
XClust: Clustering XML Schemas for Effective Integration
Mong Li Lee, Liang Huai Yang, Wynne Hsu, Xia Yang

School of Computing, National University of Singapore
3 Science Drive 2, Singapore 117543

(065) 6874-2905
{leeml, yanglh, whsu, yangxia}@comp.nus.edu.sg

ABSTRACT
It is increasingly important to develop scalable integration
techniques for the growing number of XML data sources. A
practical starting point for the integration of large numbers of
Document Type Definitions (DTDs) of XML sources would be to
first find clusters of DTDs that are similar in structure and
semantics. Reconciling similar DTDs within such a cluster will be
an easier task than reconciling DTDs that are different in structure
and semantics as the latter would involve more restructuring. We
introduce XClust, a novel integration strategy that involves the
clustering of DTDs. A matching algorithm based on the
semantics, immediate descendents and leaf-context similarity of
DTD elements is developed. Our experiments to integrate real
world DTDs demonstrate the effectiveness of the XClust
approach.

Categories and Subject Descriptors
H.3.5[Information Systems]:Information Storage And Retrieval-
Online Information Services[Data sharing]

General Terms
Algorithms, Performance

Keywords
XML Schema, Data integration, Schema matching, Clustering

1. INTRODUCTION
The growth of the Internet has greatly simplified access to
existing information sources and spurred the creation of new
sources. XML has become the standard for data representation
and exchange on the Internet. While there has been a great deal of
activity in proposing new semistructured models [2, 13, 23] and
query languages for XML data [1, 4, 8, 5, 25], efforts to develop
good information integration technology for the growing number
of XML data sources is still ongoing [15, 31].

Existing data integration systems such as Information Manifold
[20], TSIMMIS [11], Infomaster [10], DISCO [28], Tukwila [16],
MIX [19], Clio [15], Xyleme [31] rely heavily on a mediated
schema to represent a particular application domain and data
sources are mapped as views over the mediated schema. Research
in these systems is focused on extracting mappings between the
source schemas and mediated schema, and reformulating user

queries on the mediated schema into a set of queries on the data
sources. The traditional approach where a system integrator
defines integrated views over the data sources breaks down
because there are just too many data sources and changes.

In this work, we propose an integration strategy that involves
clustering the DTDs of XML data sources (Figure 1). We first
find clusters of DTDs that are similar in structure and semantics.
This allows system integrators to concentrate on the DTDs within
each cluster to get an integrated DTD for the cluster. Reconciling
similar DTDs is an easier task than reconciling DTDs that are
different in structure and semantics since the latter involves more
restructuring. The clustering process is applied recursively to the
clusters’ DTDs until a manageable number of DTDs is obtained.

DTD1

....

DTDn

compute
similarity

cluster
DTD

Cluster 1

Cluster m

....

DTD c 1

DTDcm

XClust
Integrate
DTDs in
Cluster Integrate

DTDs in
Cluster

Global
DTD

Integrate
DTDs in
Cluster

Figure 1. Proposed cluster-based integration.
The contribution of this paper is two-fold. First, we develop a
technique to determine the degree of similarity between DTDs.
Our similarity comparison considers not only the linguistic and
structural information of DTD elements but also the context of a
DTD element (defined by its ancestors and descendents in a DTD
tree). Experiment results show that the context of elements plays
an important role in element similarity. Second, we validate our
approach by integrating real world DTDs. We demonstrate that
clustering DTDs first before integrating them greatly facilitates
the integration process.

2. MODELING DTD
DTDs consist of elements and attributes. Elements can nest other
elements (even recursively), or be empty. Simple cardinality
constraints can be imposed on the elements using regular
expression operators (?, *, +). Elements can be grouped as
ordered sequences (a,b) or as choices (a|b). Elements have
attributes with properties type (PCDATA, ID, IDREF,
ENUMERATION), cardinality (#REQUIRED, #FIXED,
#DEFAULT), and any default value. Figure 2 shows an example
of a DTD for articles.

Figure 2. DTD for articles.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’02, November 4-9, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-492-4/02/0011…$5.00.

<!ELEMENT Article (Title, Author+, Sections+)>
<!ELEMENT Sections (Title?, (Para | (Title?, Para+)+)*)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Para (#PCDATA)>
<!ELEMENT Author (Name, Affiliation)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Affiliation (#PCDATA)>

2.1 DTD Trees
A DTD can be modeled as a tree T(V, E) where V is a set of nodes
and E is a set of edges. Each element is represented as a node in
the tree. Edges are used to connect an element node and its
attributes or sub-elements. Figure 3 shows a DTD tree for the
DTD in Figure 2. Each node is annotated with properties such as
cardinality constraints ?, * or +. There are two types of auxiliary
nodes in the regular expression: OR node for choice, AND node
for sequence, denoted by symbols ‘,’ and ‘|’ respectively.

Author+

Article
Title Sections+

Name Affiliation

Title?
|*

,+

Title? Para+

Para

Figure 3. DTD tree for the DTD in Figure 2.

2.2 Simplification of DTD Trees
DTD trees with AND and OR nodes do not facilitate schema
matching. It is difficult to determine the degree of similarity of
two elements that have AND-OR nodes in their content
representation. One solution is to split an AND-OR tree into a
forest of AND trees, and compute the similarity based on AND
trees. But this may generate a proliferation of AND trees. Another
solution is to simply remove the OR nodes from the trees which
may result in information loss [26, 27]. In order to minimize the
loss of information, we propose a set of transformation rules each
of which is associated with a priority (Table 1).

Rules E1 to E5 are information preserving and are given priority
‘high’. For example, the regular expression ((a,b)*)+ in Rule E2
implies that it has at least one (a,b)* element, or ((a,b)*,(a,b)*,…).
The latter is equivalent to (a,b)*. Hence, we have ((a,b)*)+

((a,b)*,(a,b)*,…) (a,b)*. Similarly, the expression ((a,b)+)*
implies zero or more (a,b)+, which is given by (a,b)*. Therefore,
we have ((a,b)+)* zero or more (a,b)+ (a,b)*.

Rules L6 and L7 will lead to information loss and are given
priority ‘low’. Rule L6 transforms the regular expression (a, b)+
into (a+, b+). This causes the group information to be lost since
(a, b)+ implies that (a, b) will occur simultaneously one or more
times, while (a+, b+) does not impose this semantic constraint.
This rule avoids the exponential growth that may occur when
DTD trees with AND-OR nodes are split into trees with only
AND nodes for subsequent schema matching. After applying a
series of transformation rules to a DTD tree, any auxiliary OR
nodes will become AND nodes and can be merged.

Table 1. DTD transformation rules
Rule Transformation Priority
E1 (a|b)* (a*,b*) high

E2
((a|b)*)+ ((a|b)+)* (a*,b*)
((a,b)*)+ ((a,b)+)* (a,b)* high

E3
((a|b)*)? ((a|b)?)* (a*,b*)
((a,b)*)? ((a,b)?)* (a,b)* high

E4
((a|b)+)? ((a|b)?)+ (a*,b*)
((a,b)+)? ((a,b)?)+ (a,b)* high

E5
((E)*)* (E)*
((E)?)? (E)?
((E)+)+ (E)+

high

L6
(a|b) ⇒ (a,b)
(a|b)+ ⇒ (a+,b+)
(a|b)? ⇒ (a?,b?)

low

L7
(a,b)* ⇒ (a*,b*)
(a,b)+ ⇒ (a+,b+)
(a,b)? ⇒ (a?,b?)

low

Example 1. Given a DTD element Sections (Title?, (Para |
(Title?,Para+)+)*), we can have the following transformations:
 Rule E1: Sections (Title?, (Para | (Title?, Para+)+)*)
 ⇒ Sections (Title?, (Para*, ((Title?, Para+)+)*))
 Rule E2:Sections (Title?, (Para*, ((Title?, Para+)+)*))
 ⇒ Sections (Title?, (Para*, (Title?, Para+)*))
 Merging:Sections (Title?, (Para*, (Title?, Para+)*))
 ⇒ Sections (Title?, Para*, (Title?, Para+)*)
Alternatively, we can apply Rule L7, then Rule E4, followed by
merging. But this will cause information loss since it is no longer
mandatory for Title and Para to occur together. Distinguishing
between equivalent and non-equivalent transformations and
prioritizing their usage provides a logical foundation for schema
transformation and minimizes information loss.

3. ELEMENT SIMILARITY
To compute the similarity of two DTDs, it is necessary to
compute the similarity between elements in the DTDs. We
propose a method to compute element similarity that considers the
semantics, structure and context information of the elements.

3.1 Basic Similarity
The first step in determining the similarity between the elements
of two DTDs is to match their names to resolve any abbreviations,
homonyms, synonyms, etc. In general, given two elements’
names, their term similarity or name affinity in a domain can be
provided by the thesauri and unifying taxonomies [3]. Here, we
handle acronyms such as Emp and Employee by using an
expansion table. Then, we use the WordNet thesaurus [29] to
determine whether the names are synonyms.

The WordNet Java API [30] returns the synonym set (Synset) of a
given word. Figure 4 gives the OntologySim algorithm to
determine ontology similarity between two words w1 and w2. A
breadth-first search is performed starting from the Synset of w1, to
the Synsets of Synset of w2, and so on, until w2 is found. If target
word is not found, then OntologySim is 0, otherwise it is defined
as 0.8depth.

The other available information of an element is its cardinality
constraint. We denote the constraint similarity of two elements as
ConstraintSim(e1.card, e2.card), which can be determined from
the cardinality compatibility table (Table 2).

Table 2. Cardinality compatibility table.

 * + ? none
* 1 0.9 0.7 0.7
+ 0.9 1 0.7 0.7
? 0.7 0.7 1 0.8
none 0.7 0.7 0.8 1

Algorithm: OntologySim
Input: element names w1,w2
 MaxDepth=3 –the max search level (default is 3)
Output: the ontology similarity
if w1=w2 then return 1; //exactly the same
else return SynStrength(w1,{w2},1);

Function SynStrength(w,S,depth)
Input:w-elename, S-SynSet, depth-search depth
Output: the synonym strength
if (depth> MaxDepth) then return 0;
else if (w∈S) then return 0.8depth;
else S = U

Sw
wSynSet

∈'
)'(;

 return SynStrength(w,S,depth+1);
Figure 4.The OntologySim algorithm.

Definition 1 (BasicSim): The basic similarity of two elements is
defined as weighted sum of OntologySim, and ConstraintSim:
BasicSim (e1, e2) = w1* OntologySim (e1, e2) + w2* ConstraintSim
(e1.card, e2.card) where weights w1+w2 =1.

3.2 Path Context Coefficient
Next, we consider the path context of DTD elements, e.g.
owner.dog.name is different from owner.name. We introduce the
concept of Path Context Coefficient to capture the degree of
similarity in the paths of two elements. The ancestor context of an
element e is given by the path from root to e, denoted by
e.path(root). The descendants context of an element e is given by
the path from e to some leaf node leaf, denoted as leaf.path(e).
The path from an element s to element d is an element list denoted
by d.path(s) = {s, ei1, …, eim, d}.

Procedure LocalMatch
Input: SimMatrix—the list of triplet (e, e, sim)
m, n—# of elements in the two sets to be matched
Threshold—the matching threshold
Output: MatchList-a list of best matching similarity values
MatchList= { };
for SimMatrix ≠ φ do {
 select the pair (e1p,e2q,Sim) in which Sim satisfies
 Sim = }{max

,),,(21

v
ThresholdvSimMatrixvee ji >∈

;

 MatchList = MatchList ∪ {Sim| (e1p,e2q,Sim)};
 SimMatrix= SimMatrix
 – {(e1p, e2j, any)|(e1p, e2j, any)∈SimMatrix,j=1,…,m}
 – {(e1i,e2q,any)|(e1i,e2q,any)∈ SimMatrix, i=1,…,n};
}
return MatchList;

Figure 5. Procedure LocalMatch.

Given two elements’ path context d1.path(s1) = {s1, ei1, …, eim,
d1}, d2.path(s2) = {s2, ej1, …, ejl, d2}, we compute their similarity
by first determining the BasicSim between each pair of elements
in the two element lists. The resulting triplet set
{(ei,ej,BasicSim(ei,ej))|i=1,m+2, j=1, l+2} is stored in SimMatrix,
following which we iteratively find the pairs of elements with the
maximum similarity value. Figure 5 shows the procedure
LocalMatch which finds the best matching pair of elements.

LocalMatch will produce a one-to-one mapping, i.e., an element
in DTD1 matches at most one element in DTD2 and vice versa.

The similarity of two path contexts, given by Path Context
Coefficient(PCC), can be obtained by summing up all the
BasicSim values in MatchList and then normalizing it with respect
to the maximum number of elements in the two paths (see Figure
6).

Procedure: PCC
Input: elements dest1, source1, dest2, source2;
 matching threshold Threshold
Output: dest1,dest2’s path context coefficient
SimMatrix={};
for each e1i ∈ dest1.path(source1)
 for each e2j ∈dest2.path (source2)
 compute BasicSim(e1i, e2j);
 SimMatrix= SimMatrix∪(e1i, e2j, BasicSim(e1i, e2j));
MatchList=LocalMatch(SimMatrix,|dest1.path(source1)|,
|dest2.path (source2)|, Threshold);

PCC =
|))(.||,)(.(| 2211 sourcepathdestsourcepathdestMax

BasicSim
MatchListBasicSim
∑
∈

Figure 6. Procedure PCC (Path Context Coefficient).

3.3 The Big Picture
We now introduce our element similarity measure. This measure
is motivated by the fact that the most prominent feature in a DTD
is its hierarchical structure. Figure 7 shows that an element has a
context that is reflected by its ancestors (if it is not a root) and
descendants (attributes, sub-elements and their subtrees whose
leaf nodes contain the element’s content). The descendants of an
element e include both its immediate descendants (e.g attributes,
subelements and IDREF) and the leaves of the subtrees rooted at
e. The immediate descendants of an element reflect its basic
structure, while the leaves reveal the element’s intension/content.

It is necessary to consider both an element’s immediate
descendants and the leaves of the subtrees rooted at the element
for two reasons. First, different levels of abstraction or
information grouping are common. Figure 8 shows two Airline
DTDs in which one DTD is more deeply nested than the other.
Second, different DTD designers may detail an element’s content
differently. If we only examine the leaves in Figure 9, then the
two authors within the dotted rectangle are different. Hence, we
define the similarity of a pair of element nodes ElementSim (e1,e2)
as the weighted sum of three components:

(1) Semantic Similarity SemanticSim(e1, e2)
(2) Immediate Descendants Similarity ImmediateDescSim(e1,

e2)
(3) Leaf Context Similarity LeafContextSim(e1, e2)

e
Ancestor Path Context

element

..... immediate
descendantsdescendants'

context
leaves.....

Figure 7. The context of an element.

Airline

earliest-start

latest-start
earliest-return

latest-return

Airline
Time

Departure Return

earliest-start
latest-startearliest-return

latest-return

Figure 8. Example airline DTD trees.

firstname lastname

author+
name address

zip city street

author
address

firstname lastname

name

Figure 9. Example author DTD trees.

A. Semantic Similarity
The semantic similarity SemanticSim captures the similarity
between the names, constraints, and path context of two elements.
This is given by SemanticSim(e1, e2, Threshold) =

PCC(e1,e1.Root1,e2,e2.Root2,Threshold) * BasicSim(e1, e2)
where Root1, Root2 are the roots of e1, e2 respectively.

Example 2. Let us compute the semantic similarity of the author
elements in Figure 9. To distinguish between elements with the
name labels in two DTDs, we place an apostrophe after the names
of elements from the second DTD. Since the two elements have
the same name,
 OntologySim (author, author’1)=1;
 ConstraintSim (author,author’)=0.7.

If we put more weight on the ontology w1=0.7,w2=0.3, we have:
 BasicSim(author,author’) =
 0.7*OntologySim(author, author’)
 + 0.3 * ConstraintSim (author, author’) = 0.91;
 PCC(author, author, author’, author’,Threshold) = 0.91;
Hence, SemanticSim (author,author’) = PCC * BasicSim = 0.83.

B. Immediate Descendant Similarity
ImmediateDescSim captures the vicinity context similarity
between two elements. This is obtained by comparing an
element’s immediate descendents (attributes and subelements).
For IDREF(s), we compare with the corresponding IDREF(s) and
compute the BasicSim of their corresponding elements. Given an
element e1 with immediate descendents c11, …, c1n, and element e2
with immediate descendents c21, …, c2m, we denote descendents
(e1) = {c11, …, c1n}, descendents (e2) = {c21, …, c2m}. We first
compute the semantic similarity between each pair of descendants
in the two sets, and each triplet (c1i, c2j, BasicSim(c1i, c2j)) is
stored into a list SimMatrix. Next, we select the most closely
matched pairs of elements by using the procedure LocalMatch.
Finally, we calculate the immediate descendants similarity of
elements e1 and e2 by taking the average BasicSim of their
descendants. Figure 10 gives the algorithm. |descendents(e1)| and
|descendents(e2)| denote the number of descendents for elements
e1 and e2 respectively.

Example 3. Consider Figure 9. The immediate descendants
similarity of name is given by its descendants’ semantic
similarity. We have:

1 To distinguish between elements with the name labels in two DTDs, we

place an apostrophe after the names of elements from the second DTD.

 BasicSim (firstname, firstname’) = 1;
 BasicSim (firstname, lastname’) = 0;
 BasicSim (lastname, firstname’) = 0;
 BasicSim (lastname, lastname’) = 1.
Then MatchList = {BasicSim (firstname, firstname’), BasicSim
(lastname, lastname’)} and we have:
ImmediateDescSim (name, name’) = (+1) / max (2,2) = 1.0.

Procedure ImmediateDescSim
Input: elements e1, e2; matching threshold Threshold
Output: e1, e2’s immediate descendants similarity
for each c1i ∈ descendents (e1)
 for each c2j ∈ descendents (e2)
 compute BasicSim (c1i, c2j);
 SimMatrix= SimMatrix∪(c1i, c2j, BasicSim(c1i, c2j));
MatchList=LocalMatch(SimMatrix,|descendants(e1)|,
|descendants(e2)|, Threshold);
ImmediateDescSim=

|))(||,)(max(| 21 esdescendantesdescendant

BasicSim
MatchListBasicSim
∑
∈ ;

Figure 10. Procedure ImmediateDescSim.

C. Leaf-Context Similarity
An element’s content is often found in the leaf nodes of the
subtree rooted at the element. The context of an element’s leaf
node is defined by the set of nodes on the path from the element
to the leaf node. If leaves(e) is the set of leaf nodes in the subtree
rooted at element e, then the context of a leaf node l, l∈leaves(e),
is given by l.path(e), which denotes the path from e to l. The leaf-
context similarity LeafContextSim of two elements is obtained by
examining the semantic and context similarity of the leaves of the
subtrees rooted at these elements. The leaf similarity between leaf
nodes l1 and l2 where l1∈ leaves(e1), l2∈leaves(e2) is given by

LeafSim (l1, e1, l2, e2, Threshold) =
PCC (l1, e1, l2, e2, Threshold) * BasicSim(l1, l2)

The leaf similarity of the best matched pairs of leaf nodes will be
recorded and the leaf-context similarity of e1 and e2 can be
calculated using the procedure in Figure 11.

Example 4. Compute the leaf context similarity for author
elements in Figure 9. We first find the BasicSim of all pairs of leaf
nodes in the subtrees rooted at author and author'. Here, we omit
the pairs of leaf nodes with 0 semantic similarity. We have:

 BasicSim (firstname, firstname') = 1.0;
 BasicSim (lastname, lastname') = 1.0;
 PCC(firstname,author,firstname',author',0.3)=
 (0.83+1.0+1.0) / 3 = 0.94;
 PCC (lastname, author, lastname', author', 0.3) =
 (0.83+1.0+1.0) / 3 = 0.94.

Then LeafSim(firstname, author, firstname', author', 0.3) =
 0.94*1.0 = 0.94;
 and LeafSim (lastname, author, lastname', author', 0.3) =
 0.94*1.0 = 0.94.

 The leaf context similarity of authors is given by

 LeafContextSim (author, author', 0.3) = (0.94+0.94) / max
(3,5) = 0.38.

Procedure LeafContextSim
Input: elements e1, e2; matching threshold Threshold
Output: e1, e2’s leaf context similarity
for each e1i ∈ leaves (e1)
 for each e2j ∈ leaves (e2)
 compute LeafSim (e1i,e1, e2j,e2, Threshold);
 SimMatrix = SimMatrix ∪ (e1i,e2j,LeafSim(e1i,e1,e2j,e2,
Threshold));
MatchList=LocalMatch(SimMatrix,|leaves(e1)|,|leaves(e2)|,
Threshold);
LeafContextSim =
 |))(||,)(max(|/ 21 eleaveseleavesLeafSim

MatchListLeafSim
∑
∈

;

Figure 11. Procedure LeafContextSim.

The element similarity can be obtained as follows:
ElementSim (e1, e2, Threshold) =

α * SemanticSim (e1, e2, Threshold) +
β * LeafContextSim (e1, e2, Threshold) +
γ * ImmediateDescSim (e1, e2 , Threshold)

where α + β + γ = 1 and (α, β, γ) ≥0.

One can assign different weights to the different components to
reflect the different importance. This provides flexibility in
tailoring the similarity measure to the characteristics of the DTDs,
whether they are largely flat or nested.
We next discuss two cases that require special handling.

Case 1. One of the elements is a leaf node.
Without loss of generality, let e1 be a leaf node. A leaf node
element has no immediate descendants and no leaf nodes. Thus,
ImmediateDescSim(e1,e2) = 0 and LeafContextSim(e1,e2) = 0. In
this case, we propose that the context of e1 be established by the
path from the root of the DTD tree to e1, that is, e1.path(Root1).

Case 2. The element is a recursive node.
Recursive nodes are typically leaf nodes and should be matched
with recursive nodes only. The similarity of two recursive nodes
r1 and r2 is determined by the similarity of their corresponding
reference nodes R1 and R2.

Example 5. Figure 12 contains two recursive nodes subpart1 and
subpart2. ElementSim (subpart1, subpart2) is given by the
element similarity of their corresponding reference nodes, part
and part'. The immediate descendents of reference node part are
pno, pname, and subpart1, which are the leaves of part. Likewise,
the immediate descendents of part' are pno, pname, color and
subpart2. Giving equal weights to the three components, we have:

 ElementSim(part,part') = 0.33* SemanticSim(part,part')
+ 0.33 * ImmediateDescSim(part,part')
 + 0.33* LeafContextSim(part,part')
 = 0.33*1 + 0.33*(1+1+1)/4 + 0.33*(1+1+1)/4 = 0.83.

The similarity of subpart1 and subpart2 is given by

ElementSim(subpart1, subpart2) = ElementSim (R-part, R-part') =
ElementSim (part, part') = 0.83

where R-part and R-part' are the reference nodes of subpart1 and
subpart2 respectively.

part

pno pname subpart1*

"Recursive"

part

pno pname subpart2*

"Recursive"

color
Figure 12: DTD trees with recursive nodes.

Figure 13 gives the complete algorithm to find the similarity of
elements in two DTD trees.

Algorithm: ElementSim
Input: elements e1, e2; matching threshold Threshold;
 weights α,β,γ
Output: element similarity
Step 1. Compute recursive nodes similarity
 if only one of e1 and e2 is recursive nodes
 then return 0; //they will not be matched;
 else if both e1 and e2 are recursive nodes
 then return ElementSim(R-e1, R-e2, Threshold);
 // R-e1, R-e2 are the corresponding reference nodes.
Step 2. Compute leaf-context similarity (LCSim)
 if both e1 and e2 are leaf nodes
 then return SemanticSim(e1,e2,Threshold);
 else if only one of e1 and e2 is leaf node
 then LCSim = SemanticSim(e1, e2, Threshold);
 else//Compute leaf-context similarity
 LCSim =LeafContextSim(e1, e2, Threshold);
Step 3. Compute immediate descendants similarity(IDSim)
 IDSim=ImmediateDescSim(e1, e2, Threshold);
Step 4. Compute element similarity of e1 and e2
 return α*SemanticSim(e1,e2,Threshold) + β*IDSim
 + γ*LCSim;

Figure 13. Algorithm to compute Element Similarity.

4. CLUSTERING DTDs
Integrating large numbers of DTDs is a non-trivial task, even
when equipped with the best linguistic and schema matching
tools. We now describe XClust, a new integration strategy that
involves clustering DTDs. XClust has two phases: DTD similarity
computation and DTD clustering.

4.1 DTD Similarity
Given a set of DTDs D = {DTD1, DTD2,…,DTDn}, we find the
similarity of their corresponding DTD trees. For any two DTDs,
we sum up all element similarity values of the best match pairs of
elements, and normalize the result. We denote eltSimList =
{(e1i,e2j,elementSim(e1i,e2j)) | elementSim (e1i,e2j) >Threshold, e1i
∈DTD1, e2j ∈DTD2}. Figure 14 gives the algorithm to compute
the similarity matrix of a set of DTDs and the best element
mapping pairs for each pair of DTDs. Sometimes one DTD is a
subset of or is very similar to a subpart of a larger DTD. But the
DTDSim of these two DTDs becomes very low after normalizing
it by max (|DTDp|,|DTDq|). One may adopt the optimistic
approach and use min (|DTDp|,|DTDq|) as the normalizing
denominator.

4.2 Generate Clusters
Clustering of DTDs can be carried out once we have the DTD
similarity matrix. We use hierarchical clustering [9] to group
DTDs into clusters. DTDs from the same application domain tend
to be clustered together and form clusters at different cut-off
values. Manipulation of such DTDs within each cluster becomes
easier. In addition, since the hierarchical clustering technique
starts with clusters of single DTDs and gradually adds highly
similar DTDs to these clusters, we can take advantage of the
intermediate clusters to guide the integration process.

Algorithm: ComputeDTDSimilarity
Input: DTD source trees set D = {DTD1, DTD2,…,DTDn}

 Matching threshold Threshold; weights α,β,γ
Output: DTD similarity matrix DTDSim;
 best element mapping pairs BMP

for p = 1 to n-1 do
 for q = p+1 to n do {
 DTDp, DTDq ∈ D;
 eltSimList={};
 for each epi∈DTDp and each eqj∈DTDq do {
 eltSim=ElementSim(epi,eqj,Threshold,α,β,γ);
 eltSimList=eltSimList∪(epi,eqj,eltSim); }

//find the best mapping pairs
 sort eltSimList in descending order on eltSim;
 BMP(DTDp, DTDq)={};
 while eltSimList≠φ do {
 remove first element (epr,eqk,sim) from eltSimList;
 if sim>Threshold then {
 BMP(DTDp, DTDq)= BMP(DTDp, DTDq)∪ (epr,eqk,sim);
 eltSimList = eltSimList
 -{(epr,eqj,any)|j=1,…,|DTDq|,(epr,eqj,any)∈eltSimList}

 -{(epi,eqk,any)|i=1,…,|DTDp|,(epi,eqk,any)∈eltSimList};
 }//end if
 }//end while

 DTDSim (DTDp, DTDq) =
|)||,max(|

),,(

q

BMPsimee

DTDDTDp

sim
qkpr
∑

∈ ;

}

Figure 14. Algorithm to compute DTD similarity.

5. PERFORMANCE STUDY
To evaluate the performance of XClust, we collect more than 150
DTDs on several domains: health, publication (including DBLP
[6]), hotel messages [14] and travel. The majority of the DTDs are
highly nested with the hierarchy depth ranging from 2 to 20
levels. The number of nodes in the DTDs ranges from ten nodes
to thousands of nodes. The characteristics of the DTDs are given
in Table 3. We implement XClust in Java, and run the
experiments on 750 MHz Pentium III PC with 128M RAM under
Windows 2000. Two sets of experiments are carried out. The first
set of experiments demonstrates the effectiveness of XClust in the
integration process. The second set of experiments investigates
the sensitivity of XClust to the computation of element similarity.

Table 3. Properties of the DTD collection.
 No of DTDs No. of nodes Nesting levels
Travel 54 20-50 2-6
Patient 20 40-80 5-8
Publication 40 20-500 4-10
Hotel Msg 40 50-1000 7-20

5.1 Effectiveness of XClust
In this experiment, we investigate how XClust facilitates the
integration process and produces good quality integrated schema.
However, quantifying the “goodness” of an integrated schema
remains an open problem since the integration process is often
subjective. One integrator may decide to take the union of all the
elements in the DTDs, while another may prefer to retain only the
common DTD elements in the integrated schema. Here, we adopt
the union approach which avoids loss of information. In addition,
the integrated DTD should be as compact as possible. In other
words, we define the quality of an integrated schema as inversely
proportional to its size, that is, a more compact integrated DTD is
the result of a “better” integration process.

DTDs of the
same domain XClust

cluster
set (CS)

cluster
integration

weights

count edges
in resulting

DTDs

resulting DTDs
performance

index
(edge sum)

Figure 15. Experiment process.

To evaluate how XClust facilitates the integration process with
the k clusters it produces (k varies with different thresholds), we
compare the quality of the resulting integrated DTD with that
obtained by integrating k random clusters. Figure 15 shows the
overall experiment framework. After XClust has generated k
clusters of DTDs at various cut-off thresholds, the integration of
the DTDs in each cluster is initiated. An adjacency matrix is used
to record the node connectivities in the DTDs within the same
cluster. Any cycles and transitive edges in the integrated DTD are
identified and removed. The number of edges in the integrated
DTD is counted. For each cluster Ci, we denote the corresponding

edge count as Ci.count. Then CS.count = ∑
k

i
i countC . .

Next, we manually partition the DTDs into k groups where each
group Gi has the same size as the corresponding cluster Ci. The
DTDs in each Gi is integrated in the same manner using the
adjacency matrix and the number of edges in the integrated DTD

is recorded in Gi.count. Then GS.count = ∑
k

i
i countG . .

Figure 16 shows the results of the values of CS.count and
GS.count obtained at different cut-off values for the publication
domain DTDs. It is clear that integration with XClust outperforms
that by manual clustering. At cut-off values of 0.06-0.9, the edge
counts CS.count and GS.count differ significantly. This is because
XClust identifies and groups similar DTDs for integration.
Common edges are combined resulting in a more compact

integrated schema. The results of integrating DTDs in the other
domains show similar trends.

In practice, XClust offers significant advantage for large-scale
integration of XML sources. This is because during the similarity
computation, XClust produces the best DTD element mappings.
This greatly reduces the human effort in comparing the DTDs.
Moreover, XClust can guide the integration process. When the
integrated DTDs become very dissimilar, the integrator can
choose to stop the integration process.

50

100

150

200

250

300

350

0.91 0.9 0.8 0.61 0.6 0.4 0.21 0.2 0.09 0.06 0.03

Cut_off values

N
um

be
r

of
 E

dg
es

in

 in
te

gr
at

ed
 D

T
D

XClust
Manual

Figure 16. Edge count at different cut-off values.

5.2 Sensitivity Experiments
XClust considers three aspects of a DTD element when
computing element similarity: semantics, immediate descendants,
and leaf context. These similarity components are based on the
notion of PCC. We conduct experiments to demonstrate the
importance of PCC in DTD clustering. The metric used is the
percentage of wrong clusters, i.e., clusters that contain DTDs
from a different category. We give equal weights to all the three
components: α = β = γ = 0.33, and set Threshold=0.3.

Figure 17 shows the influence of PCC on DTD clustering. The
percentage of wrong clusters is plotted at varying cut-off
intervals. With PCC, incorrect clusters only occur after the cut-off
interval 0.1 to 0.12. On the other hand, when PCC is not
considered in the element similarity computation, incorrect
clustering occurs earlier at cut-offs 0.3 to 0.4. The reason is that
some of the leaf nodes and non-leaf nodes have been mismatched.
It is clear that PCC is crucial in ensuring correct schema
matching, and subsequently, correct clustering of the DTDs. Leaf
nodes with same semantics but occurs in different context
(person.pet.name and person.name,e.g.) can also be identified and
discriminated.

Next, we investigate the role of the immediate descendent
component. When the immediate descendant component is not
considered in the element similarity computation, then β = 0, and
α = γ = 0.5. The results of the experiment are given in Figure 18.
We see that for cut-off values greater than 0.2, there is no
significant difference in the percentage of incorrect clusters
whether the immediate descendant component is used or not. One
reason is that the structure variation in the DTDs is not too great,
and the leaf-context similarity is able to compensate for the
missing component. The percentage of incorrect clusters increases
sharply after cut-off value of 0.1 for the experiment without the
immediate descendant component.

0%

20%

40%

60%

80%

100%

0.7
~1

0.6
~0.7

0.5
~0.6

0.4
~0.5

0.3
~0.4

0.2
~0.3

0.1
3~

0.2

0.1
~0.1

2
0~

0.1

Cut-off interval

W
ro

ng
 C

lu
st

er

Pe
rc

en
ta

ge

With PCC
Without PCC

Figure 17. Effect of PCC on clustering

0%

20%

40%

60%

80%

100%

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
Cut-off Values

Pe
rc

en
ta

ge
 o

f
W

ro
ng

 C
lu

st
er

s

With Immediate Desc Similarity
Without Immediate Desc Similarity

Figure 18. Effect of immediate descendant similarity.

6. RELATED WORK
Schema matching is studied mostly in relational and Entity-
Relationship models [3, 12, 18, 17, 21, 24]. Research in schema
matching for XML DTD is just gaining momentum [7, 22, 27]).
LSD [7] employs a machine learning approach combined with
data instance for DTD matching. LSD does not consider the
cardinality and requires user input to provide a starting point. In
contrast, Cupid [22], SPL [27] and XClust employ schema-based
matching and perform element- and structure-level matching.

Cupid is a generic schema-matching algorithm that discovers
mappings between schema elements based on linguistic,
structural, and context-dependant matching. A schema tree is used
to model all possible schema types. To compute element
similarity, Cupid exploits the leaf nodes and the hierarchy
structure to dynamically adjust the leaf nodes similarity. SPL
gives a mechanism to identify syntactically similar DTDs. The
distance between two DTD elements is computed by considering
the immediate children that these elements have in common. A
bottom-up approach is adopted to match hierarchically equivalent
or similar elements to produce possible mappings.

It is difficult to carry out a quantitative comparison of the three
methods since each of them uses a different set of parameters.
Instead, we will highlight the differences in their matching
features. Given DTDs of varying levels of detail such as address
and address(zip,street), both SPL and Cupid will return a
relatively low similarity measure. The reason is that SPL uses the
immediate descendants and their graph size to compute the
similarity of two DTD elements, while Cupid is biased towards

the similarity of leaf nodes. For DTDs with varying levels of
abstraction (Figure 8), SPL will be seriously affected by the
structure variation while Cupid’s penalty method tries to consider
the context of schema hierarchy. When matching DTD elements
with varying context, such as person(name,age) and
person(name,age,pet(name,age)), both SPL and Cupid will fail to
distinguish person.name from person.pet.name. Overall, XClust is
able to obtain the correct mappings because its computation of
element similarity considers the semantics, immediate descendent
and leaf-context information.

7. CONCLUSION
The growing number of XML sources makes it crucial to develop
scalable integration techniques. We have described a novel
integration strategy that involves clustering the DTDs of XML
sources. Reconciling similar DTDs (both semantically and
structurally) within a cluster is definitely a much easier task than
reconciling DTDs that are different in structure and semantics.
XClust determines the similarity between DTDs based on the
semantics, immediate descendents and leaf-context similarity of
DTD elements. Our experiments demonstrate that XClust
facilitates integration of DTDs, and that the leaf-context
information plays an important role in matching DTD elements
correctly.

8. REFERENCES
[1] S.Abiteboul. Querying semistructured data. ICDT, 1997.

[2] V.Apparao, S.Byrne, MChampion. Document Object Model,
1998. http://www.w3.org/TR/REC-DOM-Level-1/.

[3] S. Castano, V. De Antonellis, S. Vimercati. Global Viewing
of Heterogeneous Data Sources. IEEE TKDE 13(2), 2001.

[4] D. Chamberlin et al. XQuery: A Query Language for XML,
2000. http://www.w3.org/TR/xmlquery/.

[5] D. Chamberlin, J. Robie, D. Florescu. Quilt: An XML Query
Language for Heterogeneous Data Sources. ACM SIGMOD
Workshop on Web and Databases, 2000.

[6] The DBLP DTD file is available at ftp://ftp.informatik.uni-
trier.de/pub/users/Ley/bib

[7] A. Doan, P. Domingos, and A. Halevy. Reconciling Schemas
of Disparate Data Sources: A Machine-Learning Approach,
ACM SIGMOD, 2001.

[8] A.Deutsch, M.Fernandez, D.Florescu. XML-QL: A query
language for XML,1998. http://www.w3.org/TR/NOTE-xml-ql

[9] Brian Everitt. Cluster analysis. New York Press, 1993.
[10] M.R. Genesereth, A.M. Keller, and O. Duschka. Infomaster:

An Information Integration System. ACM SIGMOD, 1997.

[11] H. Garcia-Molina et al. The TSIMMIS approach to
mediation: Data models and languages. Journal of Intelligent
Information Systems, 8(2):117-132, 1997.

[12] M. Garcia-Solaco, F. Saltor and M. Castellanos, A structure
based schema integration methodology, 11th International
Conference on Data Engineering, pp 505-512, 1995.

[13] R. Goldman and J. Widom, DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
VLDB, 1997.

[14] The hotel message service DTD files is available at:
http://www.hitis.org/standards/centralreservation/

[15] M.A. Hernández, R.J. Miller, L.M. Haas. Clio: A Semi-
Automatic Tool For Schema Mapping. SIGMOD Record
30(2), 2001.

[16] Z.G. Ives, D. Florescu, M. Friedman. An Adaptive Query
Execution System for Data Integration. ACM SIGMOD,
1999.

[17] V. Kashyap, A Sheth. Semantic and Schematic Similarities
between Database Objects: A Context-Based Approach,
VLDB Journal 5(4), 1996.

[18] J. Larson, S.B. Navathe, and R. Elmasri. Theory of Attribute
Equivalence and its Applications to Schema Integration,
IEEE Trans. on Software Engineering, 15(4), 1989.

[19] B. Ludascher, Y. Papakonstantinou, P. Velikhov. A
Framework for Navigation-Driven Lazy Mediators, ACM
SIGMOD Workshop on Web and Databases, 1999.

[20] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source descriptions.
VLDB, pp:251-262, 1996.

[21] T. Milo, S. Zohar. Using schema matching to simplify
heterogeneous data translation, VLDB, 1998.

[22] J. Madhavan, P. A. Bernstein, and E. Rahm, Generic schema
matching with Cupid, VLDB, 2001.

[23] S. Nestorov, S. Abiteboul and R. Motwani, Extracting
schema from semistructured data, ACM SIGMOD, 1998.

[24] E. Rahm, P.A. Bernstein. On Matching Schemas
Automatically, Microsoft Research Technical Report MSR-
TR-2001-17, 2001.

[25] J. Robie, J. Lapp, D. Schach. XML Query Language (XQL),
Workshop on XML Query languages, 1998.

[26] A. Sahuguet. Everything you ever wanted to know about
DTDs, but were afraid to ask. ACM SIGMOD Workshop on
Web and Databases, 2000.

[27] H. Su, S. Padmanabhan, M. Lo, Identification of
Syntactically Similar DTD Elements in Schema Matching
across DTDs, WAIM, 2001.

[28] Tomasic, A. and Raschid, L. and Valduriez, P. Scaling
access to heterogeneous data sources with DISCO. IEEE
TKDE 10(5):808-823, 1998.

[29] http://www.cogsci.princeton.edu/~wn/

[30] http://sourceforge.net/projects/javawn/

[31] Lucie Xyleme. A dynamic warehouse for XML Data of the
Web. IEEE Data Engineering Bulletin 24(2): 40-47, 2001.

