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ABSTRACT 
It is increasingly important to develop scalable integration 
techniques for the growing number of XML data sources. A 
practical starting point for the integration of large numbers of 
Document Type Definitions (DTDs) of XML sources would be to 
first find clusters of DTDs that are similar in structure and 
semantics. Reconciling similar DTDs within such a cluster will be 
an easier task than reconciling DTDs that are different in structure 
and semantics as the latter would involve more restructuring. We 
introduce XClust, a novel integration strategy that involves the 
clustering of DTDs. A matching algorithm based on the 
semantics, immediate descendents and leaf-context similarity of 
DTD elements is developed. Our experiments to integrate real 
world DTDs demonstrate the effectiveness of the XClust 
approach.   

Categories and Subject Descriptors 
H.3.5[Information Systems]:Information Storage And Retrieval-
Online Information Services[Data sharing] 

General Terms 
Algorithms, Performance 

Keywords 
XML Schema, Data integration, Schema matching, Clustering 

1. INTRODUCTION 
The growth of the Internet has greatly simplified access to 
existing information sources and spurred the creation of new 
sources. XML has become the standard for data representation 
and exchange on the Internet. While there has been a great deal of 
activity in proposing new semistructured models [2, 13, 23] and 
query languages for XML data [1, 4, 8, 5, 25], efforts to develop 
good information integration technology for the growing number 
of XML data sources is still ongoing [15, 31]. 

Existing data integration systems such as Information Manifold 
[20], TSIMMIS [11], Infomaster [10], DISCO [28], Tukwila [16], 
MIX [19], Clio [15], Xyleme [31] rely heavily on a mediated 
schema to represent a particular application domain and data 
sources are mapped as views over the mediated schema. Research 
in these systems is focused on extracting mappings between the 
source schemas and mediated schema, and reformulating user 

queries on the mediated schema into a set of queries on the data 
sources. The traditional approach where a system integrator 
defines integrated views over the data sources breaks down 
because there are just too many data sources and changes. 

In this work, we propose an integration strategy that involves 
clustering the DTDs of XML data sources (Figure 1). We first 
find clusters of DTDs that are similar in structure and semantics. 
This allows system integrators to concentrate on the DTDs within 
each cluster to get an integrated DTD for the cluster. Reconciling 
similar DTDs is an easier task than reconciling DTDs that are 
different in structure and semantics since the latter involves more 
restructuring. The clustering process is applied recursively to the 
clusters’ DTDs until a manageable number of DTDs is obtained. 
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Figure 1. Proposed cluster-based integration. 
The contribution of this paper is two-fold. First, we develop a 
technique to determine the degree of similarity between DTDs. 
Our similarity comparison considers not only the linguistic and 
structural information of DTD elements but also the context of a 
DTD element (defined by its ancestors and descendents in a DTD 
tree). Experiment results show that the context of elements plays 
an important role in element similarity. Second, we validate our 
approach by integrating real world DTDs. We demonstrate that 
clustering DTDs first before integrating them greatly facilitates 
the integration process. 

2. MODELING DTD 
DTDs consist of elements and attributes. Elements can nest other 
elements (even recursively), or be empty. Simple cardinality 
constraints can be imposed on the elements using regular 
expression operators (?, *, +). Elements can be grouped as 
ordered sequences (a,b) or as choices (a|b). Elements have 
attributes with properties type (PCDATA, ID, IDREF, 
ENUMERATION), cardinality (#REQUIRED, #FIXED, 
#DEFAULT), and any default value. Figure 2 shows an example 
of a DTD for articles. 

 
 
 
 
 

Figure 2. DTD for articles. 
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<!ELEMENT Article (Title, Author+, Sections+)> 
<!ELEMENT Sections (Title?, (Para | (Title?, Para+)+)*)> 
<!ELEMENT Title (#PCDATA)> 
<!ELEMENT Para (#PCDATA)> 
<!ELEMENT Author (Name, Affiliation)> 
<!ELEMENT Name (#PCDATA)> 
<!ELEMENT Affiliation (#PCDATA)> 



2.1 DTD Trees 
A DTD can be modeled as a tree T(V, E) where V is a set of nodes 
and E is a set of edges. Each element is represented as a node in 
the tree. Edges are used to connect an element node and its 
attributes or sub-elements. Figure 3 shows a DTD tree for the 
DTD in Figure 2. Each node is annotated with properties such as 
cardinality constraints ?, * or +. There are two types of auxiliary 
nodes in the regular expression: OR node for choice, AND node 
for sequence, denoted by symbols ‘,’ and ‘|’ respectively.  
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Figure 3. DTD tree for the DTD in Figure 2. 

2.2 Simplification  of DTD Trees 
DTD trees with AND and OR nodes do not facilitate schema 
matching. It is difficult to determine the degree of similarity of 
two elements that have AND-OR nodes in their content 
representation. One solution is to split an AND-OR tree into a 
forest of AND trees, and compute the similarity based on AND 
trees. But this may generate a proliferation of AND trees. Another 
solution is to simply remove the OR nodes from the trees which 
may result in information loss [26, 27]. In order to minimize the 
loss of information, we propose a set of transformation rules each 
of which is associated with a priority (Table 1).  

Rules E1 to E5 are information preserving and are given priority 
‘high’. For example, the regular expression ((a,b)*)+  in Rule E2 
implies that it has at least one (a,b)* element, or ((a,b)*,(a,b)*,…). 
The latter is equivalent to (a,b)*. Hence, we have ((a,b)*)+ 

((a,b)*,(a,b)*,…) (a,b)*. Similarly, the expression ((a,b)+)* 
implies zero or more (a,b)+, which is given by (a,b)*. Therefore, 
we have ((a,b)+)* zero or more (a,b)+ (a,b)*. 

Rules L6 and L7 will lead to information loss and are given 
priority ‘low’. Rule L6 transforms the regular expression (a, b)+ 
into (a+, b+). This causes the group information to be lost since 
(a, b)+ implies that (a, b) will occur simultaneously one or more 
times, while (a+, b+) does not impose this semantic constraint. 
This rule avoids the exponential growth that may occur when 
DTD trees with AND-OR nodes are split into trees with only 
AND nodes for subsequent schema matching. After applying a 
series of transformation rules to a DTD tree, any auxiliary OR 
nodes will become AND nodes and can be merged. 

Table 1. DTD transformation rules 
Rule Transformation Priority 
E1 (a|b)* (a*,b*) high 

E2 
((a|b)*)+  ((a|b)+)*  (a*,b*) 
((a,b)*)+  ((a,b)+)*  (a,b)* high 

E3 
((a|b)*)? ((a|b)?)*  (a*,b*) 
((a,b)*)? ((a,b)?)*   (a,b)* high 

E4 
((a|b)+)? ((a|b)?)+  (a*,b*) 
((a,b)+)? ((a,b)?)+  (a,b)* high 

E5 
((E)*)* (E)* 
((E)?)? (E)? 
((E)+)+ (E)+ 

high 

L6 
(a|b) ⇒ (a,b) 
(a|b)+ ⇒ (a+,b+)  
(a|b)? ⇒ (a?,b?) 

low 

L7 
(a,b)* ⇒ (a*,b*) 
(a,b)+ ⇒ (a+,b+) 
(a,b)? ⇒ (a?,b?) 

low 

 
Example 1. Given a DTD element Sections (Title?, (Para | 
(Title?,Para+)+)*), we can have the following transformations: 
    Rule E1: Sections (Title?, (Para | (Title?, Para+)+)*) 
             ⇒ Sections (Title?, (Para*, ((Title?, Para+)+)*)) 
    Rule E2:Sections (Title?, (Para*, ((Title?, Para+)+)*))   
             ⇒ Sections (Title?, (Para*, (Title?, Para+)*)) 
 Merging:Sections (Title?, (Para*, (Title?, Para+)*)) 
             ⇒ Sections (Title?, Para*, (Title?, Para+)*) 
Alternatively, we can apply Rule L7, then Rule E4, followed by 
merging. But this will cause information loss since it is no longer 
mandatory for Title and Para to occur together. Distinguishing 
between equivalent and non-equivalent transformations and 
prioritizing their usage provides a logical foundation for schema 
transformation and minimizes information loss. 

3. ELEMENT SIMILARITY 
To compute the similarity of two DTDs, it is necessary to 
compute the similarity between elements in the DTDs. We 
propose a method to compute element similarity that considers the 
semantics, structure and context information of the elements.  

3.1 Basic Similarity 
The first step in determining the similarity between the elements 
of two DTDs is to match their names to resolve any abbreviations, 
homonyms, synonyms, etc. In general, given two elements’ 
names, their term similarity or name affinity in a domain can be 
provided by the thesauri and unifying taxonomies [3]. Here, we 
handle acronyms such as Emp and Employee by using an 
expansion table. Then, we use the WordNet thesaurus [29] to 
determine whether the names are synonyms.  

The WordNet Java API [30] returns the synonym set (Synset) of a 
given word. Figure 4 gives the OntologySim algorithm to 
determine ontology similarity between two words w1 and w2. A 
breadth-first search is performed starting from the Synset of w1, to 
the Synsets of Synset of w2, and so on, until w2 is found. If target 
word is not found, then OntologySim is 0, otherwise it is defined 
as 0.8depth.   

The other available information of an element is its cardinality 
constraint. We denote the constraint similarity of two elements as 
ConstraintSim(e1.card, e2.card), which can be determined from 
the cardinality compatibility table (Table 2). 

Table 2. Cardinality compatibility table. 

 * + ? none 
* 1 0.9 0.7 0.7 
+ 0.9 1 0.7 0.7 
? 0.7 0.7 1 0.8 
none 0.7 0.7 0.8 1 

 



Algorithm: OntologySim 
Input: element names w1,w2 
     MaxDepth=3 –the max search level (default is 3) 
Output: the ontology similarity 
if w1=w2  then  return 1; //exactly the same 
else return SynStrength(w1,{w2},1);  

Function SynStrength(w,S,depth) 
Input:w-elename, S-SynSet, depth-search depth 
Output: the synonym strength 
if (depth> MaxDepth) then return 0; 
else if (w∈S) then return 0.8depth; 
else   S = U

Sw
wSynSet

∈'
)'( ; 

         return SynStrength(w,S,depth+1);  
Figure 4.The OntologySim algorithm. 

Definition 1 (BasicSim): The basic similarity of two elements is 
defined as weighted sum of OntologySim, and ConstraintSim: 
BasicSim (e1, e2) = w1* OntologySim (e1, e2) + w2* ConstraintSim 
(e1.card, e2.card) where weights w1+w2 =1.  

3.2 Path Context Coefficient 
Next, we consider the path context of DTD elements, e.g. 
owner.dog.name is different from owner.name. We introduce the 
concept of Path Context Coefficient to capture the degree of 
similarity in the paths of two elements. The ancestor context of an 
element e is given by the path from root to e, denoted by 
e.path(root). The descendants context of an element e is given by 
the path from e to some leaf node leaf, denoted as leaf.path(e). 
The path from an element s to element d is an element list denoted 
by d.path(s) = {s, ei1, …, eim, d}.  

Procedure LocalMatch 
Input: SimMatrix—the list of triplet (e, e, sim) 
m, n—# of elements in the  two sets to be matched 
Threshold—the matching threshold 
Output: MatchList-a list of best matching similarity values 
MatchList= { }; 
for SimMatrix ≠ φ do { 
     select the pair (e1p,e2q,Sim) in which Sim satisfies 
     Sim = }{max

,),,( 21

v
ThresholdvSimMatrixvee ji >∈

; 

     MatchList = MatchList ∪ {Sim| (e1p,e2q,Sim)}; 
     SimMatrix= SimMatrix 
      – {(e1p, e2j, any)|(e1p, e2j, any)∈SimMatrix,j=1,…,m}  
      – {(e1i,e2q,any)|(e1i,e2q,any)∈ SimMatrix, i=1,…,n}; 
} 
return MatchList; 

Figure 5. Procedure LocalMatch. 

Given two elements’ path context d1.path(s1) = {s1, ei1, …, eim, 
d1}, d2.path(s2) = {s2, ej1, …, ejl, d2}, we compute their similarity 
by first determining the BasicSim between each pair of elements 
in the two element lists. The resulting triplet set 
{(ei,ej,BasicSim(ei,ej))|i=1,m+2, j=1, l+2} is stored in SimMatrix, 
following which we iteratively find the pairs of elements with the 
maximum similarity value. Figure 5 shows the procedure 
LocalMatch which finds the best matching pair of elements. 

LocalMatch will produce a one-to-one mapping, i.e., an element 
in DTD1 matches at most one element in DTD2 and vice versa. 

The similarity of two path contexts, given by Path Context 
Coefficient(PCC), can be obtained by summing up all the 
BasicSim values in MatchList and then normalizing it with respect 
to the maximum number of elements in the two paths (see Figure 
6). 

Procedure: PCC 
Input: elements dest1, source1, dest2, source2;  
           matching threshold Threshold 
Output: dest1,dest2’s path context coefficient 
SimMatrix={}; 
for each e1i ∈ dest1.path(source1) 
    for each e2j ∈dest2.path (source2) 
         compute BasicSim(e1i, e2j); 
         SimMatrix= SimMatrix∪(e1i, e2j, BasicSim(e1i, e2j)); 
MatchList=LocalMatch(SimMatrix,|dest1.path(source1)|,      
|dest2.path (source2)|, Threshold); 

PCC = 
|))(.||,)(.(| 2211 sourcepathdestsourcepathdestMax

BasicSim
MatchListBasicSim
∑
∈  

Figure 6. Procedure PCC (Path Context Coefficient). 

3.3 The Big Picture 
We now introduce our element similarity measure. This measure 
is motivated by the fact that the most prominent feature in a DTD 
is its hierarchical structure. Figure 7 shows that an element has a 
context that is reflected by its ancestors (if it is not a root) and 
descendants (attributes, sub-elements and their subtrees whose 
leaf nodes contain the element’s content). The descendants of an 
element e include both its immediate descendants (e.g attributes, 
subelements and IDREF) and the leaves of the subtrees rooted at 
e. The immediate descendants of an element reflect its basic 
structure, while the leaves reveal the element’s intension/content.  

It is necessary to consider both an element’s immediate 
descendants and the leaves of the subtrees rooted at the element 
for two reasons. First, different levels of abstraction or 
information grouping are common. Figure 8 shows two Airline 
DTDs in which one DTD is more deeply nested than the other. 
Second, different DTD designers may detail an element’s content 
differently. If we only examine the leaves in Figure 9, then the 
two authors within the dotted rectangle are different. Hence, we 
define the similarity of a pair of element nodes ElementSim (e1,e2) 
as the weighted sum of three components:  

(1) Semantic Similarity SemanticSim(e1, e2) 
(2) Immediate Descendants Similarity ImmediateDescSim(e1, 

e2) 
(3) Leaf Context Similarity LeafContextSim(e1, e2) 

e
Ancestor Path Context
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Figure 7. The context of an element. 
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Figure 8. Example airline DTD trees. 
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Figure 9. Example author DTD trees. 

A. Semantic Similarity 
The semantic similarity SemanticSim captures the similarity 
between the names, constraints, and path context of two elements. 
This is given by SemanticSim(e1, e2, Threshold) =  

PCC(e1,e1.Root1,e2,e2.Root2,Threshold) * BasicSim(e1, e2) 
where Root1, Root2 are the roots of e1, e2 respectively. 

Example 2. Let us compute the semantic similarity of the author 
elements in Figure 9. To distinguish between elements with the 
name labels in two DTDs, we place an apostrophe after the names 
of elements from the second DTD. Since the two elements have 
the same name,  
         OntologySim (author, author’1)=1; 
         ConstraintSim (author,author’)=0.7.  

If we put more weight on the ontology w1=0.7,w2=0.3, we have: 
         BasicSim(author,author’) = 
                  0.7*OntologySim(author, author’)  
               + 0.3 * ConstraintSim (author, author’)  = 0.91;  
         PCC(author, author, author’, author’,Threshold) = 0.91; 
Hence, SemanticSim (author,author’) = PCC * BasicSim = 0.83. 

B. Immediate Descendant Similarity 
ImmediateDescSim captures the vicinity context similarity 
between two elements. This is obtained by comparing an 
element’s immediate descendents (attributes and subelements). 
For IDREF(s), we compare with the corresponding IDREF(s) and  
compute the BasicSim of their corresponding elements. Given an 
element e1 with immediate descendents c11, …, c1n, and element e2 
with immediate descendents c21, …, c2m, we denote descendents 
(e1) = {c11, …, c1n}, descendents (e2) = {c21, …, c2m}. We first 
compute the semantic similarity between each pair of descendants 
in the two sets, and each triplet (c1i, c2j, BasicSim(c1i, c2j)) is 
stored into a list SimMatrix. Next, we select the most closely 
matched pairs of elements by using the procedure LocalMatch. 
Finally, we calculate the immediate descendants similarity of 
elements e1 and e2 by taking the average BasicSim of their 
descendants. Figure 10 gives the algorithm. |descendents(e1)| and 
|descendents(e2)| denote the number of descendents for elements 
e1 and e2 respectively. 

Example 3. Consider Figure 9. The immediate descendants 
similarity of name is given by its descendants’ semantic 
similarity. We have: 
                                                                 
1 To distinguish between elements with the name labels in two DTDs, we 

place an apostrophe after the names of elements from the second DTD. 

     BasicSim (firstname, firstname’) = 1; 
     BasicSim (firstname, lastname’) = 0; 
     BasicSim (lastname, firstname’) = 0; 
     BasicSim (lastname, lastname’) = 1. 
Then MatchList = {BasicSim (firstname, firstname’), BasicSim 
(lastname, lastname’)} and we have:  
ImmediateDescSim (name, name’) = (+1) / max (2,2) = 1.0. 

Procedure ImmediateDescSim 
Input: elements e1, e2; matching threshold Threshold 
Output: e1, e2’s immediate descendants similarity 
for each c1i ∈ descendents (e1) 
  for each c2j ∈ descendents (e2) 
    compute BasicSim (c1i, c2j); 
    SimMatrix= SimMatrix∪(c1i, c2j, BasicSim(c1i, c2j)); 
MatchList=LocalMatch(SimMatrix,|descendants(e1)|,  
|descendants(e2)|, Threshold); 
ImmediateDescSim= 

|))(||,)(max(| 21 esdescendantesdescendant

BasicSim
MatchListBasicSim
∑
∈ ; 

Figure 10. Procedure ImmediateDescSim. 

C. Leaf-Context Similarity 
An element’s content is often found in the leaf nodes of the 
subtree rooted at the element. The context of an element’s leaf 
node is defined by the set of nodes on the path from the element 
to the leaf node. If leaves(e) is the set of leaf nodes in the subtree 
rooted at element e, then the context of a leaf node l, l∈leaves(e), 
is given by l.path(e), which denotes the path from e to l. The leaf-
context similarity LeafContextSim of two elements is obtained by 
examining the semantic and context similarity of the leaves of the 
subtrees rooted at these elements. The leaf similarity between leaf 
nodes l1 and l2 where l1∈ leaves(e1), l2∈leaves(e2) is given by 

LeafSim (l1, e1, l2, e2, Threshold) =  
PCC (l1, e1, l2, e2, Threshold) * BasicSim(l1, l2) 

The leaf similarity of the best matched pairs of leaf nodes will be 
recorded and the leaf-context similarity of e1 and e2 can be 
calculated using the procedure in Figure 11. 

Example 4.  Compute the leaf context similarity for author 
elements in Figure 9. We first find the BasicSim of all pairs of leaf 
nodes in the subtrees rooted at author and author'. Here, we omit 
the pairs of leaf nodes with 0 semantic similarity. We have: 

     BasicSim (firstname, firstname') = 1.0;  
     BasicSim (lastname, lastname') = 1.0;  
     PCC(firstname,author,firstname',author',0.3)= 
                             (0.83+1.0+1.0) / 3 = 0.94; 
     PCC (lastname, author, lastname', author', 0.3) = 
                             (0.83+1.0+1.0) / 3 = 0.94.  

Then LeafSim(firstname, author, firstname', author', 0.3) =  
                             0.94*1.0 = 0.94; 
 and LeafSim (lastname, author, lastname', author', 0.3) =  
                             0.94*1.0 = 0.94. 

 The leaf context similarity of authors is given by  

         LeafContextSim (author, author', 0.3) = (0.94+0.94) / max 
(3,5) = 0.38. 



Procedure LeafContextSim 
Input: elements e1, e2; matching threshold Threshold 
Output: e1, e2’s leaf context similarity 
for each e1i ∈ leaves (e1) 
   for each e2j ∈ leaves (e2) 
      compute LeafSim (e1i,e1, e2j,e2, Threshold); 
      SimMatrix = SimMatrix ∪ (e1i,e2j,LeafSim(e1i,e1,e2j,e2, 
Threshold)); 
MatchList=LocalMatch(SimMatrix,|leaves(e1)|,|leaves(e2)|, 
Threshold); 
LeafContextSim = 
 |))(||,)(max(|/ 21 eleaveseleavesLeafSim

MatchListLeafSim
∑
∈

; 

Figure 11. Procedure LeafContextSim. 

The element similarity can be obtained as follows: 
ElementSim (e1, e2, Threshold) =  

α  * SemanticSim (e1, e2, Threshold) +  
β  * LeafContextSim (e1, e2, Threshold) +  
γ  * ImmediateDescSim (e1, e2 , Threshold) 

where α + β + γ = 1 and (α, β, γ ) ≥0.   

One can assign different weights to the different components to 
reflect the different importance. This provides flexibility in 
tailoring the similarity measure to the characteristics of the DTDs, 
whether they are largely flat or nested.  
We next discuss two cases that require special handling. 

Case 1. One of the elements is a leaf node. 
Without loss of generality, let e1 be a leaf node. A leaf node 
element has no immediate descendants and no leaf nodes. Thus, 
ImmediateDescSim(e1,e2) = 0 and LeafContextSim(e1,e2) = 0. In 
this case, we propose that the context of e1 be established by the 
path from the root of the DTD tree to e1, that is, e1.path(Root1).  

Case 2. The element is a recursive node. 
Recursive nodes are typically leaf nodes and should be matched 
with recursive nodes only. The similarity of two recursive nodes 
r1 and r2 is determined by the similarity of their corresponding 
reference nodes R1 and R2. 

Example 5. Figure 12 contains two recursive nodes subpart1 and 
subpart2. ElementSim (subpart1, subpart2) is given by the 
element similarity of their corresponding reference nodes, part 
and part'. The immediate descendents of reference node part are 
pno, pname, and subpart1, which are the leaves of part. Likewise, 
the immediate descendents of part' are pno, pname, color and 
subpart2. Giving equal weights to the three components, we have:  

     ElementSim(part,part') = 0.33* SemanticSim(part,part')  
+ 0.33 * ImmediateDescSim(part,part') 
 + 0.33* LeafContextSim(part,part') 
 = 0.33*1 + 0.33*(1+1+1)/4 + 0.33*(1+1+1)/4 = 0.83.  

The similarity of subpart1 and subpart2 is given by  

ElementSim(subpart1, subpart2) = ElementSim (R-part, R-part') = 
ElementSim (part, part') = 0.83  

where R-part and R-part' are the reference nodes of subpart1 and 
subpart2 respectively.  

part

pno pname subpart1*

"Recursive"

part

pno pname subpart2*

"Recursive"

color
Figure 12: DTD trees with recursive nodes. 

Figure 13 gives the complete algorithm to find the similarity of 
elements in two DTD trees. 

Algorithm: ElementSim 
Input: elements e1, e2; matching threshold Threshold;  
           weights  α,β,γ 
Output: element similarity 
Step 1. Compute recursive nodes similarity  
       if only one of e1 and e2 is recursive nodes  
       then return 0;    //they will not be matched; 
       else if both e1 and e2 are recursive nodes 
       then return ElementSim(R-e1, R-e2, Threshold); 
         // R-e1, R-e2 are the corresponding reference nodes. 
Step 2. Compute leaf-context similarity (LCSim) 
        if both e1 and e2 are leaf nodes 
        then   return SemanticSim(e1,e2,Threshold); 
        else if only one of  e1 and e2 is leaf node 
        then LCSim = SemanticSim(e1, e2, Threshold); 
        else//Compute leaf-context similarity 
            LCSim =LeafContextSim(e1, e2, Threshold); 
Step 3. Compute immediate descendants similarity(IDSim)  
         IDSim=ImmediateDescSim(e1, e2, Threshold); 
Step 4. Compute element similarity of e1 and e2 
         return α*SemanticSim(e1,e2,Threshold) + β*IDSim  
                      + γ*LCSim; 

Figure 13. Algorithm to compute Element Similarity. 

4. CLUSTERING DTDs 
Integrating large numbers of DTDs is a non-trivial task, even 
when equipped with the best linguistic and schema matching 
tools. We now describe XClust, a new integration strategy that 
involves clustering DTDs. XClust has two phases: DTD similarity 
computation and DTD clustering. 

4.1 DTD Similarity 
Given a set of DTDs D = {DTD1, DTD2,…,DTDn}, we find the 
similarity of their corresponding DTD trees. For any two DTDs, 
we sum up all element similarity values of the best match pairs of 
elements, and normalize the result. We denote eltSimList = 
{(e1i,e2j,elementSim(e1i,e2j)) | elementSim (e1i,e2j) >Threshold,  e1i 
∈DTD1, e2j ∈DTD2}. Figure 14 gives the algorithm to compute 
the similarity matrix of a set of DTDs and the best element 
mapping pairs for each pair of DTDs. Sometimes one DTD is a 
subset of or is very similar to a subpart of a larger DTD. But the 
DTDSim of these two DTDs becomes very low after normalizing 
it by max (|DTDp|,|DTDq|). One may adopt the optimistic 
approach and use min (|DTDp|,|DTDq|) as the normalizing 
denominator. 



4.2 Generate Clusters 
Clustering of DTDs can be carried out once we have the DTD 
similarity matrix. We use hierarchical clustering [9] to group 
DTDs into clusters. DTDs from the same application domain tend 
to be clustered together and form clusters at different cut-off 
values. Manipulation of such DTDs within each cluster becomes 
easier. In addition, since the hierarchical clustering technique 
starts with clusters of single DTDs and gradually adds highly 
similar DTDs to these clusters, we can take advantage of the 
intermediate clusters to guide the integration process. 

Algorithm: ComputeDTDSimilarity 
Input: DTD source trees set D = {DTD1, DTD2,…,DTDn} 

   Matching threshold Threshold; weights α,β,γ 
Output: DTD similarity matrix DTDSim; 
               best element mapping pairs BMP 
 
for p = 1 to n-1 do 
    for q = p+1 to n do { 
        DTDp, DTDq ∈ D; 
        eltSimList={}; 
        for each epi∈DTDp and each eqj∈DTDq do { 
                eltSim=ElementSim(epi,eqj,Threshold,α,β,γ); 
           eltSimList=eltSimList∪(epi,eqj,eltSim);    } 
  
//find the best mapping pairs 
  sort eltSimList in  descending order on eltSim; 
  BMP(DTDp, DTDq)={}; 
  while  eltSimList≠φ  do  { 
      remove first element (epr,eqk,sim) from eltSimList; 
      if sim>Threshold  then { 
         BMP(DTDp, DTDq)= BMP(DTDp, DTDq)∪ (epr,eqk,sim); 
         eltSimList = eltSimList 
            -{(epr,eqj,any)|j=1,…,|DTDq|,(epr,eqj,any)∈eltSimList} 

    -{(epi,eqk,any)|i=1,…,|DTDp|,(epi,eqk,any)∈eltSimList}; 
       }//end if 
    }//end while 

   DTDSim (DTDp, DTDq) = 
|)||,max(|

),,(

q

BMPsimee

DTDDTDp

sim
qkpr
∑

∈ ; 

} 

Figure 14. Algorithm to compute DTD similarity. 

5. PERFORMANCE STUDY 
To evaluate the performance of XClust, we collect more than 150 
DTDs on several domains: health, publication (including DBLP 
[6]), hotel messages [14] and travel. The majority of the DTDs are 
highly nested with the hierarchy depth ranging from 2 to 20 
levels. The number of nodes in the DTDs ranges from ten nodes 
to thousands of nodes. The characteristics of the DTDs are given 
in Table 3. We implement XClust in Java, and run the 
experiments on 750 MHz Pentium III PC with 128M RAM under 
Windows 2000. Two sets of experiments are carried out. The first 
set of experiments demonstrates the effectiveness of XClust in the 
integration process. The second set of experiments investigates 
the sensitivity of XClust to the computation of element similarity.  

 

Table 3. Properties of the DTD collection. 
 No of DTDs No. of nodes Nesting levels 
Travel 54 20-50 2-6 
Patient 20 40-80 5-8 
Publication 40 20-500 4-10 
Hotel Msg 40 50-1000 7-20 

5.1 Effectiveness of XClust 
In this experiment, we investigate how XClust facilitates the 
integration process and produces good quality integrated schema. 
However, quantifying the “goodness” of an integrated schema 
remains an open problem since the integration process is often 
subjective. One integrator may decide to take the union of all the 
elements in the DTDs, while another may prefer to retain only the 
common DTD elements in the integrated schema. Here, we adopt 
the union approach which avoids loss of information. In addition, 
the integrated DTD should be as compact as possible. In other 
words, we define the quality of an integrated schema as inversely 
proportional to its size, that is, a more compact integrated DTD is 
the result of a “better” integration process.  

DTDs of the
same domain XClust

cluster
set (CS)

cluster
integration

weights

count edges
in resulting

DTDs

resulting DTDs
performance

index
(edge sum)  

Figure 15.  Experiment process. 

To evaluate how XClust facilitates the integration process with 
the k clusters it produces (k varies with different thresholds), we 
compare the quality of the resulting integrated DTD with that 
obtained by integrating k random clusters.  Figure 15 shows the 
overall experiment framework. After XClust has generated k 
clusters of DTDs at various cut-off thresholds, the integration of 
the DTDs in each cluster is initiated. An adjacency matrix is used 
to record the node connectivities in the DTDs within the same 
cluster. Any cycles and transitive edges in the integrated DTD are 
identified and removed. The number of edges in the integrated 
DTD is counted. For each cluster Ci, we denote the corresponding 

edge count as Ci.count. Then  CS.count = ∑
k

i
i countC . .  

Next, we manually partition the DTDs into k groups where each 
group Gi has the same size as the corresponding cluster Ci. The 
DTDs in each Gi is integrated in the same manner using the 
adjacency matrix and the number of edges in the integrated DTD 

is recorded in Gi.count. Then  GS.count = ∑
k

i
i countG . . 

Figure 16 shows the results of the values of CS.count and 
GS.count obtained at different cut-off values for the publication 
domain DTDs. It is clear that integration with XClust outperforms 
that by manual clustering. At cut-off values of 0.06-0.9, the edge 
counts CS.count and GS.count differ significantly. This is because 
XClust identifies and groups similar DTDs for integration. 
Common edges are combined resulting in a more compact 



integrated schema. The results of integrating DTDs in the other 
domains show similar trends. 

In practice, XClust offers significant advantage for large-scale 
integration of XML sources. This is because during the similarity 
computation, XClust produces the best DTD element mappings. 
This greatly reduces the human effort in comparing the DTDs. 
Moreover, XClust can guide the integration process. When the 
integrated DTDs become very dissimilar, the integrator can 
choose to stop the integration process.  
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Figure 16. Edge count at different cut-off values. 

5.2 Sensitivity Experiments 
XClust considers three aspects of a DTD element when 
computing element similarity: semantics, immediate descendants, 
and leaf context. These similarity components are based on the 
notion of PCC. We conduct experiments to demonstrate the 
importance of PCC in DTD clustering. The metric used is the 
percentage of wrong clusters, i.e., clusters that contain DTDs 
from a different category. We give equal weights to all the three 
components: α = β = γ = 0.33, and set Threshold=0.3. 

Figure 17 shows the influence of PCC on DTD clustering. The 
percentage of wrong clusters is plotted at varying cut-off 
intervals. With PCC, incorrect clusters only occur after the cut-off 
interval 0.1 to 0.12. On the other hand, when PCC is not 
considered in the element similarity computation, incorrect 
clustering occurs earlier at cut-offs 0.3 to 0.4. The reason is that 
some of the leaf nodes and non-leaf nodes have been mismatched. 
It is clear that PCC is crucial in ensuring correct schema 
matching, and subsequently, correct clustering of the DTDs. Leaf 
nodes with same semantics but occurs in different context 
(person.pet.name and person.name,e.g.) can also be identified and 
discriminated. 

Next, we investigate the role of the immediate descendent 
component. When the immediate descendant component is not 
considered in the element similarity computation, then β = 0, and 
α = γ = 0.5. The results of the experiment are given in Figure 18. 
We see that for cut-off values greater than 0.2, there is no 
significant difference in the percentage of incorrect clusters 
whether the immediate descendant component is used or not. One 
reason is that the structure variation in the DTDs is not too great, 
and the leaf-context similarity is able to compensate for the 
missing component. The percentage of incorrect clusters increases 
sharply after cut-off value of 0.1 for the experiment without the 
immediate descendant component. 
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Figure 17. Effect of PCC on clustering 
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Figure 18. Effect of immediate descendant similarity. 

6. RELATED WORK  
Schema matching is studied mostly in relational and Entity-
Relationship models [3, 12, 18, 17, 21, 24]. Research in schema 
matching for XML DTD is just gaining momentum [7, 22, 27]). 
LSD [7] employs a machine learning approach combined with 
data instance for DTD matching. LSD does not consider the 
cardinality and requires user input to provide a starting point. In 
contrast, Cupid [22], SPL [27] and XClust employ schema-based 
matching and perform element- and structure-level matching. 

Cupid is a generic schema-matching algorithm that discovers 
mappings between schema elements based on linguistic, 
structural, and context-dependant matching. A schema tree is used 
to model all possible schema types. To compute element 
similarity, Cupid exploits the leaf nodes and the hierarchy 
structure to dynamically adjust the leaf nodes similarity. SPL 
gives a mechanism to identify syntactically similar DTDs. The 
distance between two DTD elements is computed by considering 
the immediate children that these elements have in common. A 
bottom-up approach is adopted to match hierarchically equivalent 
or similar elements to produce possible mappings.  

It is difficult to carry out a quantitative comparison of the three 
methods since each of them uses a different set of parameters. 
Instead, we will highlight the differences in their matching 
features. Given DTDs of varying levels of detail such as address 
and address(zip,street), both SPL and Cupid will return a 
relatively low similarity measure. The reason is that SPL uses the 
immediate descendants and their graph size to compute the 
similarity of two DTD elements, while Cupid is biased towards 



the similarity of leaf nodes. For DTDs with varying levels of 
abstraction (Figure 8), SPL will be seriously affected by the 
structure variation while Cupid’s penalty method tries to consider 
the context of schema hierarchy. When matching DTD elements 
with varying context, such as person(name,age) and 
person(name,age,pet(name,age)), both SPL and Cupid will fail to 
distinguish person.name from person.pet.name. Overall, XClust is 
able to obtain the correct mappings because its computation of 
element similarity considers the semantics, immediate descendent 
and leaf-context information.  

7. CONCLUSION 
The growing number of XML sources makes it crucial to develop 
scalable integration techniques. We have described a novel 
integration strategy that involves clustering the DTDs of XML 
sources. Reconciling similar DTDs (both semantically and 
structurally) within a cluster is definitely a much easier task than 
reconciling DTDs that are different in structure and semantics. 
XClust determines the similarity between DTDs based on the 
semantics, immediate descendents and leaf-context similarity of 
DTD elements. Our experiments demonstrate that XClust 
facilitates integration of DTDs, and that the leaf-context 
information plays an important role in matching DTD elements 
correctly.  
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