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ABSTRACT

Schema mappings are high-level specifications that describe
the relationship between database schemas. Schema map-
pings are prominent in several different areas of database
management, including database design, information inte-
gration, data exchange, metadata management, and peer-to-
peer data management systems. Our main aim in this paper
is to present an overview of recent advances in data exchange
and metadata management, where the schema mappings are
between relational schemas. In addition, we highlight some
research issues and directions for future work.

1. Introduction

Schema mappings are specifications that describe the rela-
tionships between schemas at a high level. These specifica-
tions are typically given in a logical formalism that captures
the interaction between schemas at a logical level without
spelling out implementation details relevant to the physical
level. Schema mappings are widely used in all data manage-
ment applications that involve data sharing or data transfor-
mation. In particular, schema mappings are essential build-
ing blocks in information integration, data exchange, meta-
data management, and peer-to-peer data managements sys-
tems. In this paper, we present an overview of recent ad-
vances in data exchange and metadata management, where
the schema mappings are between relational schemas. We
also highlight a number of research issues and suggest direc-
tions for future work. Most of the results presented here are
based on joint work with Ronald Fagin, Renée J. Miller, Lu-
cian Popa, and Wang-Chiew Tan reported in [13, 14, 15]. In
some respects, this paper can be construed as a companion
to Lenzerini’s paper [23] from his invited tutorial on data in-
tegration in PODS 2002, even though it does not aspire to
be as comprehensive and encyclopedic as Lenzerini’s survey.

Data exchange, also known as data translation, is the prob-
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lem of taking data structured under a schema, called the
source schema, and transforming it into data structured un-
der another schema, called the target schema. Data ex-
change has been described as the “oldest database problem”
[7]. An early low-level tool for data exchange between hi-
erarchical databases was the EXPRESS system, developed
at the IBM San Jose Research Laboratory in the 1970s [34].
Data exchange has been a recurrent problem that has taken a
new significance with the advent of semi-structured data and
the resulting need to exchange data between heterogeneous
schemas.

There are obvious similarities, but also clear differences, be-
tween data integration and data exchange. In both frame-
works, schema mappings are used to specify the relationships
between the schemas involved. In data integration, the goal
is to synthesize data from different sources into a unified view
under a global schema; this view is virtual, in that the data
remain in the sources and are accessed by users symbolically
via the global schema. In data exchange, the goal is to take
a given source instance and transform it to a target instance
such that it satisfies the specifications of the schema map-
ping and also “reflects” the given source data as accurately
as possible; unlike data integration, this target instance is a
materialized instance, not a virtual view.

Consider a schema mapping between a source schema and a
target schema. It is often the case that, given a source in-
stance, there may be multiple target instances, called solutions,
that satisfy the specifications of the schema mapping under
consideration. This state of affairs gives rise to certain fun-
damental questions about the semantics and the algorithmics
of data exchange. Given a source instance, which solutions
are “better” than others? Which solution should one choose
to materialize and how difficult is it to compute such a good
solution? What is the semantics of target queries and how
difficult is it to evaluate such queries? Both information in-
tegration and data exchange use the concept of the certain
answers as the standard semantics of query answering, a con-
cept that originated in the study of incomplete databases [35].
The two frameworks, however, adopt different approaches to
obtain the certain answers of queries. In data integration,
queries posed against the global schema are usually processed
via rewriting to queries posed against the source schemas. In
data exchange, however, it is natural to try to process target
queries by making use of the materialized target instance;
furthermore, this may be the only reasonable approach in
cases in which the source instance becomes inaccessible af-



ter the exchange has taken place. In turn, this raises the
question: for which target queries can the certain answers be
obtained by evaluating them on a good solution?

Schema mappings are metadata. Bernstein [6] has made a
compelling case for the importance of developing both the
theory and the practice of metadata management. To this
effect, Bernstein has introduced a conceptual framework in
which metadata is managed by combining certain basic generic
operators on schema mappings, such as composition, merge,
match, and inverse. Complex transformations on schema
mappings can be obtained by repeated combinations of these
basic operators; moreover, schema evolution can be dissected
and analyzed using the same operators.

The first main challenge in metadata management is to de-
velop rigorous semantics for each of the basic operators. Once
this is achieved, the next challenge is to investigate the prop-
erties of these operators for different schema-mapping lan-
guages. A prominent issue in this investigation has to do
with the closure properties of schema-mapping specification
languages. For instance, is a given schema-mapping specifi-
cation language closed under composition? In other words,
can the composition of two schema mappings be expressed
in the same language used to express each of the compo-
nents of the composition? Another important issue has to
do with the algorithmic properties of the basic operators and
the schema-mapping specification languages used to express
them. In particular, for which schema-mapping specification
languages are the basic operators efficiently computable?

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce schema mappings and the data exchange
problem. In Section 3, we present an overview of results
about data exchange with schema mappings specified by tuple-
generating dependencies between relational schemas. In Sec-
tion 4, we focus on the semantics and the computational com-
plexity of query answering in data exchange. In Section 5,
we give an account of results about the composition operator
as a case study in metadata management. Finally, in Section
6 we conclude with some brief remarks on the connection of
this work to Clio, a schema mapping and data exchange tool
developed at the IBM Almaden Research Center.

2. Schema Mappings & Data Exchange

A relational schema or, simply, a schema, is a finite sequence
R = 〈R1, . . . , Rk〉 of relation symbols, each of which has a
fixed arity. An instance I over R is a sequence 〈RI

1, . . . , R
I
k〉

such that each RI
i is a finite relation of the same arity as Ri.

To keep the notation simple and when no confusion arises,
we will use Ri to denote both the relation symbol and the
relation RI

i that interprets it. Given a tuple t occurring in a
relation R, denote by R(t) the association between R and t,
and call it a fact . Clearly, an instance can be identified with
the collection of its facts.

Let S = 〈S1, . . . , Sn〉 and T = 〈T1, . . . , Tm〉 be two schemas
with no relation symbols in common. We write 〈S,T〉 for
the schema 〈S1, . . ., Sn, T1, . . ., Tm〉. If I is an instance over
S and J is an instance over T, then we write 〈I, J〉 for the
instance K over the schema 〈S,T〉 such that SK

i = SI
i and

T K
j = T J

j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Definition 2.1. Let S and T be two schemas with no
relation symbols in common.

A schema mapping is a triple M = (S,T, Σ) such that Σ is a
set of formulas of some logic L over 〈S,T〉. In such a schema
mapping, S is called the source schema, and T is called the
target schema.

Definition 2.2. Let M = (S,T, Σ) be a schema map-
ping.

• An instance of M is an instance 〈I, J〉 over 〈S,T〉 that
satisfies every formula in the set Σ.

• We write Inst(M) to denote the space of all instances
〈I, J〉 of M.

• Let I be an instance over S. We say that an instance J
over T is a solution for I under M if 〈I, J〉 ∈ Inst(M).
We write SOL(M, I) for the collection of all solutions
for I under M.

Let M = (S,T, Σ) be a schema mapping. Intuitively, the
formulas in Σ express constraints between the source schema
S and the target schema T. We assume that the satisfac-
tion relation between formulas and instances of the logic L
used to specify the constraints of schema mappings is pre-
served under isomorphisms; this means that if an instance
satisfies a formula of L, then every isomorphic instance also
satisfies that formula. Clearly, this property is shared by all
standard logical formalisms, such as first-order logic, second-
order logic, and Datalog. It follows that the set Inst(M)
of instances of M is closed under isomorphisms, that is, if
〈I, J〉 ∈ Inst(M) and 〈I ′, J ′〉 is isomorphic to 〈I, J〉, then we
also have 〈I ′, J ′〉 ∈ Inst(M).

Note that a schema mapping M = (S,T, Σ) is not a mapping
in the mathematical sense; in effect, it is a schema 〈S,T〉
partitioned into two parts S and T, together with a set Σ
of constraints. Nonetheless, every schema mapping M gives
rise to a mathematical mapping such that, for every source
instance I, it returns the collection SOL(M, I) of all target
instances J that are solutions for I under M.

It should be pointed out that a source instance I may not
have any solutions; furthermore, if I has solutions, then these
solutions need be unique up to isomorphism. As a matter of
fact, a source instance may have an arbitrary finite number or
an infinite number of non-isomorphic solutions. For example,
consider a schema mapping M in which the source schema
S contains a binary relation symbol E, the target schema T
contains a binary relation symbol H, and the set Σ consists
of the first-order formula

∀x∀y(E(x, y) → ∃z(H(x, z) ∧ H(z, y))).

Intuitively, this schema mapping transforms edges in E to
paths of length 2 in H. Clearly, every source instance has a
solution; in fact, for every source instance, there are infinitely
many non-isomorphic solutions since solutions are preserved
by augmenting H with an arbitrary number of new edges.
With these considerations in mind, we are now ready to in-
troduce the basic problems in schema mappings and data
exchange.
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Figure 1: The Data Exchange Problem

Definition 2.3. Let M = (S,T, Σ) be a schema map-
ping.

• The existence-of-solutions problem for M, denoted by
SOL(M) is the following decision problem: given a source
instance I, does a solution J for I under M exist? In
other words, given I, is SOL(M, I) 	= ∅?

• The data exchange problem associated with M is the
following function problem: given a source instance I,
find a solution J for I under M, provided such a solu-
tion exists.

Several remarks are in order now. First, note that, in defin-
ing the existence-of-solutions problem and the data exchange
problem, we have kept the schema mapping M fixed, so that
the input to these two problems is just a source instance I.
Although we will not pursue this here, it is also meaning-
ful to consider the variants of these problems in which both
a schema mapping M and a source instance I are part of
the input. In Vardi’s [36] taxonomy of problems in database
theory, this means that here we are focusing on the data
complexity of these two problems, instead of their combined
complexity .

Up to this point, we have not been explicit about the logic
L used to specify schema mappings. As a guiding principle,
we want to use logics that are powerful enough to express
interesting constraints occurring in applications, while at the
same time are well-behaved enough so that the existence-of-
solutions problem is tractable or, at the very least, decidable.
It is not hard to see that if arbitrary formulas of first-order
logic are allowed in the specification of schema mappings,
then there are schema mappings for which the existence-of-
solutions problem is undecidable. Indeed, as described in
[15], we can write a fixed first-order sentence specifying a
schema mapping M∗ such that a solution J exists for a source
instance I if and only if I is the encoding of a Turing machine
and J is the encoding of a terminating computation on some
input. Consequently, the existence-of-solutions problem for
M∗ is undecidable. This implies that, instead of full first-
order logic or some extension of it, we will have to use suitably
restricted fragments of first-order logic or some other more
tractable logical formalism to specify schema mappings.

Finally, let us comment on the data exchange problem associ-
ated with a schema mapping M = (S,T, Σ). As formulated
in Definition 2.3, this problem asks, given a source instance
I, to find a solution J for I under M. As noted earlier, a

source instance I may have many (in fact, infinitely many)
non-isomorphic solutions. In such cases, which is the “right”
solution to return as the answer to the data exchange prob-
lem? What criteria should we use to differentiate between
solutions? How can we select a solution J to materialize
that, in addition to merely satisfying the constraints in Σ,
represents the source instance I as faithfully as possible?

The issues raised in the preceding remarks pave the road for
the work that will be presented in the next section.

3. Data Exchange with Tuple- & Equality-
Generating Dependencies

Starting with Codd’s [9] work on functional dependencies, a
large variety of constraints in relational databases, called de-
pendecies, were investigated in depth during the 1970s and
the 1980s. Most of the constraints studied during this period
can be expressed by formulas of first-order logic, and fall
into one of two classes: tuple-generating dependencies and
equality-generating dependencies. Taken together, these two
classes have the same expressive power as the class of em-
bedded implicational dependencies [12] (see [22, Section 3] for
a discussion about the taxonomy of constraints in relational
databases).

A tuple-generating dependency , in short tgd, is a first-order
formula of the form

(∀x)(ϕ(x) → (∃y)ψ(x,y)),

where ϕ(x) is a conjunction of atoms1 such that the variables
of each atom are among those in x, and each variable in x oc-
curs in at least one of the atoms of ϕ(x); furthermore, ψ(x,y)
is a conjunction of atoms with variables among those in x and
y. In effect, every tgd expresses the containment of one con-
junctive query in another conjunctive query. Both inclusion
dependencies and multivalued dependencies are special cases
of tgds. An important subclass of tgds is the collection of
full tgds; by definition, these are the tgds whose right-hand
side of the implication has no existential quantifiers, that is,
they tgds of the form

(∀x)(ϕ(x) → ψ(x)).

For example,

(∀x1∀x2∀x3)(E(x1, x2) ∧ E(x2, x3) → E(x1, x3))

is a full tgd constraining E to be a transitive relation, while

∀x∀y(E(x, y) → ∃z(H(x, z) ∧ H(z, y)))

is a tgd, but not a full one.

An equality-generating dependency , in short egd , is a first-
order formula of the form

(∀x)(ϕ(x) → (xi = xj)),

where xi, xj are among the variables in x, and ϕ(x) is a
conjunction of atoms such that the variables of each atom are
among those in x, and each variable in x occurs in at least

1An atom is an expression R(t), where R is a relation symbol
and t is a tuple of variables. A conjunctive query q(x) is a
first-order formula of the form ∃wχ(x,w), where χ(x,w) is
a conjunction of atoms.



one of the atoms of ϕ(x). Clearly, functional dependencies
are a special case of egds.

In what follows, we will drop the universal quantifiers in front
of tgds and egds, and will implicitly assume such quantifi-
cation; all existential quantifiers, however, will be written
explicitly.

Tuple-generating dependencies have been extensively used in
data integration to specify constraints between the source
schema and the global schema (see [23] for an overview).
Furthermore, as we will describe next, tuple-generating de-
pendencies and equality-generating dependencies were used
in a systematic study of data exchange [13, 14].

Let S and T be two schemas with no relation symbols in
common.

• A source-to-target tuple-generating dependency , in short
s-t tgd , is a tgd

ϕ(x) → (∃y)ψ(x,y)

such that ϕ(x) is a conjunction of atoms with relation
symbols from S, and ψ(x,y) is a conjunction of atoms
with relation symbols from T.

• A target tuple-generating dependency , in short target
tgd , is a tgd

ϕ(x) → (∃y)ψ(x,y)

such that both ϕ(x) and ψ(x,y) are conjunctions of
atoms with relation symbols from T.

• A target equality-generating dependency , in short target
egd , is an egd

ϕ(x) → (xi = xj)

such that ϕ(x) is a conjunction of atoms from T.

Note that, as indicated earlier, we have dropped the
universal quantifiers in front of dependencies.

It should be noted that s-t tgds are the same as GLAV
(global-and-local-as-view) constraints expressing sound views
in data integration. As such, they generalize sound views
in LAV (local-as-view) and sound views in GAV (global-as-
view). Indeed, sound views in LAV are s-t tgds of the form
R(x) → ∃yψ(x,y), where R is a relation symbol in the source
schema S and ψ(x,y) is a conjunction of atoms with relation
symbols from the global schema; similarly, sound views in
GAV are s-t tgds of the form ϕ(x) → P (x), where ϕ(x) is a
conjunction of atoms with relation symbols from the source
schema and P is a relation symbol in the target schema T.

In what follows, we will focus on schema mappings M of the
form (S,T, Σst ∪Σt) such that Σst is a set of s-t tgds and Σt

is a set of target tgds and target egds. The data exchange
problem for such schema mappings was first investigated in
[13] in a study motivated by the following considerations.
There are many situations in which source data have to be
translated to target data in such a way that “directional”
constraints are satisfied, that is, a condition on the source
implies a condition on the target. This is modelled using
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Figure 2: Data Exchange with Source-to-Target De-
pendencies Σst and Target Dependencies Σt

s-t tgds in the schema mapping. Furthermore, the data in
the target may have to obey additional constraints, such as
key constraints or inclusion dependencies. In turn, this is
modelled using target egds and target tgds.

It goes without saying that one could expand the framework
to include source constraints, target-to-source tgds, or more
complex constraints, such as tgds ϕ(x) → (∃y)ψ(x,y) in
which both ϕ(x) and ψ(x,y) are conjunctions of atoms over
the schema 〈S,T〉. As regards source constraints, it is natural
to assume that the source data to be exchanged has already
been preprocessed, and so the data satisfies all underlying
source constraints; moreover, as will be seen later on, source
constraints have no direct role in defining the semantics of
data exchange. As regards target-to-source constraints or
more complex constraints, their presence undoubtedly en-
hances the modelling power of the framework, but it is usu-
ally accompanied by a steep increase in the computational
complexity of algorithmic problems in data exchange (see,
for instance, [17]).

3.1 Universal Solutions in Data Exchange

Before proceeding further, we should become specific about
the values that occur in source instances and in target in-
stances. Assume that Const is the set of all values that may
occur in source instances; we call these values constants. Let
Var be an infinite set of values, called labelled nulls, such
that Const ∩ Var = ∅. We stipulate that the target instances
created in data exchange have values in Const ∪ Var. If J
is a target instance, then we write Var(J) for the set of all
labelled nulls occurring in relations in J .

Let M = (S,T, Σst∪Σt) be a schema mapping such that Σst

is a set of s-t tgds and Σt is a set of target tgds and target
egds. Recall that the data exchange problem associated with
M asks: given a source instance I, find a solution J for I
under M, that is, a target instance J such that 〈I, J〉 satisfies
Σst ∪ Σt.

It is possible that, for a given source instance I, no solution
exists. For example, let M be a schema mapping such that

Σst = {E(x, y) ∧ E(y, z) → H(x, z)}
Σt = {H(x, y) ∧ H(x, z) → y = z}.

If I is a source instance containing the facts E(1, 2), E(2, 3),
E(1, 4), E(4, 5), then no solution for I exists, since every
solution must contain the facts H(1, 3) and H(1, 5), thus vi-



olating the target egd in Σt.

At the other extreme, it is easy to see that if Σt = ∅, then
solutions always exist. Moreover, in this case, every source
instance I has infinitely many non-isomorphic solutions, since
if extra facts are added to a solution for I, then the resulting
instance is still a solution for I.

Example 3.1. Let M be a schema mapping such that

Σst = {E(x, y) → (∃z)(H(x, z) ∧ H(z, y))}
Σt = ∅.

Let I be the source instance consisting of just the fact E(1, 2).
The set SOL(M, I) of solutions for I under M contains, among
others, the following target instances:

J1 = {H(1, 1), H(1, 2)}
J2 = {H(1, 2), H(2, 2)}
J3 = {H(1, u), H(u, 2)}
J4 = {H(1, u), H(u, 2), H(u, u)}
J ′

n = {H(1, vi) : 1 ≤ i ≤ n} ∪ {H(vi, 2) : 1 ≤ i ≤ n},
where u and vi, 1 ≤ i ≤ n, are labelled nulls in Var.

Which member of SOL(M, I) should we choose to materialize
and return as answer to the data exchange problem on in-
put I? What properties should a solution possess that would
make it more desirable for data exchange than other solu-
tions? Intuitively, although every solution for I satisfies the
specifications of the schema mapping M, we would like to
materialize a solution that carries no more and no less infor-
mation than is required for data exchange. But how can this
intuition be turned into a precise concept?

In some respects, this state of affairs is reminiscent of the uni-
fication problem in logic programming [2]. Two given terms
may or may not be unifiable; if they are, then they can have
more than one unifier. In the latter case, the preferred uni-
fier is the most general unifier , which is a unifier with the
property that every unifier can be obtained from it via a
substitution.

In [13], the concept of a universal solution was introduced,
and a case was made that universal solutions are the pre-
ferred solutions in data exchange because they are the “most
general” solutions in data exchange. The concept of univer-
sal solution makes use of the concept of homomorphism; the
precise definitions of these concepts are as follows.

Definition 3.2. Let M = (S,T, Σst ∪ Σt) be a schema
mapping such that Σst is a set of s-t tgds and Σt is a set of
target tgds and target egds.

Let J1 and J2 be two target instances. A homomorphism
h : J1 → J2 is a function h : Const∪Var(J1) → Const∪Var(J2)
with the following two properties.

1. For every constant c ∈ Const, we have that h(c) = c.

2. For every fact P (t) of J1, we have that P (h(t)) is a
fact of J2 (where, if t = (c1, . . . , cm), then h(t) =
(h(c1), . . . , h(cm))).

Definition 3.3. Let M = (S,T, Σst ∪ Σt) be a schema
mapping such that Σst is a set of s-t tgds and Σt is a set of
target tgds and target egds.

If I is a source instance, then a universal solution for I is a
solution J for I such that for every solution J ′ for I, there is
a homomorphism h : J → J ′.

Intuitively, a homomorphism between two relational struc-
tures is a mapping that preserves facts. The definition of
homomorphism we just gave is essentially the standard defini-
tion of homomorphism between relational structures in which
some elements (in the present case, the constants) have been
distinguished and can be mapped only to themselves. The
concept of homomorphism is a fundamental algebraic concept
that been extensively studied in graph theory [21] and in con-
straint satisfaction [16]. Many basic NP-complete problems
can be cast as homomorphism problems. As an illustration,
it is easy to verify that a graph G = (V, E) is 3-colorable if
and only if there is a homomorphism from G to K3, the com-
plete graph with 3 nodes. Furthermore, homomorphisms are
tightly connected to conjunctive-query processing and opti-
mization, since conjunctive-query containment can also be
cast as a homomorphism problem [8].

By definition, universal solutions can be mapped homomor-
phically to every solution; consequently, every solution can be
obtained from a given universal solution via a homomorphism
and an augmentation with extra facts (tuples in relations).
In this sense, universal solutions are indeed the “most gen-
eral” solutions in data exchange: they carry no more and no
less information than is needed for data exchange purposes.

Let us illustrate this intuition by examining the solutions
listed in Example 3.1. Solution J1 is not universal, since
no homomorphism from J1 to J2 exists (or to any of the
other solutions listed). Although J1 satisfies the s-t tgd
E(x, y) → (∃z)(H(x, z) ∧ H(z, y)), it contains extra infor-
mation, as it uses the constant 1 to witness the existential
quantifier ∃z. Similarly solution J2 is not universal, since
no homomorphism from J2 to J1 exists. In contrast, solu-
tion J3 is a universal solution for I. For instance, there is a
homomorphism h from J3 to J1 with h(u) = 1, and a homo-
morphism g from J3 to J ′

n with g(u) = v1. Solution J4 is not
universal, even though it contains the universal solution J3.
Intuitively, the reason is that J4 also contains the self-loop
H(u, u), a fact not specified in the data exchange. Formally,
every homomorphism maps self-loops to self-loops, thus there
is no homomorphism from J4 to J3 (or to any of the other
solutions listed). Finally, each J ′

n is a universal solution. For
instance, there is a homomorphism hn from J ′

n to J3 with
g(vi) = u, for every i ≤ n.

In logic programming, a most general unifier of two unifiable
terms is known to be unique up to isomorphism. In contrast,
the universal solutions for a given source instance I need not
have this property. For instance, in Example 3.1, all solu-
tions J ′

n are universal and pairwise non-isomorphic, as they
have different sizes. Nonetheless, it follows immediately from
Definition 3.3 that all universal solutions for a given source
instance I are homomorphically equivalent , which means that
if J and J ′ are universal solutions for I, then there is a homo-
morphism h from J to J ′, and a homomorphism h′ from J ′



to J . Furthermore, according to the next result from [13]),
universal solutions embody in a certain sense the entire space
of solutions; this is analogous to the most general unifier of
two terms encapsulating the entire space of unifiers of the
two terms.

Theorem 3.4. Let M = (S,T, Σst∪Σt) be a schema map-
ping such that Σst is a set of s-t tgds and Σt is a set of target
tgds and target egds. Assume that I and I ′ are two source in-
stances, J is a universal solution for I, and J ′ is a universal
solution for I ′. The following statements are equivalent:

1. SOL(M, I) ⊆ SOL(M, I ′).

2. There is a homomorphism h : J ′ → J .

Consequently, SOL(M, I) = SOL(M, I ′) if and only if J and
J ′ are homomorphically equivalent.

Let M = (S,T, Σst∪Σt) be a schema mapping such that Σst

is a set of s-t tgds and Σt is a set of target tgds and target
egds. We mentioned earlier that if Σt = ∅, then every source
instance I has a solution. Moreover, in this case, every source
instance I has a universal solution. In general, however, a
given source instance I may have no solution. Furthermore,
it is possible that a solution exists for a given source instance
I, but no universal solution for I exists [13]. This state of af-
fairs dictates that restrictions have to imposed on the target
constraints used, so that the existence of solutions implies
the existence of universal solutions (the converse is always
trivially true). At the same time, we would like to have re-
strictions that yield polynomial-time algorithms for testing
whether a solutions exists and for computing a universal so-
lution, whenever a solution exists.

The chase procedure is an indispensable algorithmic tool for
reasoning about dependencies [26, 4, 5] and, in particular,
for testing whether a given set of dependencies logically im-
plies another given dependency. As it turns out, the chase
procedure is versatile enough to be adapted for productive
use in data exchange. Specifically, in [13], the concept of
a weakly acyclic set of target tgds was introduced and then
used to show that a variant of the chase procedure yields a
polynomial-time algorithm for testing for solutions and for
computing universal solutions in every schema mappings M
in which the set Σt of target constraints is the union of a set
of target egds with a weakly acyclic set of target tgds.

Definition 3.5. [Weakly acyclic set of tgds] Let Σ be a
set of tgds over a schema T. Construct the following directed
graph, called the dependency graph:

• The nodes of the dependency graph are pairs (R, A)
such that R is a relation symbol in T and A is an at-
tribute of R; call such a pair a position.

• The edges of the dependency graph are created ac-
cording to the following rules. For every tgd ϕ(x) →
∃yψ(x,y) in Σ, for every x in x that occurs in ψ, and
for every occurrence of x in φ in position (R, Ai):

1. For every occurrence of x in ψ in position (S, Bj),
add an edge (R, Ai) → (S, Bj) (if it does not al-
ready exist).

2. In addition, for every existentially quantified vari-
able y and for every occurrence of y in ψ in position

(T, Ck), add a special edge (R, Ai)
∗→ (T, Ck) (if it

does not already exist).

We say that the set Σ is weakly acyclic if the dependency
graph has no cycle going through a special edge.

Clearly, if Σ is a set of full tgds, then Σ is weakly acyclic, since
the absence of existential quantifiers in the tgds of Σ implies
that the dependency graph has no special edges. It is also
easy to verify that if Σ is an acyclic set of inclusion depen-
dencies [10], then Σ is weakly acyclic as well. In contrast, the
singleton set Σ = {H(x1, x2) → ∃yH(x2, y)} is not weakly
acyclic, because the dependency graph has a self-loop with a

special edge, namely (H, B)
∗→ (H, B). Note also that each

of the two singleton sets Σ1 = {H(x1, x2) → ∃yH(x1, y)} and
Σ2 = {H(x1, x2) → ∃yH(y, x2)} is weakly acyclic, but not
acyclic; however, their union Σ1 ∪Σ2 is not weakly acyclic as

it contains the cycle (H, A)
∗→ (H, B)

∗→ (H, A)

The intuition behind the dependency graph and the concept
of a weakly set of tgds is as follows. Suppose we try to con-
struct a target instance that satisfies a set Σt of target tgds
by using the chase procedure. The non-special edges in the
dependency graph keep track of the fact that a value may
propagate from position (R, Ai) to position (S, Bj) during
the chase. The special edges keep track of the fact that prop-
agation of a value from position (R, Ai) to position (S, Bj)
also creates a labelled null in every position that has an exis-
tentially quantified variable. If a cycle goes through a special
edge, then a labelled null appearing in a certain position dur-
ing the chase may determine the creation of another labelled
null, in the same position, at a later chase step. Thus, this
process may continue for ever. In contrast, if the set Σt is
weakly acyclic, it can be shown that the chase procedure will
terminate after polynomially many steps. Moreover, if tar-
get egds are also present, then the only extra complication
is that the chase may fail, but this failure will be detected
within polynomially many steps.

The next result from [13] yields a broad sufficient condition
for the tractability of the existence-of-solutions problem in
data exchange and for the efficient computation of a universal
solution, whenever a solution exists.

Theorem 3.6. Let M = (S,T, Σst∪Σt) be a schema map-
ping such that Σst is a set of s-t tgds and Σt is the union of
a set of target egds with a weakly acyclic set of target tgds.

• Given a source instance I, a universal solution for I
exists if and only if a solution for I exists.

• There is a polynomial-time algorithm based on the chase
procedure such that, given a source instance I, it tests
whether a solution for I exists and, if so, it produces a
universal solution solution J for I.



To appreciate the wide applicability of the preceding Theo-
rem 3.6, note that its hypothesis is fulfilled by every schema
mapping M = (S,T, Σst ∪ Σt) such that Σst is a set of s-t
tgds and Σt satisfies one of the following properties:

• Σt is a set of target egds (that is, Σt contains no target
tgds).

• Σt is the union of a set of target egds with a set of
target full tgds.

• Σt is the union of a set of target egds with an acyclic
set of inclusion dependencies.

It remains an interesting open problem to identify other broad
classes of schema mappings that have the following proper-
ties: (1) for a given instance, universal solutions exist if and
only if solutions exist; (2) there are polynomial-time algo-
rithms for determining, given a source instance, whether a
solution exists and for computing a universal solution, when-
ever a solution exists.

3.2 The Core: The Smallest Universal Solution

We have made a case that universal solutions are the pre-
ferred solutions in data exchange. At the same time, we
pointed out that, although all universal solutions for a given
source instance are homomorphically equivalent to each other,
they need not be isomorphic. In particular, the source in-
stance I in Example 3.1 has infinitely many non-isomorphic
universal solutions, since, for every n ≥ 1, the target in-
stance J ′

n has size (number of facts) 2n and is a universal
solution for I. This raises the question: are some universal
solutions “better” than others? Is there a “best” universal
solution that we should choose to materialize and, if so, is it
efficiently computable?

The pursuit of the “best” universal solution was undertaken
in [14] using a small is beautiful approach. The main finding
of this investigation is that there is a smallest universal so-
lution, which is thus the most economical one to materialize
in terms of size. This smallest universal solution is unique
up to isomorphism and coincides with the core of all univer-
sal solutions. Furthermore, although computing the core of
arbitrary relational structures is an intractable problem, it
turns out that there are broad classes of schema mappings
for which the core of the universal solutions is computable in
polynomial time. In the remainder of this section, we present
an overview of these findings.

Let G = (V, E) be an (undirected) graph, where V is the set
of its nodes and E is the set of its edges; this means that
E is a non-empty binary relation on V that is symmetric
and irreflexive (no self-loops). A subgraph of G is a graph
G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E; it is a proper
subgraph if E′ is a proper subset of E.

Definition 3.7. Let G = (V, E) be a graph.

• A subgraph G′ = (V ′, E′) is a core of G if the following
two conditions hold:

1. There is homomorphism from G to G′.

2. There is no homomorphism from G′ to a proper
subgraph of G′.

• G is a core if it is a core of itself.

Cores have been studied in depth by graph theorists [20, 21].
For every n ≥ 2, the complete graph Kn with n nodes is a
core; for every n ≥ 1, the odd cycle C2n+1 is also a core. It
is also easy to see that a graph G is 2-colorable if and only
if K2 is a core of G. In particular, K2 is a core of every
even cycle C2n. There is an abundance of cores. As a matter
of fact, it has been shown that almost all finite graphs are
cores [24], which means that, under the uniform probability
measure, the asymptotic probability of a finite graph being
a core is equal to 1. The next proposition summarizes some
well known and easy to prove properties of cores of finite
graphs.

Proposition 3.8. Let G be a finite graph.

• G has a core.

• The cores of G are pairwise isomorphic; thus, we can
talk about the core of G, denoted by core(G).

• There is one-to-one homomorphism from core(G) to G.

• G is homomorphically equivalent to its core. It follows
that two graphs are homomorphically equivalent if and
only if their cores are isomorphic.

It should be noted that there are infinite graphs that have
no cores; thus, the hypothesis that G is finite in Proposition
3.8 is of the essence. The concept of a core is perfectly mean-
ingful for directed graphs and, more generally, for arbitrary
relational structures. Proposition 3.8 easily extends to ev-
ery finite relational structure, so that every finite relational
structure has a core, which is unique up to isomorphism.
Cores of relational databases have been studied in the con-
text of conjunctive-query processing [8], since minimizing a
conjunctive query amounts to finding the core of the canon-
ical database associated with the query (this is the database
whose facts are the conjuncts of the conjunctive query).

For our purposes here, we will focus on cores of target in-
stances in schema mappings M = (S,T, Σst ∪ Σt) in which
Σst is a set of s-t tgds and Σt is a set of target egds and target
tgds. The definition of the core of a target instance is entirely
analogous to that of the core of a graph, except that the ho-
momorphisms considered must obey Definition 3.3 and, thus,
map constants to themselves. This means, that we consider
only homomorphisms h between target instances such that
h(c) = c, for every c ∈ Const. In what follows, if J is a target
instance, we will write core(J) to denote the (unique up to
isomorphism) core of J .

Let I be a source instance for which universal solutions exist.
As we saw earlier, all universal solutions for I are homomor-
phically equivalent. Consequently, Proposition 3.8 (extended
to target instances) implies that the cores of the universal
solutions for I are isomorphic; in other words, all universal
solutions for I have the same core up to isomorphism. In



[14], it was shown that the core of a solution for a source
instance I is itself a solution for I. It follows that the core
of universal solutions is itself a universal solution, hence it is
the smallest universal solution. We collect these facts into a
proposition.

Proposition 3.9. Let M = (S,T, Σst ∪ Σt) be a schema
mapping in which Σst is a set of s-t tgds and Σt is a set of
target egds and target tgds.

1. If I is a source instance and J is a solution for I, then
core(J) is a solution for I.

2. If I is a source instance and J is a universal solution
for I, then also core(J) is a universal solution.

3. If I is source instance for which a universal solution
exists, then there is a universal solution J0 having the
following properties:

• J0 is a core and is isomorphic to the core of every
universal solution for I.

• If J is a universal solution for I, there is a one-to-
one homomorphism from J0 to J . It follows that
|J0| ≤ |J |, where |J0| and |J | are the sizes of J0

and J ; hence, J0 is the smallest universal solution.

Note that if M = (S,T, Σ) is a schema mapping in which Σ is
a set of arbitrary dependencies (say, arbitrary first-order for-
mulas), then the core of a solution for a source instance I need
not be a solution for I. Thus, the first part of Proposition 3.9
depends crucially on the assumption that the dependencies
in the schema mapping M are s-t tgds, target egds, and tar-
get tgds. The other parts of Proposition 3.9 follow from the
first part, the definitions, and Proposition 3.8. Returning to
Example 3.1, we see that solution J3 is the smallest universal
solution for I, and so is the isomorphic solution J ′

1.

The core of the universal solutions is the preferred univer-
sal solution to materialize in data exchange, since it is the
unique most compact universal solution. In turn, this raises
the question of how to compute cores of universal solutions.
Theorem 3.6 asserts that universal solutions can be computed
in polynomial time using the chase, provided the set of target
tgds is weakly acyclic. However, the result of the chase pro-
cedure, while a universal solution, need not be the core of the
universal solutions. Consequently, different algorithmic tools
are needed for computing the core of the universal solutions
in data exchange.

Let us consider for a moment the computational complexity
of computing the core of a graph. As mentioned earlier, a
graph G is 3-colorable if and only if there is a homomor-
phism from G to K3, the complete graph with 3 nodes.
From this, it follows that a graph G is 3-colorable if and
only if core(G ⊕ K3) = K3, where G ⊕ K3 is the disjoint
union of G and K3. Consequently, unless P = NP, there
is no polynomial-time algorithm for computing the core of a
given structure. Indeed, if such an algorithm existed, then
we could determine in polynomial time whether a graph is 3-
colorable by first running the algorithm to compute the core
of G ⊕ K3 and then checking if the answer is equal to K3.

This intractability of computing the core of graphs and, more
generally, of finite relational structure was already realized by
Chandra and Merlin [8] in their work on conjunctive-query
minimization. Later on, Hell and Nešetřil [20] showed that
the following problem, called Core Recognition, is coNP-
complete: given a graph G, is it a core? Finally, in [14], it
was shown that the following problem, called Core Identi-

fication, is DP-complete: given two graphs G and H, is H
the core of G? The class DP consists of all decision prob-
lems that can be written as an intersection of NP-problem
and a coNP-problem [31, 32]. Since DP contains both NP
and coNP as subclasses, DP-complete problems are regarded
as “harder” than NP-complete problems.

The preceding complexity-theoretic results reveal that, un-
less P = NP, computing the core of a graph (or, of a finite
relational structure) is an intractable problem. In data ex-
change, however, the goal is to compute the core of a uni-
versal solution, rather than the core of an arbitrary instance.
Therefore, the intractability of computing the core of an arbi-
trary instance does not automatically imply the intractability
of computing the core of universal solutions. In fact, as we
are about to see, for certain large classes of schema map-
pings, polynomial-time algorithms for computing the core of
universal solutions do exist.

Let M = (S,T, Σst∪Σt) be a schema mapping such that Σst

is a set of s-t tgds and Σt is a set of target egds (no target
tgds). For such schema mappings, a polynomial-time algo-
rithm, called the blocks algorithm, for computing the core of
universal solutions was given in [14]. A conceptually simpler
polynomial-time algorithm, called the greedy algorithm, for
the same task was subsequently given in the full version of
[14]. Intuitively, given a source instance I, the greedy al-
gorithm first determines whether solutions for I exist, and
then, if solutions exist, computes the core of the universal
solutions for I by successively removing tuples from a uni-
versal solution for I, as long as I and the instance resulting
in each step satisfy the s-t tgds in Σst.

Before describing the greedy algorithm, let us recall that a
fact is an expression of the form R(t) indicating that the
tuple t belongs to the relation R; moreover, every instance
can be identified with the set of all facts arising from the
relations of that instance.

Algorithm 3.10. Greedy Algorithm

Parameter: Schema mapping M = (S,T, Σst ∪ Σt) such
that Σst is a set of s-t tgds and Σt is a set of target egds.

Input: source instance I.

Output: the core of the universal solutions for I, if solutions
exist; “failure”, otherwise.

1. Chase I with Σst to produce a target instance J that
is a universal solution for I under the schema mapping
M′ = (S,T, Σst).

2. Chase J with Σt; if the chase fails, then stop and return
“failure”; otherwise, let J ′ be the universal solution for I
produced by the chase.



3. Initialize J∗ to be J ′.

4. While there is a fact R(t) in J∗ such that 〈I, J∗−{R(t)}〉
satisfies Σst, set J∗ to be J∗ − {R(t)}.

5. Return J∗.

The following result about the greedy algorithm was estab-
lished in the full version of [14].

Theorem 3.11. Assume that (S,T, Σst∪Σt) is a data ex-
change setting such that Σst is a set of s-t tgds and Σt is a set
of target egds. Then Algorithm 3.10 is a correct, polynomial-
time algorithm for testing for the existence of solutions and
for computing the core of universal solutions, if solutions ex-
ists.

In [14], it was left as an open problem to determine whether
there are polynomial-time algorithms for computing the core
in richer schema mappings. In the meantime, Gottlob [18]
obtained a number of results concerning the computation of
cores in data exchange. In particular, he established that if
M = (S,T, Σst ∪ Σt) is a schema mapping such that Σst is
a set of s-t tgds and Σt is set of target egds and target full
tgds, then the core of universal solutions can be computed in
polynomial time using a sophisticated extension of the blocks
algorithm. It remains to be seen whether these tractability
results extend to schema mappings in which the set of target
constraints is the union of a set of target egds with a weakly
acyclic set of target tgds.

4. Query Answering in Data Exchange

Suppose that a schema mapping M = (S,T, Σ) is used to
exchange data from a source schema S to a target schema
T. Suppose also that a query q over the target schema T
is posed. What does answering this query using source data
mean? As we have seen earlier, given a source instance I,
there may be infinitely many solutions J for I; furthermore,
if q is evaluated on different solutions J for I, it is possible
that different answers are produced. This ambiguity raises
the conceptual problem of giving precise semantics to query
answering in data exchange.

Similar conceptual problems were encountered much earlier
in the study of incomplete databases; they were addressed by
introducing the concept of the certain answers as the seman-
tics of query answering (see [35] for a survey). The certain
answers were also adopted as the standard semantics of query
answering in information integration (see [1, 23]). What in-
definite databases and information integration have in com-
mon is that queries are posed not against a single database,
but rather against the set of all possible databases in certain
contexts, that is, all databases satisfying a certain specifi-
cation. By definition, the certain answers of a query q are
the tuples that occur in the intersection of all q(J)’s, as J
ranges over all databases satisfying the specification at hand.
This concept is also perfectly meaningful in data exchange,
where the schema mapping can be viewed as a specification
of the solutions for a given source instance. Thus, in data
exchange, given a source instance I, the possible databases
are the solutions for I.

Definition 4.1. Let M = (S,T, Σ) be a schema mapping
and let q be a query over the target schema T.

• If I is source instance, then the certain answers of q on
I with respect to M, denoted certainM(q, I), is the set

certainM(q, I) =
⋂

{q(J) : J ∈ SOL(M, I)}.

• Computing the certain answers of q is the following de-
cision problem: given a source instance I and a tuple t
of constants from I, is t in certainM(q, I)?

On the face of it, the definition of the certain answers is highly
non-effective, since evaluating certainM(q, I) entails comput-
ing the intersection of infinitely many sets. In information
integration, the main approach to computing the certain an-
swers is to try to rewrite queries over the target to queries
over the sources. In data exchange, one would like to take
advantage of the materialized solution and use it to obtain
the certain answers of target queries. As shown in [13], the
certain answers of unions of conjunctive queries can be ob-
tained using a universal solution. Recall that a conjunctive
query is a first-order formula of the form ∃wχ(x,w), where
χ(x,w) is a conjunction of atoms. A union of conjunctive
queries is a finite disjunction of conjunctive queries. The
following result is from [13].

Theorem 4.2. Assume that M = (S,T, Σst ∪ Σt) is a
schema mapping such that Σst is a set of s-t tgds and Σt

is a set of target egds and target tgds. Let q be a union of
conjunctive queries over the target schema T.

• If I is a source instance and J is a universal solution
for I, then

certainM(q, I) = q(J)↓,

where q(J)↓ is the set of all “null-free” tuples in q(J),
that is, all tuples t in q(J) such that every value in t is
a constant in Const.

• Assume further that Σt is the union of a set of tar-
get egds with a weakly acyclic set of target tgds. Then
there is a polynomial-time algorithm for computing the
certain answers of q.

The preceding Theorem 4.2 provides further evidence for the
goodness of universal solutions in data exchange. The proof
of the first part of this result uses the existence of homomor-
phisms from a universal solution to every solution, and the
preservation of conjunctive queries under homomorphisms.
The second part follows immediately by combining the first
part with Theorem 3.6 and the fact that every fixed con-
junctive query can be evaluated in polynomial time. As an
illustration of Theorem 4.2, let us consider again the schema
mapping M and the source instance I = {E(1, 2}) in Exam-
ple 3.1. Let q(x) be the conjunctive query ∃wH(x, w). Using
the definitions, it is easy to verify that certainM(q, I) = {1}.
Recall that the target instance J3 = {H(1, u), H(u, 2)} is
a universal solution for I. Clearly, q(J3) = {1, u}, hence
q(J3)↓ = {1} = certainM(q, I), as predicted by Theorem 4.2.



Conjunctive queries with inequalities ( 	=) form one of the
most extensively studied extensions of conjunctive queries.
By definition, a conjunctive query with inequalities is a first-
order formula of the form ∃wχ(x,w), where χ(x,w) is a
conjunction of atoms and inequalities u 	= v; a union of con-
junctive query with inequalities is a finite disjunction of con-
junctive query with inequalities. Conjunctive queries with in-
equalities are more expressive than conjunctive queries; this
increase in expressive power, however, often comes at a price.
In particular, as we are about to see, Theorem 4.2 does not
extend to unions of conjunctive queries with inequalities.

First, it is easy to see that the certain answers of conjunc-
tive queries with inequalities cannot be obtained by simply
evaluating them on some universal solution and then dis-
carding all tuples containing nulls. Intuitively, the reason for
this is that a conjunctive query with inequalities need not be
preserved under homomorphisms; thus, if it holds on some
universal solution, then it need not hold on every solution.
Concretely, let M be the schema mapping in Example 3.1,
let p(x) be the query ∃w(H(x, w)∧w 	= x), and let I0 be the
source instance consisting of just the fact E(1, 1). Clearly,
certainM(p, I0) = ∅, since J0 = {H(1, 1)} is a solution for
I0 and p(J0) = ∅. At the same time, the target instance
J5 = {(1, u), (u, 1)} is a universal solution for I0 (in fact, it is
the core of the universal solutions for I0), and p(J5)↓ = {1}.

The next result from [13] pinpoints the computational com-
plexity of computing the certain answers of unions of conjunc-
tive queries with inequalities; in particular, it shows that this
problem can be intractable, unless at most one inequality is
allowed in every conjunctive query in the union.

Theorem 4.3. Assume that M = (S,T, Σst ∪ Σt) is a
schema mapping such that Σst is a set of s-t tgds and Σt is
the union of a set of target egds with a weakly acyclic set of
target tgds.

• If q is a union of conjunctive queries with at most one
inequality per conjunctive query, then the certain an-
swers of q are polynomial-time computable.

• If q is a union of conjunctive queries with inequalities,
then the certain anwers of q is a coNP problem.

• Computing the certain answers of unions of conjunc-
tive queries with inequalities can be a coNP-complete
problem, even if the union consists of two conjunctive
queries each of which has at most two inequalities, and
the schema mapping has no target constraints.

Abiteboul and Duschka [1] showed that there is a single con-
junctive query with seven inequalities and a schema mapping
with no target constraints for which computing the certain
answers in a coNP-complete problem. In [13], it was conjec-
tured that there is a single conjunctive query with two in-
equalities and a schema mapping with no target constraints
for which computing the certain answers is a coNP-complete
problem. This conjecture has recently been proved by Madry
[27]. In fact, the s-t tgds in the schema mapping constructed
by Madry (as well as in the schema mapping constructed
by Abiteboul and Duschka), are sound views in LAV, which

means that they are s-t tgds of the form R(x) → ∃yψ(x,y)
with R a relation symbol in the source schema S. Combined
with Theorem 4.3, these results yield a rather complete pic-
ture of the complexity of the certain answers of conjunctive
queries with inequalities.

We saw earlier that the certain answers of conjunctive queries
with inequalities cannot always be obtained by evaluating
them on some universal solution and then discarding all tu-
ples containing a null value. In fact, this fails even if the uni-
versal solution chosen is the core of the universal solutions.
Nonetheless, among all universal solutions, the core gives the
best approximation to the certain answers of unions of con-
junctive queries. This is made precise in the next proposition,
which is proved using the fact that the core has one-to-one
homomorphisms to every universal solution.

Proposition 4.4. Assume that M = (S,T, Σst ∪Σt) is a
schema mapping such that Σst is a set of s-t tgds and Σt is
a set of target egds and target tgds. Assume also that I is a
source instance for which universal solutions exist and let J0

be the core of the universal solutions for I. If q is a union of
conjunctive queries with inequalities, then

• q(J0) ⊆ q(J), for every universal solution J for I;

• q(J0)↓ =
⋂{q(J) : J is universal for I} ⊆ certainM(q, I).

The concept of the certain answers in data exchange was ar-
rived at by taking the solutions for an instance to be the
possible databases. We have made a case, however, that
the universal solutions are the preferred solutions in data
exchange. This suggests an alternative semantics of query
answering in data exchange by taking the universal solutions
for an instance to be the possible databases in the definition of
the certain answers. The following concept of the universal-
certain answers, in short u-certain answers, was introduced
in the full version of [14].

Definition 4.5. Let M = (S,T, Σ) be a schema mapping
and let q be a query over the target schema T.

• If I is source instance, then the u-certain answers of
q on I with respect to M, denoted u-certainM(q, I), is
the set

u-certainM(q, I) =
⋂

{q(J) : J is universal for I}.

• Computing the u-certain answers of q is the following
decision problem: given a source instance I and a tuple
t of constants from I, does t ∈ u-certainM(q, I)?

From the definitions, it follows immediately that

certainM(q, I) ⊆ u-certainM(q, I).

Furthermore, if q is a union of conjunctive queries and I is
a source instance for which universal solutions exist. then
Theorem 4.2 implies that

certainM(q, I) = u-certainM(q, I).



Let M = (S,T, Σst∪Σt) be a schema mapping such that Σst

is a set of s-t tgds and Σt is a set of target egds. By Theorem
3.11, given a source instance I, we can decide in polynomial
time whether a solution for I exists and, if it does, construct
the core J0 of the universal solutions for I in polynomial
time. From this fact and Proposition 4.4, it follows that if
q is a union of conjunctive queries with inequalities, then
u-certainM(q, I) can be evaluated in polynomial time, since
u-certainM(q, I) = q(J0)↓. Thus, we have established the
following result.

Corollary 4.6. Let M = (S,T, Σst ∪ Σt) be a schema
mapping such that Σst is a set of s-t tgds and Σt is a set
of target egds. If q is a union of conjunctive queries with in-
equalities, then there is a polynomial-time algorithm for com-
puting u-certainM(q, I).

To appreciate the preceding Corollary 4.6, note that it is
not at all clear how this result can be proved without using
the concept of the core and Theorem 3.11. Note also that,
by Gottlob’s recent results [18], Corollary 4.6 extends to all
schema mappings M in which Σt is a set of target egds and
target full tgds.

We saw that the u-certain answers semantics coincides with
the certain answers semantics on unions of conjunctive queries,
but the two may digress on unions of conjunctive queries with
inequalities. The u-certain answers semantics has a definite
computational advantage over the certain answers semantics,
as the former is polynomial-time computable in settings in
which the latter is coNP-complete. Several questions merit
further investigation. How do these two semantics compare
from a pragmatic point of view? In other words, which of
the two captures better the intent of the user? How do they
compare on queries that more expressive than the ones con-
sidered here? More broadly, are there are other semantics
that are meaningful for query answering in data exchange?
And what criteria can we develop to compare the quality of
query answering in data exchange under different semantics?

5. Composing Schema Mappings

Suppose that we have two schema mappings such that the
target schema of the first is the source schema of the second.
We would like to have a composition operator that takes two
such schema mappings as input and produces a third schema
mapping that has the same effect as applying the two orig-
inal schema mappings one after the other. Such an opera-
tor could be a powerful component in a data exchange tool
that is able to automatically synthesize several consecutive
schema mappings into a single schema mapping that captures
the combined effect of all schema mappings in the sequence.
Indeed, the resulting single schema mapping could then be
used during the run-time phase for direct data exchange or
for query answering, potentially yielding performance bene-
fits. The concept of the composition operator occupies also
a central place in Bernstein’s metadata management frame-
work [6]. The reason for this is that composition is a key
building block in constructing more powerful metadata op-
erators. In particular, schema evolution can be analyzed via
repeated applications of composition.

S1 S2

M12

S3

M23

M13

Figure 3: Composing Schema Mappings

More formally, let S1, S2, S3 be three schemas with no rela-
tion symbols in common pairwise. Assume also that M12 =
(S1,S2, Σ12) and M23 = (S2,S3, Σ23) are two schema map-
pings in which Σ12 and Σ23 are sets of formulas of some
logic L over 〈S1,S2〉 and 〈S2,S3〉, respectively. The goal is
to have a composition operator that, given two such schema
mappings, produces a schema mapping M13 = (S1,S3, Σ13)
that is “equivalent” to the successive applications of M12

and M23. It is not clear, however, what being “equivalent”
exactly means in this context. Therefore, the first step in the
study of the composition operator on schema mappings is to
develop rigorous semantics for this operator.

Madhavan and Halevy [25] were the first to propose and in-
vestigate a precise semantics for the composition operator.
Since one of their primary motivations was query answering
in peer-to-peer data management systems, their definition
carries a class Q of queries over the schema S3 as a pa-
rameter. Specifically, it is stipulated that, for every query
q in Q, the certain answers of q with respect to the com-
position M13 coincide with the certain answers obtained by
successively applying M12 and M23. The dependence on the
class of queries results to inequivalent semantics for different
classes of queries. Indeed, as shown in [15], the semantics of
the composition w.r.t. conjunctive queries is different from
those w.r.t. conjunctive queries with inequalities. Also, even
for a fixed class of queries, the composition of two schema
mappings need not be unique up to logical equivalence.

A different semantics for the composition operator was given
and thoroughly investigated in [15]. This semantics has a
set-theoretic flavor and is obtained by simply composing the
spaces Inst(M12) and Inst(M23) of the instances (recall Def-
inition 2.2) of the schema mappings M12 and M23.

Definition 5.1. Let M12 = (S1,S2, Σ12) and M23 =
(S2,S3, Σ23) be two schema mappings such that the schemas
S1, S2, S3 have no relation symbols in common.

A schema mapping M13 = (S1,S3, Σ13) is a composition of
M12 and M23 if for every instance I1 over S1 and every
instance I3 over S3, the following are equivalent:

1. 〈I1, I3〉 |= Σ13;

2. There is an instance I2 over S2 such that 〈I1, I2〉 |= Σ12

and 〈I2, I3〉 |= Σ23.

In symbols, M13 = (S1,S3, Σ13) is a composition of M12 and
M23 if and only if

Inst(M13) = Inst(M12) ◦ Inst(M23),



where ◦ denotes the set-theoretic composition of two binary
relations.

The preceding Definition 5.1 can be construed as the natural
definition of the operational semantics of the composition
operator on schema mappings. The following basic facts are
immediate consequences of this definition.

If both M = (S1,S3, Σ) and M′ = (S1,S3, Σ
′) are compo-

sitions of M12 and M23, then the sets Σ and Σ′ are logi-
cally equivalent. For this reason, from now on, we will talk
about the composition of M12 and M23, and we will write
M12 ◦M23 to denote it.

As stated in Section 2, the spaces Inst(M12) and Inst(M23)
are closed under isomorphism. It follows that the space
Inst(M12) ◦ Inst(M23) of their composition as binary rela-
tions is also closed under isomorphism. Thus, Inst(M12) ◦
Inst(M23) can be identified with the following query, called
the composition query of M12 and M23: given two instances
I1 and I3, is 〈I1, I3〉 in Inst(M12) ◦ Inst(M23)? Clearly, a
schema mapping (S1,S3, Σ13) is the composition of M12 and
M23 if and only if the composition query of M12 and M23

is definable by the set Σ13. From now on, if Σ13 is a set of
formulas such that (S1,S3, Σ13) is the composition of M12

and M23, we will say that the composition M12 ◦ M23 is
definable by Σ13.

Once the semantics of the composition operator has been
put in place, several technical issues arise. As mentioned in
the Introduction, the first key issue is the closure of schema-
mapping specification languages under composition. More
precisely, let M12 = (S1,S2, Σ12) and M23 = (S2,S3, Σ23)
be two schema mappings in which Σ12 and Σ23 are sets of
formulas of some logic L. Is the composition of these two
schema mappings definable in L? In other words, is there a
set Σ13 of L-formulas such that M12 ◦M23 = (S1,S3, Σ13)?
If so, can such a set be effectively constructed? Last but not
least, what is the computational complexity of the composi-
tion query of two given schema mappings?

5.1 Composing s-t tgds

The aforementioned issues were investigated in [15] for schema
mappings of the form (S,T, Σst), where Σst is a set of s-t tgds
(no target constraints). In a nutshell, it was shown there that
the language of s-t full tgds is closed under composition, while
on the contrary the language of s-t tgds is not. Furthermore,
the composition query of two schema mappings specified by
s-t tgds may be NP-complete. These findings are described
in more detail in the next result.

Theorem 5.2. Let S1, S2, S3 be three schemas with no
relation symbols in common, and let M12 = (S1,S2, Σ12)
and M23 = (S2,S3, Σ23) be two schema mappings.

• If both Σ12 and Σ23 are finite sets of s-t full tgds, then
the composition M12 ◦M23 is definable by a finite set
of s-t full tgds. Consequently, the composition query of
M12 and M23 is a polynomial-time query.

• If Σ12 is a finite set of s-t full tgds and Σ23 is a finite set
of s-t tgds, then the composition M12◦M23 is definable

by a finite set of s-t tgds. Consequently, the composition
query of M12 and M23 is a polynomial-time query.

• If both Σ12 and Σ23 are finite sets of s-t tgds, then the
composition query of M12 and M23 is in NP.

• There exist schema mappings M12 and M23 such that
Σ12 is a finite set of s-t tgds, Σ23 is a finite set of s-t
full tgds, and the following hold for the composition of
these two schema mappings:

1. The composition query of M12◦M23 is NP-complete.

2. The composition M12◦M23 is not definable by any
formula of least fixed-point logic LFP. In particu-
lar, the composition M12 ◦M23 is not definable by
any formula of first-order logic or of Datalog.

Several remarks are in order now. To begin with, note that
the proof of the first part of Theorem 5.2 actually gives an
algorithm for finding a set Σ13 of s-t full tgds that defines the
composition; this set, however, can be exponentially larger
than the sets Σ12 and Σ23. The same state of affairs holds
true for the second part of Theorem 5.2. In certain respects,
these two parts contain the best positive results about the
composition of finite sets of s-t tgds. Indeed, the last part of
Theorem 5.2 implies that the composition of a finite set of s-t
tgds with a finite set of s-t full tgds need not be definable by
a finite set of s-t tgds. The next example from [15] illustrates
this phenomenon.

Example 5.3. Consider the following three schemas S1,
S2 and S3: schema S1 consists of a single unary relation
symbol Emp of employees; schema S2 consists of one binary
relation symbol Mgr′ associating each employee with a man-
ager; schema S3 consists of a binary relation symbol Mgr

and an additional unary relation symbol SelfMgr, intended
to store employees who are their own managers. Consider
now the schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3, Σ23), where

Σ12 = {Emp(e) → ∃mMgr
′(e, m)}

Σ23 = {Mgr′(e, m) → Mgr(e, m), Mgr′(e, e) → SelfMgr(e)}.
In [15], it is shown that the composition M12 ◦ M23 is not
definable by any set (finite or infinite) of s-t tgds. The rea-
son for this is that every set of s-t tgds is preserved under
homomorphisms of target instances, while the composition
query of M12 and M23 is not. It is not hard, however, to
show that the composition M12 ◦M23 of these two schema
mappings is definable by the following first-order formula:

∀e(Emp(e) → ∃mMgr(e, m)) ∧
∀e((∀x(Mgr(e, x) → (e = x))) → SelfMgr(e)).

Consequently, the composition query of M12 and M23 is a
polynomial-time query.

The last part of Theorem 5.2 asserts that the composition of
a finite set of s-t tgds with a finite set of s-t tgds need not be
first-order definable; moreover, the associated composition
query may actually be NP-complete. This was proved in [15]
via reduction from 3-Colorability that we now give.



Consider the following three schemas S1, S2 and S3: schema
S1 consists of a single binary relation symbol E; schema S2

consists of two binary relation symbols C and F ; schema
S3 consists of one binary relation symbol D. Consider now
the schema mappings M12 = (S1, S2, Σ12) and M23 =
(S2,S3, Σ23), where

Σ12 = {E(x, y) → F (x, y),

E(x, y) → ∃uC(x, u),

E(x, y) → ∃vC(y, v)}
Σ23 = {(C(x, u) ∧ C(y, v) ∧ F (x, y) → D(u, v))}.

Given a graph G = (V, E), let I1 be the instance over S1

consisting of the edge relation E of G, and let I3 be the
instance over the schema S3 with

D = {(r, g), (g, r), (b, r), (r, b), (g, b), (b, g)}.
In words, D is the edge relation of the complete graph K3

on three nodes r, g, b. It is now easy to verify that G is
3-colorable if and only if 〈I1, I3〉 is in Inst(M12)◦ Inst(M23).
Thus, the composition query of M12 and M23 is NP-complete.
In addition, since the above reduction is expressible in first-
order logic, results by Dawar [11] imply that the composition
query of M12 and M23 is not definable in least fixed-point
logic LFP, a logic that is well known to subsume both first-
order logic and Datalog.

Observe that each s-t tgd in Σ12 has at most one existential
quantifier, while Σ23 consists of a single s-t full tgd. Thus,
the preceding construction draws a rather sharp boundary
on the definability of the composition of schema mappings
specified by finite sets of s-t tgds. More precisely, the com-
position of a finite set of s-t full tgds with a finite set of
s-t tgds is always definable by a first-order formula (and, in
fact, definable by a finite conjunction of s-t tgds), while the
composition of a finite set of s-t tgds having at most one ex-
istential quantifier with a set consisting of a single s-t full
tgd may not even be LFP-definable (and, a fortiori, not first-
order definable). Similarly, the computational complexity of
the associated composition query may jump from solvable in
polynomial time to NP-complete.

5.2 Second-order tgds

What is the “right” specification language for expressing the
composition of schema mappings specified by finite sets of s-t
tgds? There are two main desiderata in such a specification
language. First, it should be powerful enough to express
the composition of schema mappings specified by finite sets
of s-t tgds, while at the same time it should itself be closed
under composition. Second, it should enjoy good algorithmic
properties for data exchange purposes.

A class of existential second-order formulas, called second-
order tuple-generating dependencies (SO tgds), was intro-
duced and studied in [15]. In informal terms, an SO tgd
is a source-to-target dependency suitably extended with ex-
istentially quantified function symbols. The composition of
two finite sets of s-t tgds is always definable by an SO tgd.
Moreover, the composition of two SO tgds is always defin-
able by an SO tgd. Finally, SO tgds have good properties for
data exchange, since the chase procedure can be extended

to SO tgds so that it produces polynomial-time computable
universal solutions in schema mapping specified by SO tgds.
We now formally define SO tgds.

Definition 5.4. Let S and T be two schemas with no
relation symbols in common. A second-order tuple-generating
dependency (SO tgd) over 〈S,T〉 is a formula of the form

∃f1 ... ∃fm (∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn)),

where

• Each fi is a function symbol.

• Each φi is a conjunction of

1. atomic formulas R(y1, ..., yk), where R is a k-ary
relation symbol of the schema S and y1, . . . , yk

are variables in xi, not necessarily distinct, and

2. equalities of the form t = t′, where t and t′ are
terms built from the function symbols fi and the
variables xj .

• Each ψi is a conjunction of atomic formulas S(t1, ..., tl),
where S is an l-ary relation symbol of the schema T
and t1, . . . , tl are terms built from the function sym-
bols fi and the variables xj .

• Each variable in xi appears in a relational atomic
formula of φi.

It is easy to see that the conjunction of finitely many SO
tgds is logically equivalent to a single SO tgd. Note also that
SO tgds subsume s-t tgds. As a matter of fact, every s-t tgd
σ is equivalent to an SO tgd without equalities obtained by
Skolemizing σ. Specifically, if σ is a s-t tgd of the form

∀x1 . . . ∀xm(ϕ(x1, . . . , xm) →
∃y1 . . . ∃ynψ(x1, . . . , xm, y1, . . . , yn)),

then σ is equivalent to the SO tgd

∃f1 . . . ∃fn(∀x1 . . . ∀xm(ϕ(x1, . . . , xm) →
ψ(x1, . . . , xm, f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))). (1)

It follows that every finite set of s-t tgds is logically equivalent
to a single SO tgd.

Next, consider the schema mappings M12 and M23 used in
the reduction from 3-Colorability. It is easy to verify that
the composition M12 ◦M23 is definable by the SO tgd

∃f(∀x∀y(E(x, y) → D(f(x), f(y)))). (2)

Since this composition is not first-order definable, it follows
that the above SO tgd is not logically equivalent to any finite
set of s-t tgds. Thus, SO tgds properly subsume s-t tgds.

Finally, the composition M12 ◦M23 of the schema mappings
in Example 5.3 is definable by the SO tgd

∃f( ∀e(Emp(e) → Mgr(e, f(e)))∧
∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e))). (3)

As noted earlier, this composition is not definable by any set
(finite or infinite) of s-t tgds, but is first-order definable.

Note that an equality between terms occurs in SO tgd (3),
but not in SO tgds (1) and (2). In [15], it was shown that



allowing equalities in SO tgds is of the essence, because no
SO tgd without equalities can define the composition of the
two schema mappings in Example 5.3. This also suggests
that formulating the concept of SO tgds was a rather deli-
cate matter. For example, a naive way to arrive at second-
order dependencies is to Skolemize s-t tgds. However, the
fragment of existential second-order logic obtained this way
lacks the expressive power to express the composition of fi-
nite sets of s-t tgds, since formulas in this fragment do not
contain equalities.

As noted earlier, the conjunction of finitely many SO tgds
is logically equivalent to a single SO tgd. Thus, instead of
considering schema mappings specified by finite sets of SO
tgds, it suffices to consider schema mappings specified by a
single SO tgds. The next result from [15] asserts that such
schema mappings are closed under composition.

Theorem 5.5. SO tgds are closed under composition, that
is, if M12 = (S1,S2, Σ12) and M23 = (S2,S3, Σ23) are two
schema mappings in which Σ12 and Σ23 are SO tgds, then
there is an SO tgd Σ13 such that M12 ◦M23 = (S1,S2, Σ13).

Corollary 5.6. The composition of two finite sets of s-t
tgds is definable by an SO tgd.

In [15], an algorithm is presented for constucting an SO tgd
that defines the composition of two given SO tgds. The al-
gorithm runs in exponential time; it can be shown that this
task requires exponential time. Also in [15], it is shown that,
when it comes to data exchange, SO tgds have the same good
algorithmic properties as s-t tgds.

Theorem 5.7. Let M = (S,T, Σ) be a schema mapping
in which Σ is an SO tgd.

• There is a polynomial-time algorithm based on an ex-
tension of the chase procedure such that, given a source
instance I, it tests whether a solution for I exists and,
if so, it produces a universal solution J for I.

• If q is a union of conjunctive queries over T, then there
is a polynomial-time algorithm for computing the cer-
tain answers of q.

The results presented in this section make a strong case that
SO tgds possess the right balance between high expressive
power and good algorithmic properties. On the one hand,
they are powerful enough to express the composition of finite
sets of s-t tgds, while being themselves closed under compo-
sition. On the other hand, they are amenable to the chase
procedure, so that there are polynomial-time algorithms for
constructing a universal solution and for computing the cer-
tain answers of unions of conjunctive queries.

Finally, note that the semantics of composition of schema
mappings presented here has also been considered by Melnik
[28] in his doctoral dissertation. In addition, Nash, Bernstein
and Melnik [30] have recently investigated the composition
of schema mappings specified by (first-order) embedded im-
plicational dependencies that need not be s-t tgds.

6. Concluding Remarks

In this paper, we presented an overview of a body of work on
data exchange and composition of schema mappings between
relational schemas. This work was originally motivated by
Clio, a schema mapping and data exchange system built at
the IBM Almaden Research Center [29, 33]. Our initial goal
was to provide a formal justification for certain engineering
choices made in Clio; this led to the formulation of the con-
cept of universal solutions and to the subsequent investiga-
tion of foundational and algorithmic issues in data exchange
and metadata management. Some of the findings of this in-
vestigation influenced the development of Clio, which, in the
meantime, has evolved from a prototype to an industrial-
strength tool [19]. In particular, SO tgds form the core of
Clio’s Mapping Specification Language; moreover, the com-
position algorithm for SO tgds has been incorporated in Clio.

It should be noted that Clio actually supports data exchange
between XML and relational schemas, in all four combina-
tions. Many conceptual and technical challenges arise in
the study of the foundations of data exchange and metadata
management for XML schemas. Arenas and Libkin [3] have
already addressed some of the challenges in data exchange
between XML schemas.
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