration of two schemas at a

time). However, their extension to a n-ary integration strategy (integration of several

schemas in one step) is rather straightforward.

Each integration rule is first stated according to our generic model GDM. Cus-

tomization of the rule is then shown on relational, entity relationship and object-

oriented models. When applying a generic rule to a particular model, constraints

which are specific to this model are taken into account. Those constraints are:

• existence dependencies,

• for most of object-oriented models, the fact that reference attributes are di-

rected: a link A-+B and a link A~--B do not provide the same facilities to the

use r s ,

• for ER models, the fact that reference attributes are mandatory and monoval-

ued: they cannot have a null value, they must always point at some unique,

existing object.

For each initial schema element and link, the database integration process has to:

• define what elements have to be inserted into the resulting schema,

7. Those interested in how inclusion, intersection, and exclusion assertions behave with respect to equiva-

lence assertions may refer to Larson (1989), Mannino (1984), and a different viewpoint in Jardine (1989).

107

I define the distribution information attached to these elements, showing on
which local database which subset of the corresponding population may be
found,

define the mappings between the initial schemas and the integrated schema. 8

These mappings support the translation of global queries on the integrated
schema, into local queries on the local schemas. In our approach, the map-
ping definitions are based on the ERC+ algebra (Parent, 1985). This algebra

extends the relational algebra to deal with entity types, relationship types and
complex attribute structures.

DilIerent algorithms may be designed to perform the integration process. The choice
depends on whether integration adopts a binary strategy or a more efficient n-ary strat-

egy. The algorithm also depends on the degree of interaction with the DBA. On one
extreme, the DBA states all assertions and the integration process integrates the in-
put schemas in one shot, showing the final result. On the other extreme, integration
may proceed one assertion at a time, for instance with the DBA pointing on the two
corresponding elements on a screen and describing the correspondence, and the in-

tegrator immediately displaying the result of processing that particular assertion. For
this reason, this paper does not suggest any particular algorithm 9.

This section first explains the principles governing our integration rules. Next, it
introduces how two value attributes are merged, which is needed for the definition of
an extended join operator, which we call integrate-join, used in the integration rules
to build the structure resulting from the merging of two corresponding structures. Fi-
nally, the very first integration rule is stated, governing integration of elements which
are local to one of the input schemas.

5.1 Integration principles. The rule definitions are based on two basic principles,

which are model independent:

1. The scope of integration rules has to include both elements and finks integration,

2. Whenever there is a structural conflict between two schemas, the integrated schema
will hold the more unconstrained structure: the one which has less existence de-

pendencies.

8. When n schemas are integrated using a binary strategy, the intermediate integrated schemas are used
as input to the next integration step. In this case it is preferable to generate correspondence assertions
(instead of mappings) to meet initial conditions for the next step (i.e., two schemas and the correspondence
assertions in between).

9. An algorithm for integration of ER views is proposed in Spaccapietra (1992).

108

The rationale for the first principle has been given in section 4.3.3. The ratio-

nale for the second principle is that the integrated schema has to support queries and

updates on all underlying databases. If different constraints hold on related data in

different databases, the integrated constraint has to be the weakest one, so that no

access request is unduly rejected at the integrated level. For instance, if the age of

persons is limited to the 20--50 range in database DB1, and database DB2 has more

persons than DB1, with age ranging from 20 to 65, the integrated schema will hold a

20-65 age range constraint. The 20-50 restriction will be enforced on DB1 through

the mapping between the integrated schema and DB1. The same reasoning holds for

data structures. The identification of the most unconstrained structure depends on

the data model in use, as follows.

GDM and object-oriented models: GDM element types are object types and attributes.

They differ in two aspects: object types have an identity, attributes don't. Object types

have no existence dependency: they can be linked to other object types and to at-

tributes, but this is not mandatory. On the other hand, attributes have to be linked

to one and only one other element, their parent element (object type or complex at-

tribute). These dependencies can be summarized in the following table.

Existence dependencies in GDM and object-oriented models:

object type attribute

object type 0:n 0:n

attribute 1.'1 or 1:1

where n:p in line i and column j means that any element of type i must be linked to at

least n and at most p elements of type j. The two 1:1 figures in the attribute line are

linked by an exclusive or (an attribute is either attached to an object type or to another

attribute).

The most unconstrained structure is the object type. When an object type O1 of

schema S1 is corresponding to a value or complex attribute A2 of schema $2, an object

type O will be put into the integrated schema and a link will be added to bind O to the

integrated parent element of A2, as is shown in the following figure.

Schema $1 Schema $2

~bu~ of Ol / ~o~t~b~t~ o~O2
-umwmmm~

attfibute~ of A2

Integrated Schema

integrated auribuu~s other attributes of O2
ofOl ~md A2

109

Relational model.

Existence dependencies

relation

attribute

relation attribute

0:n l:n

1:1 0:0

Moreover, both attributes and relations have no identity.

structure is the relation.

The most unconstrained

Entity relationship models: Here, we refer to entity relationship models, as ERC+,

where entity types and relationship types have an identity while attributes don't.

Existence dependencies

entity type
relationship type

attribute

entity type relationship type attribute

0:0 O:n O:n
2:n 0:0 O:n

1:1 or 1:1 or 1:1

When an entity type of schema S1 corresponds to an attribute or to a relationship type

of schema $2, the more unconstrained structure is the entity type. In the integrated

schema, an entity type is generated together with the relationships which express the

attribute link or role links of $2.

When a relationship type and an attribute correspond, their existence dependen-

cies are not compatible: a relationship type has to be linked to at least two entity types,

an attribute to at most one entity type. They will be integrated into an entity type plus

relationship types expressing the attribute and role links.

5.2 Basic definitions for merging attribute structures. We first define how two

atomic value attributes are merged to produce an integrated attribute.

Definition D8: Integration of two corresponding value attributes of two equivalent

elements.

Let El, E2 be two corresponding elements (object types or complex attributes) of

schemas S1 and SZ Let A1 and A2 be atomic value attributes of E1 and E2 respec-

tively. If it is asserted that A1 and A2 correspond to each other:

E1 ~ E2 with corresponding attributes: attcor(A1, A2)

110

then integration of A1 and A2 is defined as a simple attribute A, such that:

• its name is A1, except if the DBA chooses another one 1°,

• its domain is defined as follows:

if attcor(A1, A2) is A1 =A2 or A1DA2 then domain(A1)

if attcor(A1, A2) is Alf lA2 or A I ~ A 2 then domain(A1)Udomain(A2)

• its cardinalities are defined as follows:

if attcor(A1, A2) is A I = A 2 or A1DA2 orA2 = (A1)

then cardmin(A)=cardmin(A1), cardmax(A)=cardmax(A1)

if attcor(A1, A2) is Alf'IA2

then cardmin(A) = Max(cardmin(A1),cardmin(A2))

cardmax(A) =cardmax(A1) +cardmax(A2)

if attcor(A1, A2) is A1 =A2

then cardmin(A) =cardmin(A1) +cardmin(A2)

cardmax(A) =cardmax(A1) + cardmax(A2) []

We can now define the integrate-join operator, merging two composite elements, ob-
ject types, or complex attributes.

Definition D9: Integrate-join.

Let El, with value attributes (A l l A l j , B1,...Bk), and E2, with value attributes
(A21,..., A2~, Cb ...Ch), be two elements (object types or complex attributes) of data-
bases S1 and $2, asserted to be equivalent to each other:

E1 ~ E2 with corresponding attributes:
attcorl (All, A21), at tcor2 (A12, A22),..., a ttcorj (At j , A2j).

Let attcorl(AH, A21) be the assertion which specifies the 1:1 mapping between the
identifiers of E1 and E2. Then the operation:

E:= integratejoin (El, E2, attcorl (All, A21), attcor2(A12, A22),..., attcorj(A U,
A2j))

10. For DBA users of the future global database, a relevant criterion may be understandability. Which

linguistic and ergonomic considerations would be useful is beyond the scope of this paper.

111

creates a new object type E defined as follows:

• its structure consists of the union of E1 and E2 attributes, defined as:

1. an attrl'bute B~ for each attribute Bi of E1 which has no counterpart in
E2; its domain and cardinalities are equal to those of Bi

2. an attribute C~ for each attribute q of E2 which has no counterpart in
El; its domain and cardinalities are equal to those of Ci

3. an attribute A/ fo r each attcori(Ali, A2i); A/ is the integration of Ali

and A2i

• its population contains one occurrence, e, for each real-world object of the RWS
of E1 and E2. The value of e is defined as the merging of the values of the E1
and E2 occurrences describing this real-world object and which are linked by

the 1:1 mapping attcoh(A11, A21):

for each attribute B~: e.B~ = el.Bi

for each attribute C~: e . ~ / = e2.Ci

for each attribute A/

if attcori(Ali, A2i) is Ali =A2i or All _~A2i

then e .A/= el.Ali

if attcori(Ali, A2i) is AliNA2i or All ~A21

then e .A/= el.AilUe2.A2i 13

5.3 Integration of local elements and links. A first, quite evident, model indepen-

dent integration rule applies to elements and links which appear in only one of the
schemas to be integrated.

Integration rule 1:
Each element X1, of schema S1, which has no counterpart in the other schema, is
added, as element X, to the integrated schema. The type of X is the same as the one
of X1.

Correspondence assertion: X_=X1.
Mapping: X := X1.
Distribution: X is X1 on database S1.

Each link, X1--Y1, of schema S1, which has no counterpart in the other schema, is
added, as link X--Y, to the integrated schema, where X and Y are the integrated

112

elements corresponding to X1 and Y1. The type of XY depends on the types of X and
Y (see the discussion in section 7).

Correspoadence assertion: X--Y_=X1--Y1.
Mapping: X--Y := rename [XI~Y1].
Distribution: X--Y is on database S1. O

6. Integration of Two Object Types

This section only considers value attributes within the object types. Reference at-
tributes participate in link or path correspondence assertions. Their integration is
therefore discussed in the next sections.

Integration rule 2:

Let XI, with value attributes (Alb..., Alj , Bi,...Bk), and X2, with value attributes
(A21,..., A2j, C1,...Ch) be two object types in two schemas, X1 ES1, X2 ES2, such
that:

X1 ~ X2 with corresponding attributes:

attcorl (All, A21), attcor2 (A12, A22),..., attcorj(Alj, A2j)
the element in the integrated schema resulting from the integration of X1 and X2 is
an object type X, such that:

• its name is Xl'S one, except if the DBA chooses another one;

• its structure consists of the union of X1 and X2 attributes, as defined by the
integrate-join of X1 and X2.

Correspondence assertions relating X to Xl and X2 are obvious:
X ~ X] with corresponding attributes:

attcorl (A1, All) , attcor2(A2, A12),..., attcorj (Aj, Al j)
attcorl al), attcor2(a[, B2),..., attcor (BL Bk)

X~X2 with corresponding attributes:
attcorl (A1, A21), attcor2(A2, A22),..., attcorj (Aj, A2j)
attcorl (C~, C1), attcor2 (C~, C2),..., attcorh (C~, Ch)

Mappings between X, X1 and X2 may be defined as:
X: = integratejoin (X1, X2, attcorl (A11, A21), attcor2 (A12, A22),..., attcorj (Axj,

A2j))
X1 := project ' ' [A1,..., Aj, B1,...Bk] X.
X2:= rename [A1 :A21,..., Aj:A2j] project [A1,..., Aj, C~, ...C~] X.

113

Description of actualdistribution records that X is stored in both databases, S1 and $2.
More precisely, X is split into fragments (vertical partition)"

project ' [B1,..., B~] X is in database S1
project [C~,..., C~] X is in database $2
for each A/, if attcori(Ali, A21) iS:

Ali = A2i then Ai is duplicated in both databases,

Ali ~A2i then Ai is on site S1, and some values are duplicated in database $2,

Alif"IA21 then A/is partially duplicated,

Ali ~A2i then A/is distributed between databases 81 and S 2. []

Example: Referring to schemas S1 and $2 (section 3), let us suppose that the two
databases describe the same set of cars. The correspondence assertions would be:

Expensive_ear--zCar_model with corresponding attributes:
modelname = name, price = price

The integrated schema would be:
Expensive_Car (modelname, manufacturer, maximumspeed, price, horsepower,

fuelconsumption)

Indeed, integration rule 2 can be applied directly:

• for relational models, to integration of relations without any external key,

• for ER models, to integration of entity types,

• for object-oriented models, to integration of object types without any reference
attribute.

More integration rules, dealing with links and paths, have to be defined in order to
be able to integrate ER relationship types, object-oriented reference attributes, and
relational relations with external keys.

7. Integration of Two Links

Integration rule 3 deals with elementary finks (attribute and reference links), and al-
lows the integration of two equivalent finks which bind equivalent elements. Rule 4
deals with paths which are composed of several links.

114

Integration rule 3:
Let A1 and B1 be two linked elements (object types, value or complex attributes) in

schema $1, A2 and B2 be two linked elemenls (object types, value or complex at-

tributes) in schema $2, with the following correspondence assertions:

A1 ~ A 2
B1 ~ B2
A1---~1 -~ A2--B2

Let A be the integrated element in the integrated schema corresponding to A1 and
A2, let B be the integrated element in the integrated schema corresponding to B1 and

B2. The integration of A1--Bi and A2--B2 links is then a link A--B. The type of the
link depends upon those of A and B:

• ff A or B is a value attribute then A--B is an attribute link

• ff A and B are object types then A--B is a reference link: a reference attribute,

named B is added to A, or vice-versa.

As the three correspondence assertions are equivalence ones, the cardinalities of the

two links, A1--B1 and A2--B2, are necessarily the same, and the cardinalities of the
integrated link, A--B, are also the same.

Correspondence assertions are obvious:

A ~ B ~ A 1 - - B 1

A B~A:2--B 2

Mappings:
A--B: = rename [A1--B1]

A--B: = rename [A2--B2]

Distribution: the A--B link is dupliccated: it is stored in both databases, S1 and $2. []

Let us now discuss how rule 3 applies to the different models.

Relational model:

As the relational model has no existence constraint on its reference attributes (a rela-

tion may have zero, one or several external keys), rule 3 applies without modification.

Example:

S18:

Man (manlD, name, address, wife)

Woman (womanlD, name, address)

Woman.womanlD D Man.wife

S19:

Man (manlD, name, address)

Woman (womanlD, name, address, husband)

Man.manlD D Woman.husband

115

Correspondence assertions between S18 and S19:

Man =-- Man with corresponding attributes:

manlD = manlD, name = name, address = address

Woman =_ Woman with corresponding attributes:

womanlD = womanlD, name = name, address = address

Man- -Woman _= Man--Woman

The integrated schema is S18 or S19, plus an integrity constraint which defines the

cardinalities of the integrated link. These cardinalities are deduced from those of the

two corresponding links. In S18, the link Man--Woman has cardinalities 0:1, 0:n (wife

is an external key which must either reference one Woman, or bear a null value). In

S19, the link Man- -Woman has the inverse cardinalities: 0:n, 0:1. Therefore, the inte-

grated link will have cardinalities 0:1, 0:1. These cannot be expressed in the relational

model. An integrity constraint is needed. For instance, the integrated schema will

be S18 plus the following integrity constraint: there are no two men with the same wife

(i.e., there are no two Man tuples with the same wife value). Without the link corre-

spondence assertion, integration of S18 and S19 would have generated two redundant

external keys, wife and husband.

Object oriented models:

Integration rule 3 has to be modified in order to deal with the directed links of most

object-oriented models. Suppose an object-oriented model where reference attri-

butes, as value attributes, are directed. By "directed" we mean that a reference at-

tribute allows direct access only from the parent element to the referenced object, and

not in the other way around. Rule 3 is adjusted as follows.

Object oriented rule 3: Integration of two equivalent directed links:

A1 ---+B1 ~ A2 ---~B2
generates a directed link A-~B. If B is a value attribute, A--*B is an attribute link. If

B is an object type, A---~B is a reference link: A holds a reference attribute pointing

at B. []

Opposite directed links, like A1 ---~B1 versus B2 ---~A2, cannot be asserted as cor-

responding. Therefore, rule 3 will not apply and the two links are integrated through

rule 1. As local elements, both will be added to the integrated schema.

Example: refer to schemas S10 and S l l of section 3.

Correspondence assertions between S10 and S l l are:

Car ~ Car with corresponding attributes:

registration# = registration#, color = color, horsepower = horsepower

Person =-- Person with corresponding attributes:

pin = pin, name = name, sex = sex, birthdate = birthdate

116

Integration only calls for rules 1 and 2, and results in schema S12.

Entity relationship models:
Integration rule 3 may be directly applied to ER models in order to integrate role links
between entity types and relationship types. Using both rules 3 and 1 allows us to de-
fine deduced rules integrating object types with reference attributes, i.e., relationship
types. Equivalent reference links are integrated 11, and local reference links are added.
Applying these two rules to ER models, consistently with the basic principle of choos-
ing the more unconstrained structure (the entity type) in case of structural conflict,
produces the following rule:

ER rule 1+3: Integration of an entity type E1 and an equivalent n-ary relationship
type R2 is an entity type E and n binary relationship types linking E and the entity
types that R2 links. Integration of two equivalent relationship types, R1 and R2, is a
relationship type which finks all the entity types that R1 or R2 link. El

Example: integration of an entity type and a relationship type

$20:

i I I / I
name orename contract# ~ type colour

$21:

I C o n t r a c t I

/ \
insurance co.

Correspondence assertion between $20 and $21: Insures _= Contract with correspond-
ing attributes: contract# ~ contract#

The integrated schema is12:

! p°rsoo Car I
I / / . I # l

name forename insurance co. contracts reglst type colour

11. The limited cardinalities of role links (each role link of any relationship must always point at exactly
one existing entity) must be taken into account when choosing the type of integrated link.

12. This schema could be simplified (by merging Signs+Cont rac t+Insures into one relationship type) if no
other relationship comes on Contract. This would be done in a final refinement step, not discussed here.

117

Example: integration of two relationship types

$22:

Person Car

I i I
name forename retist# type colour

$23:

I Person ~ Car t

I } I
Rill name forename I, date resist# type colour

I', [Insurance ¢o,1
/ N

name address

Correspondence assertions between $22 and $23:

Person ~ Person with corresponding attributes:
pin ~ pin, name ~ name, forename ~ forename

Car ~ Car with corresponding attributes:
registration# ~ registration#, type ~_ type, color ~ color

Insures --z Insures
Person--Insures ~_ Person--Insures

Insures--Car ~ InsuresNCar

The integrated schema is $23.

8. Integration of Links and paths

The integration process should not generate redundant information in the integrated
schema. When integrating links and paths, we have to know if each one bears inde-
pendent information, or if one can be deduced from the other. Two cases may happen:

a link A1--B 1 is equivalent to a path A2--...--B2; therefore keeping in the
integrated schema only A2--...--B2 is enough. The direct link will be deduced
by composition of the components links of A2--...--B2.

two paths A1--...--B1 and A2N...--~2 are equivalent, then both paths must
be kept in the integrated schema. Deleting one path would delete all its com-
ponent finks which are not equivalent to any other link or path. An integrity
constraint stating that the two paths are equivalent is added to the integrated
schema.

118

Integration rule 4." links and paths integration rule:

Let A1, B1, ... D1 be elements in schema Sl, let A2, B2, ... D2 be elements in schema
$2, with the two correspondence assertions:

Ai ~ A2, Di ~ D2.
Let A (respectively D) be the integrated element in the integrated schema correspond-
ing to A1 and A2 (respectively to Di and D2), then:

I. the correspondence assertion between a link and a path:

A imDI ~ A2mB2--...mD2

generates in the integrated schema the path A--B~m. . .~D (where B~ is the
integrated element corresponding to B2);

2. the correspondence assertion between two paths:

Ai - -BI~ . . . - -D1 --= A2--B2--...--D2

generates in the integrated schema the two paths:

A i ~ B ~ . . . - - D I ~ D and Az--B2--. . . -- 2

(where B~ and B~ are the integrated elements corresponding to BI and B2), and
an integrity constraint which states that the two paths link the same occurrences.

In both cases, the generated paths are created according to the modeling concepts of
the linked elements, as in rule 3. 12

Integration rule 4 includes integration rule 3.

The schema will be integrated to the extent that the DBA describes the correspon-
dence assertions. For example, let two schemas be related by the following correspon-
dence assertions:

A1 ~ A 2 , C1 ~ C2, F1 ~ F 2
Av--C1 --= A2--...--C2

C1--F1 =-- C2--...--F2
If, instead of stating the two path assertions, the DBA only asserts:

A1--.. .--Ci--. . .--Fx ~ A2--...--C2m...--F2
then less knowledge is given to the integrator and the integration will be less advanced.

Relational model:

Integration rule 4, as rule 3, applies without modification.

Example: refer to schemas $5 and $6, with the following correspondence assertions in

between:
Car _= Car with corresponding attributes:

registration# = registration#, color = color, horsepower = horsepower

119

Person --z Person with corresponding attributes:

pin = pin, name = name, sex = sex, birthdate= birthrate
Car--Person ~ Car--Carownership--Person

The integrated schema is $6.

Object-oriented models:

Integration rule 4, as rule 3, has to be adjusted in order to integrate finks and paths

which are oriented in the same direction.

Entity relationship models:

Integration rule 4, as rule 3, applies without modification.

9. Integration of an object type and an attr ibute

One of our basic integration principles is that whenever conflicting descriptions exist

in different views, the integrated schema will hold the more unconstrained representa-

tion in order to be able to derive the other descriptions through restrictive mappings.
Integration of an object type O and a value or complex attribute A produces an object
type whose structure results from the merging of the structures of O and A as in rule 2.
The distribution and mappings are also similar to those of rule 2. The main dilIerence

is that the integrated object is linked via a reference attribute to the parent element

of A.

Integration rule 5: integration of an object type and a value or complex attribute:

Let X1, with value attributes (All,..., A]j, B1, Bk), be an object type of schema
S1; let X2 be a complex attribute of element ~ of schema $2 with component value

attributes (A21,..., A2j, C1,..., Ch), or an atomic-value attribute. In this latter case, we

consider that X2 has itself as component attribute; let the correspondence assertion

be:
X1 ~ X2 with corresponding attributes:

attcorl(All, A21), attcor2(A12, A22), ..., attcorj (Aij, A2j).
Let E be the element corresponding to E 2 in the integrated schema, the elements in
the integrated schema resulting from the integration of X1 and X2 are an object type
X, and a reference link between E and X, such that:

• the attribute X2 of E2 is transformed into a reference attribute X'2 referencing

X; cardinalities of X'2 are equal to those of X2,

• the name of X is the same as the one of X1, unless the DBA chooses another

one,

• the structure of X consists of the union of the attributes of X 1 and X2, as defined
by the integrate-join of X1 and X2.

120

Correspondence assertions relating X to X1 and X2 are obvious:

X ~ X 1 with corresponding attributes:

attcorl (A1, All) , attcor2(A2, A12),..., attcorj (Aj, Al j)

attcorl (B~, B1), attcor2 (B~, B2), ..., attcork (B~, Bk)
X ~ X2 with corresponding attributes:

attcoh (A~, A21), attcor2(A2, A22),..., attcorj (Aj, A2j)
at tcoh (C~, C1), attcor2 (C~, C2), ..., attcorh (COb, Ch)

E - -X ~ E~--X2

Mappings between the integrated schema, S1 and $2 may be defined as:

X:= integrate-join (X1, X2, attcor1(A11, A21), attcor2 (A12, A22),..., attcorj(Alj,

A2j))
E- -X:= rename[E2--X2]

X1 := project ~ [Ab Aj, B 1,...Bk] X

X2:-- rename [A1 :A21,..., As:Ass] project [A1,..., Aj, C~,...C~] X

Distribution:

X is stored in both databases, $1 and $2; it is split into fragments as in rule 2. The
E- -X link is on database $2 only. []

If X1 and/or X2 have reference attributes, rule 1 or 3 is activated in order to add or
integrate those reference links.

Relational model:
Rule 5 applies as follows.

Relational rule 5:
Integration of a relation R1 of schema S1 and a value attribute A2 of relation R2 of
schema $2, generates in the integrated schema a relation R with the attributes of R1
and a reference integrity constraint binding the relation R2 ~ (the integrated relation
corresponding to R2) to R. []

Example:
$24: Car (registration#, color, power, owner#)

S25: Person (pin, name, address)

Correspondence assertion between $24 and $25:
owner# ~ Person with corresponding attributes: owner# = pin

Under these assumptions, the integrated schema is:
Car (registration#, color, power, owner#)

Person (pin, name, address)
Person.pin D Car.owner#

121

Relational rule 5 transforms the value attribute owner# of $24 into a reference at-
tribute; i.e., owner# in the integrated schema is an external key referencing Person.

Entity relationship models:

Rule 5, as rule 3, has to be adjusted to entity relationship models as follows.

Entity relationship rule 5:
Integration of an entity type X1 of database S1 and an attribute X2 (whose parent

element is entity type E2) of database $2 generates an object type X and a link E--X

(where E is the entity type corresponding to E2 in the integrated schema). As entity

type X1 may be bound by a relationship in S1, X must be an entity type, and the E--X

link is a binary relationship binding entity types E and X. O

Examples:
Rules 5 and 3 (link integration rule) allow us to integrate S14 and S15 of section 3. If

the two databases are equivalent, and if the equivalence of the two links, Car---owner

and cars--Person, is asserted, the integrated schema is $13.

In the same way, integrating S13 and S14 also generates $13.

Object-oriented models:

Rule 5 applies without modification.

Example: refer to schemas $7 and Sl l of section 3.

Correspondence assertions between $7 and S l l are:

Car -- Car with corresponding attributes:
registration# = registration#, color = color, horsepower = horsepower

owner -- Person with corresponding attributes:

pin = pin, name = name, sex = sex, birthdate = birthdate
Car--Downer _= Car--~Person

The integrated schema is Sll .

10. Conclusion and Future Work

There is an ever-increasing need for building integrated or federated systems from var-

ious heterogeneous database systems that are already in operation. A semi-automatic

database integration methodology would significantly alleviate the integration task,

which is presently a manual task. From an economic perspective, this integration,
while opening the way to new federated database services, should also allow the con-
tinued usage of existing databases and application programs.

122

This paper introduces a database integration methodology, designed to meet the
above objectives. Our approach is based on the following major features:

• consideration of links in the integration process,

• automatic resolution of structural conflicts (arising because of different repre-
sentations of the same real-world objects),

• conflict resolution performed without modification of initial views,

• applicability to a variety of data models.

The first three features are distinguishing. The semantics of links is out of the scope of
current methodologies. Structural conflicts necessarily arise from user requirements,
based on the different needs that exist in the real world. Instead of forcing schemas

to conform to a unique representation, as presently required, our approach relies on
the idea that the complexity inherent to structural conflicts should be supported by
establishing appropriate, powerful mapping facilities among initial schemas and the

integrated schema.
The fourth feature is of special interest when heterogeneous databases have to

be integrated. To that extent, we defined data model independent integration rules,
which are customized to the various classical data models. This approach ensures that
the integration strategy is consistent over the various models. Moreover, it is feasi-
ble to allow the description of inter-schema correspondences directly on the existing
schemas, i.e., without requiring a preliminary step to translate all e:.dsting schemas
into their equivalent version based on some common model. The whole integration

process becomes much simpler for the DBA. The resulting system can be made user-
friendly through the support of a multimodel interface, allowing each user to interact

with the new DBMS through his/her preferred data model.

Irrespective of the data model, the schemas can be interpreted as graphs, i.e., sets
of nodes and edges. We focused on defining integration rules for these two sorts, which
we called elements and links.

Additional features are common with other existing approaches:

• use of a formal declarative approach for the definition of inter-schema corre-

spondences,

automatic generation of structural and operational mappings between the ini-

tial schemas and the integrated schema. Operational mappings provide support
to allow users to query and update the database through their own view.

123

To implement a formal declarative approach, we defined a model for descn'bing corre-
spondence assertions. These assertions instruct the integrator tool about similarities
in the semantics of the schemas. For each assertion, formal rules state how to derive
the constructs which are to be inserted into the integrated schema and the mappings
between the integrated schema and the initial ones.

Finally, the methodology proposed in this paper is applicable to the view integra-
tion process, a crucial step in classical database design. Our scheme allows the users
to state their views without being constrained by requirements from other users, and
without being forced to modify their definition if a conflict arises with some other view.

In the future our research will be devoted to:

• the integration of inclusion, intersection, and exclusion assertions. We intend
to analyze when and how it is appropriate to build generalization hierarchies in
the integrated schema,

• consideration of generalization links in correspondence assertions and integra-
tion rules,

• detailed analysis of the integration of complex attributes,

• integration of l:n correspondences, in which one object in one view/schema
corresponds to a set of objects in the other view/schema.

As far as view integration is concerned, our plans include the specification and im-
plementation of an intelligent view definition facility, so that most of the integration
problems in an actual situation are solved at view-definition time, rather than at times
when views are to be integrated.

Acknowledgements

The authors are indebted to Prof. Bharat Bhargava for many helpful suggestions.
Thanks should be extended to the anonymous reviewers, who did an excellent job in
carefully analyzing the paper. Their criticisms were a major source for improving its

quality. This research is supported by the Fonds National de la Recherche Scientifique
Suisse (Projet SUPER), and by INRIA, under the auspices of the French national
database research project (PRC BD3: Programme de Recherches Coordonn6es Bases
de donn6es de ~ m e g6n6ration).

References

Batini, C., Lcnzerini, M. A methodology for data schema integration in the entity-
relationship model, IEEE Transactions On Software Engineering~ 10:650-664, 1984.

124

Batini, C., Lenzerini, M., and Navathe, S.B. A comparative analysis of methodologies
for database schema integration, ACM Computing Surveys, 15:323-363, 1986.

Bertino, E. Integration of heterogeneous data repositories by using object-oriented
views, First lnternational Workshop on Interoperability in Multidatabase Systems, Ky-
oto, 1991.

Biskup, J., Convent, B. A formal view integration method, ACM SIGMOD Interna-
tional Conference on Management of Data, Washington, 1986.

Bouzeghoub, M., Comyn-Wattiau, I. View integration by semantic unification and
transformation of data structures, Ninth International Conference on Entity-Rela-
tionshipApproach, Lausanne, 1990.

Carey, M., DeWitt, D. and Vandenberg, S. A data model and query language for EX-
ODUS,ACM SIGMOD International Conference on Management of Data, Chicago,
1988.

Civelek, E, Dogac, A., and Spaccapietra, S. An expert system approach to view defi-
nition and integration, Seventh International Conference on Entity-Relationship Ap-
proach, Rome, 1988.

Czejdo, B., Taylor, M. Integration of database systems using an object-oriented ap-
proach, First International Workshop on lnteroperability in Multidatabase Systems,
Kyoto, 1991.

Deen, S., Amin, R., and Taylor, M. Data integration in distributed databases, 1EEE
Transactions On Software Engineering 13:860--864, 1987.

DeMichiel, L. Resolving database incompatibility: An approach to performing rela-
tional operations over mismatched domains, IEEE Transactions on Knowledge and
Data Engineering~ 1:485--493, 1989.

Demurjian, S. and Hsiao, D. Towards a better understanding of data models through
the multilingual database system, IEEE Transactions On Software Engineering~
14:946.--958, 1988.

Diet, J. and Lochovsky, E Interactive specification and integration of user views using
forms, Eighth International Conference on Entity-Relationship Approach, Toronto,
1989.

Elmasri, R. and Wiederhold, G. Data model integration using the structural model,
ACM-SIGMOD International Conference on Management of Data, Boston, 197/9.

Elmasri, R., Weeldreyer, J., and Hevner, A. The category concept: an extension to the
entity-relationship model, Data and Knowledge Engineering~ 1:75-116, 1985.

Fankhauser, E, Litwin, W., Neuhold, E., and Schrefl, M. Global view definition and
multidatabase languages--Two approaches to database integration. In: Speth,
R., ed. Research into Networks and Distributed Applications, Amsterdam: North-
Holland, 1988, pp. 1069--1082.

125

Ferrier, A. and Stangret, C. Heterogeneity in the distributed database management
system SIRIUS-DELTA, Eighth International Conference on l~ry Large Data Bases,
Mexico City, 1982.

Hayne, S. and Ram. S. Multi-User view integration system (MUVIS): An expert sys-
tem for view integration, IEEE Sixth International Conference on Data Engineerin G
Los Angeles, 1990.

Hwang, H. and Dayal, U. View definition and generalization for database integra-
tion in a multibase system, IEEE Transactions On $oj~ware Engineerin G 10:628-645,
1984.

Jardine, D. and Yazid, S. Integration of information submodels. In: Falkenberg, E.D.
and Lindgreen, P., eds. Information Systems Concepts: An In-Depth Analysis,
Amsterdam: North-Holland, 1989, pp. 247-267.

Kambayashi, Y., Rusinkiewicz, M., and Sheth, A~ First International Workshop on ln-
teroperability in Multidatabase Systems, Kyoto, 1991.

Kaul, M., Drosten, K., and Neuhold, E. ViewSystem: integrating heterogeneous in-
formation bases by object-oriented views, IEEE Sixth International Conference on
Data Engineerin G Los Angeles, 1990.

Kent, W. Solving domain mismatch and schema mismatch problems with an object-
oriented database programming language, Seventeenth International Conference on
l~ry Large Data Bases, Barcelona, 1991.

Kim, W. Research directions for integrating heterogeneous databases, Workshop on
Heterogeneous Database Systems, Chicago, 1989.

Landers, T. and Rosenberg, R. An overview of multibase. In: Schneider, H.-J., ed.
Distributed Data Bases, Amsterdam: North-Holland, 1982, 153---184.

Larson, J., Navathe, S., and Elmrasri, R. A theory of attribute equivalence in databases
with application to schema integration, IEEE Transactions on Software Engineerin G
15:449--463, 1989.

Litwin, W. MALPHA: A relational multidatabase manipulation language, IEEE First
International Conference on Data Engineerin G Los Angeles, 1984.

Litwin, W., Mark, L., and Roussopoulos, N. Interoperability of multiple autonomous
databases, A C M Computing Surveys, 22:267-293, 1990.

Mannino, M. and Effeisberg, W. Matching techniques in global schema design, IEEE
First International Conference on Data Engineerin G LOs Angeles, 1984.

Motro, A~ Superviews: Virtual integration of multiple databases, IEEE Transactions
On Software Engineerin G 13:785-798, 1987.

Morro, A. and Buneman, P. Constructing superviews, ACM-SIGMOD International
Conference on Management of Data, Ann Arbor, 1981.

Navathe, S. and Gadgil, S. A methodology for view integration in logical database de-
sign, Eighth International Conference on l~ry Large Data Bases, Mexico City, 1982.

126

Navathe, S., Elmrasi, R., and/..arson, J. Integrating user views in database design,
IEEE Computa; 19:50-62, 1986.

Parent, C. and Spaccapietra, S. An algebra for a general entity-relationship model,
IEEE ~ansactions On Sofavare Engineering 11:634--643, 1985.

Parent, C. and Spaccapietra, S. ERC+: an object based entity-relationship approach.
In: Loucopoulos, P. and Zicari, R., eds. Conceptual Modelling Databases and
CASE: An Integrated View of Information Systems Development London: John Wi-
ley, 1992, to appear.

Schek, H.-J. and Schoil, M. The relational model with relation-valued attributes, In.
formation Systems, 11:137-147, 1986.

Sheth, A, Larson, J., Cornelio, A, and Navathe, S. A tool for integrating conceptual
schemas and user views, IEEE Fourth International Conference on Data Engineering
Los Angeles, 1988.

Sheth, A. and Gala, S. Attribute relationships: An impediment in automating schema
integration, Workshop on Heterogeneous Database @stems, Chicago, 1989.

Sheth, A. and Larson, J. Federated database systems for managing distn'buted, hetero-
geneous, and autonomous databases, ACM Computing Surveys, 22:183-236, 1990.

Siegel, M. and Madnick, S. Schema integration using metadata, Workshop on Hetero-
geneous Database Systems, Chicago, 1989.

Siegel, M. and Madnick, S. A metadata approach to resolving semantic conflicts, Sev-
enteenth International Conference on Very Large Data Bases, Barcelona, 1991.

de Souza, J. SIS - A schema integration system, Fifth British National Conference on
Databases, Canterbury, England, 1986.

Spaccapietra, S., Demo, S., DiLeva, A., Parent, C., Cells, C., and Belfar, K. An ap-
proach to effective heterogeneous database cooperation. In: van de Riet, R. and
Litwin, W., eds. Distrilmted Data Sharing Systems, Amsterdam: North-Holland,
1982, pp. 209-218.

Spaccapietra, S. and Parent, C. View integration: a step forward in solving structural
conflicts, IEEE ~ansactions on Data and Knowledge Engineering due to appear
October 1992.

Stocker, P., Atkinson, M., Gray, P., Gray, W., Oxborrow, E., Shave, M., and Johnson, R.
Proteus: A heterogeneous distributed data-base project. In: Gray, P. and Atkinson,
M., eds. Databases: Role and Structure, Cambridge: Cambridge University Press,
1984, 125-150.

Templeton, M., Brill, D., Chen, A., Dao, S., Lund, E., McGregor, R., and Ward, P.
Mermaid: A front end to distributed heterogeneous databases, Proceed/ng~ of the
IEEE, 75:695-708, 1987.

