
IF-Map: An Ontology-Mapping Method

based on Information-Flow Theory

Yannis Kalfoglou1 and Marco Schorlemmer2,3 ?

Advanced Knowledge Technologies
1 Department of Electronics and Computer Science

University of Southampton
2 Centre for Intelligent Systems and their Applications

School of Informatics
The University of Edinburgh

3 Escola Universitària de Tecnologies d’Informació i Comunicació
Universitat Internacional de Catalunya

Abstract. In order to tackle the need of sharing knowledge within and
across organisational boundaries, the last decade has seen researchers
both in academia and industry advocating for the use of ontologies as
a means for providing a shared understanding of common domains. But
with the generalised use of large distributed environments such as the
World Wide Web came the proliferation of many different ontologies,
even for the same or similar domain, hence setting forth a new need of
sharing—that of sharing ontologies. In addition, if visions such as the
Semantic Web are ever going to become a reality, it will be necessary to
provide as much automated support as possible to the task of mapping
different ontologies. Although many efforts in ontology mapping have
already been carried out, we have noticed that few of them are based
on strong theoretical grounds and on principled methodologies. Further-
more, many of them are based only on syntactical criteria. In this paper
we present a theory and method for automated ontology mapping based
on channel theory, a mathematical theory of semantic information flow.
We successfully applied our method to a large-scale scenario involving the
mapping of several different ontologies of computer-science departments
from various UK universities.

1 Introduction

The wide-spread use of ontologies by diverse communities and in a variety of ap-
plications is a commonality in today’s knowledge-sharing efforts. They are the
backbone for semantically-rich information sharing, a prerequisite for knowledge
sharing. As systems become more distributed and disparate within and across
organisational boundaries, there is a need to preserve the meaning of concepts

? Last names of authors are in alphabetical order.

used in everyday transactions of information sharing. The emergence of the Se-
mantic Web [5] has made these transactions, arguably, easier to implement and
deploy on a large scale in a distributed environment like the Internet. However,
at the same time poses some interesting challenges. For instance, we observe
that the demand for knowledge sharing has outstripped the current supply. And
even when knowledge sharing is feasible, this is only within the boundaries of a
specific system, when certain assumptions hold, and within a specific domain.
The reason for this shortcoming is, probably, the very environment and technolo-
gies that generated a high demand for sharing: The more ontologies are being
deployed on the Semantic Web, the more the demand to share them for the ben-
efits of knowledge sharing and semantic interoperability. The sharing of ontology
though, is not a solved problem. It has been acknowledged and researched by
the knowledge engineering community for years.

In fact, this problem is related to that of integration of heterogeneous data-
bases conducted in the 1980s and early 1990s [4, 39], as far as database schemas
can be considered a particular kind of lightweight ontologies. These early efforts
in information sharing run into the problem of semantic heterogeneity, which re-
quired the identification and representation of all semantics useful in performing
schema translation and schema integration. Current efforts on ontology sharing
build upon the previous experience, but in the light of more broader a concept
of ontology, and of more expressive logical formalisms and theories that better
capture the semantics and information flow.

One of the aspects in ontology sharing is to perform some sort of mapping
between ontology constructs. That is, given two ontologies, one should be able to
map concepts found in one ontology onto the ones found in the other. Further,
some research suggest that we should also be able to combine ontologies where
the product of this combination will be, at the very least, the intersection of the
two given ontologies. These are the dominant approaches that have been studied
and applied in a variety of systems (see, for example, [35]).

There are, however, some drawbacks that prevent engineers from benefitting
from such systems. Firstly, the assumptions made in devising ontology map-
pings and in combining ontologies are not always exposed to the community and
no technical details are disclosed. Secondly, the systems that perform ontology
mapping are often either embedded in an integrated environment for ontology
editing or are attached to a specific formalism. Thirdly, in most cases mapping
and merging are based on heuristics that mostly use syntactic clues to deter-
mine correspondence or equivalence between ontology concepts, but rarely use
the meaning of those concepts, i.e., their semantics. Fourthly, most, if not all
approaches, do not treat ontological axioms or rules often found in formal on-
tologies. Finally, ontology mapping as a term has a different meaning in different
works merely due to the lack of a formal account of what ontology mapping is.
There is an observed lack of theory behind most of the works in this area.

Motivated by these drawbacks we started to work on a method and a theory
for ontology mapping and merging. We were determined to tackle these draw-
backs so our approach is based on the observation reported in [38] of an essential

duality in knowledge sharing, namely that sharing occurs both at the token and
at the type level. We draw on sound theoretical ground, but at the same time we
are providing a systematic approach for ontology mapping in mechanised and
methodological steps.

In particular, we propose an Information-Flow-based method for ontology
mapping (hereafter, IF-Map). We are mostly interested in mapping ontologies,
but we could extend the approach to merge them, too. IF-Map draws from the
works of Schorlemmer on aligning ontologies [38] and on the heuristics defined by
Kalfoglou (in [20], pp.95–97), to analyse prospective mappings between ontolo-
gies. On the theoretical side, our method is based on the mathematical theory
of information flow proposed by Barwise and Seligman [3] and on Kent’s Infor-
mation Flow Framework for the IEEE standardisation activity of an upper-level
ontology [23], and also on his proposed methodology for merging ontologies [22,
24]. The methodological part of IF-Map has also been influenced by the work of
Stumme and Maedche on the FCA-Merge method [41].

We outline a scenario and describe the architecture we have built to perform
ontology mapping in Section 2. We briefly provide mathematical preliminaries on
information flow and channel theory in Section 3, before we proceed to describe
our ontology-mapping method in Section 4, together with an example case of its
use. In Section 5 we report on an application of our method and elaborate on
scalability issues. We discuss related work in Section 6 and summarise the paper
in Section 7.

2 A Scenario and Architecture for Ontology Mapping

We should clarify some terminological issues before we continue with our archi-
tecture for ontology mapping. Some researchers view the mapping process as an
integral part of alignment or merging. For example Noy and Musen view merg-
ing as the creation of “a single coherent ontology that includes the information
from all the sources” and alignment as a process in which “the sources must
be made consistent and coherent with one another but kept separately” [34].
Clearly, mapping is an essential aspect of alignment and could also be used to
initiate merging. In this paper, we adopt a working view of ontology mapping.
We do not intend to alter the original ontologies but rather look for possible map-
pings between them. To that extent we are compatible with Noy and Musen’s
definition of alignment, however, we view alignment as a process that involves
merging but without altering the original ontologies. This would be done by
constructing a virtual ontology consisting of the mapped constructs of the two
input ontologies. This view is more akin to those researchers working on the
IEEE SUO initiative—the standardisation of an upper level ontology—where a
meta-level framework for relating ontologies based on the Barwise-Seligman the-
ory of information flow is currently being developed.1 Although on our scenario
we have not yet implemented this aspect, we could extend the existing IF-Map

1 We point the interested reader to http://suo.ieee.org for more information on
this initiative.

method to perform merging. In the remaining of the paper though, we will focus
on ontology mapping only.

2.1 Ontology Mapping Scenario

reference ontology
O0

wwooo
ooo

ooo
oo

''OO
OOO

OOO
OOO

local ontology
O1

''O
OOOOO

local ontology
O2

wwo o o o o o

global ontology
O

Fig. 1. The scenario for ontology mapping.

In Figure 1 we illustrate our approach to ontology mapping. In particular,
the focus is on the use of information-flow theory as the underpinning mathe-
matical foundation for establishing mappings between two ontologies. We shall
formalise these mappings in terms of local logics and logic infomorphisms, which
we introduce in Section 3.

We assume that, when two communities desire to share knowledge but each
one has encoded knowledge according to its own local ontology—O1 and O2

respectively—they have previously agreed upon a common understanding, a ref-
erence ontology O0, in order to favour the sharing of knowledge. Typically each
community will have its local ontology populated with its own instances, while
the reference ontology will not have instances.

But, although having agreed upon a reference ontology, each community
might prefer to communicate via its own local ontology, provided these ontolo-
gies O1 and O2 (or at least a significant fragment of them) conform to the
reference ontology O0. In this paper we provide a methodology to establish this
conformance by looking for, and further generating, ontology mappings O0 → O1

and O0 → O2 from the reference ontology to local ontologies, denoted as solid
arrows in Figure 1. The methodology is based upon formalising ontologies as
local logics and ontology mappings as logic infomorphisms, as we shall see in
Section 3.5.

The link O1 ← O0 → O2 between local ontologies via the reference ontology,
together with the generated ontology mappings from the latter to the former two,
provides an alignment structure of ontologies that determine uniquely a global
ontology O—an ontology that could be either constructed from the alignment
structure or else generated ‘on-the-fly’ for the purpose of knowledge sharing. The

dashed arrows denote the inclusion of local ontologies O1 and O2 into the global
ontology O. This inclusions are also ontology mappings as formalised by logic
infomorphisms, and hence our methodology IF-Map could be extended in future
to include the merging of ontologies according to an alignment structure.

Figure 1 clearly resembles Kent’s proposed two-step process for conceptual
knowledge organisation [22, 24]. In fact, the existence of a unique global ontology
O given an alignment O1 ← O0 → O2 consisting of local ontologies and a
reference ontology is the consequence of formalising ontologies and ontology
mappings as local logics and logic infomorphisms.

2.2 Ontology Mapping Architecture

ontologies
"harvester" programs

ontology libraries

modellers + editors

to Horn Logic

Prolog engine with a Java front−end

Web accessible, API provided

(RDF)

acquisition translation infomorphisms generation project mappings

IF−Map

concept−level map

instance−level map

translationharversting
ontology

Knowledge

Base

Base

Data

Knowledge

Base

display
resultsIF−Map

Fig. 2. The IF-Map architecture.

In Figure 2 we illustrate the process of IF-Map. We have built a step-wise
process that consists of four major steps: (a) Ontology harvesting, (b) transla-
tion, (c) infomorphism generation, and (d) display of results. In the ontology
harvesting step we perform our acquisition. We acquire ontologies by applying a
variety of methods: Downloading existing ontologies from ontology libraries (for
example, from the Ontolingua [12] or WebOnto [10] servers); editing them in on-
tology editors (for example, in Protégé [16]); or extracting them from the Web.
The latter is ongoing research in the AKT project (http://www.aktors.org),
where we are writing scripting programs to crawl the Web and harvest RDF-
encoded resources to semi-automatically construct and populate ontologies. We
will not expand on this topic here as it is peripheral to our theme of ontol-
ogy mapping. As a result of our versatile ontology acquisition step, we have to

deal with a variety of ontology representation languages ranging from KIF [15]
and Ontolingua to OCML [31], RDF [27], Prolog, and native Protégé knowledge
bases.

This introduces the second step in our process, that of translation. Since we
have declaratively specified the IF-Map method in Horn logic and execute it with
a Prolog interpreter, we partially translate the above formats to Prolog clauses.
Our translator programs are either written in-house, or whenever available, we
use public translators. For example, there are public RDF-to-Prolog translators2

as well as Ontolingua-to-Prolog translators. In most of these cases though, we
found it practical to write our own ones. We did that to have a partial transla-
tion, customised for the purposes of ontology mapping. Furthermore, as it has
been reported in a large-scale experiment with publicly available translators [7],
the Prolog code produced is not elegant or even executable. Our own transla-
tors are customised to translate—from KIF, Ontolingua, and Protégé knowledge
bases into Prolog clauses—those constructs that are needed for IF-Map: Class
taxonomy, relations and representative instances for classes. Thus, we deliber-
ately neglect constructs such as documentation slots, separation of own-slots and
template-slots and other object-oriented modelling primitives used in Ontology
languages (such as KIF or Ontolingua3) as they are not useful for IF-Map and
their absence from the translated Prolog code does not invalidate their mean-
ing. For Protégé knowledge bases we used the built-in Java API to obtain the
constructs we wanted, and for RDF we used publicly available RDF to Prolog
translators. The issue of a full-blown translation from one formalism to another
is a difficult problem, and Corrêa da Silva et al. [7] offer an account on the effort
involved.

The next step in our process is the main mapping mechanism: The IF-Map
method, which we describe in Section 4. We have written a Java front-end to
the Prolog-written IF-Map program so that we can access it from the Web, and
we are currently in the process of writing a Java API to enable external calls to
it from other systems. This step will find logic infomorphisms, if any, between
the two ontologies under examination, and in the last step of our process we
display them in RDF format. This step involves translating back from Prolog
clauses to RDF triples by means of an intermediary Java layer, where RDF is
being produced using the Jena RDF API [28]. Finally, we store the results in a
knowledge base for future reference and maintenance.

Before proceeding to an example case of the deployment this architecture
we shall introduce the theoretical background of IF-Map. Therefore, in the next
section we expand on logic infomorphisms and other channel-theoretic notions,
and give a formal account of ontology mapping.

2 Like the one from Wielemaker downloadable from http://www.swi-prolog.org/

packages/rdf2pl.html
3 We briefly describe the principles we used to partially translate from Ontolingua to
Prolog in [20], pp.105–107.

3 Preliminaries

In order to give a formal characterisation of ontology mapping we start from
the following basic assumption: If two communities desire to share information
but their ontologies differ, we need to align and map their ontologies for the
information to flow between them. Consequently, it would be desirable to base
a theory of ontology mapping upon a mathematical theory that is capable of
describing under which circumstances information flow occurs.

Although there is no such a theory yet, the most promising effort towards
such a theory was initiated by Barwise and Perry with situation semantics [2],
which was then been further developed by Devlin into a theory of information [8].
Barwise and Seligman’s channel theory is currently the latest stage of this en-
deavour [3], and is probably the best place to start establishing a foundation for
a theory of ontology mapping.

3.1 Information Flow

Barwise and Seligman propose a mathematical model that aims at establishing
the laws that govern the flow of information. It is a general model that attempts
to describe the information flow in any kind of distributed system, ranging form
actual physical systems like a flashlight connecting a bulb to a switch and a
battery, to abstract systems such as a mathematical proof connecting premises
and hypothesis with inference steps and conclusions.

It is based on the understanding that information flow results from regular-
ities in a distributed system, and that it is by virtue of regularities among the
connections that information of some components of a system carries information
of other components. The more regularities the system has, the more informa-
tion flows; the more random the system is constituted the less information will
be able to flow among its components.

As a notion of a component carrying information about another component,
Barwise and Seligman follow Dretske’s characterisation [11], in which assertions
of the sort

The rifle shot carried the information that the king was dead to the whole
city.

or

The greyness of the sky carries the information that a storm is approach-
ing.

are abstractly characterised as following a common pattern

a’s being F carries/bears/conveys the information that b is G.

In fact, it is a particular rifle shot that will inform us of the king’s death, and
hence it is a particular event token e of the type ‘rifle shot’ that will carry this
information. A rifle shot 50 years later will definitely not carry the information

that the present king is dead as will the present rifle shot not indicate that
the king of the neighbouring city is dead. It is the fact that the event token of
the rifle shot is connected spatio-temporarily with the event of the king’s death
that we know that the information flows. Channel theory formalises this crucial
aspect of information flow, namely that it is the tokens and its connections that
carry information, so that information flow involves both types and tokens.

3.2 Aligning and Merging Ontologies

With respect to the problem that concerns us here—that of mapping ontologies—
the same abstract pattern arises. Two communities with different ontologies will
be able to share information when they are capable of establishing connections
among their tokens in order to infer the relationship among their types. Let us
develop an example taken from [40], which shows the issues one has to take into
account when attempting to align the English concepts river and stream with the
French concepts fleuve and rivière. According to Sowa,

In English, size is the feature that distinguishes river from stream; in
French, a fleuve is a river that flows into the sea, and a rivière is either a
river or a stream that runs into another river. [40]

This explains how the concepts need to be merged. Notice that the above quote
requires an agreed understanding on how to distinguish between big and small
rivers, and between rivers that run into a sea or into other rivers, yielding four
types of instances of ‘water-flowing entities’: big-into-sea, big-into-river, small-

into-sea, and small-into-river.

PSfrag replacements

river stream fleuve rivière

big-into-riverbig-into-sea small-into-riversmall-into-sea

Mississippi

Mississippi

Ohio

Ohio

Captina

Captina Rhône

Rhône

Saône

Saône

Roubion

Roubion

Fig. 3. Alignment by means of a pair of maps

Figure 3 shows how both, English and French speakers, base their concepts
upon this agreed understanding, although English and French speakers don’t
distinguish between some types of instances. For example, English speakers call
both, big-into-sea and big-into-river, a river, while French speakers don’t distin-
guish between big-into-river and small-into-river, and call both types a rivière.

The agreed understanding is materialised by two maps that form the alignment.
It requires the classification of particular instances of river, stream, fleuve, and
rivière according with the agreed understanding, since it is this agreed way of
classification which will determine how the concepts river, stream, fleuve, and
rivière are going to be related to each other.

The ultimate goal is to determine the connections that link particular in-
stances of type river or stream with particular instances of type fleuve or rivière,
in a way that they respect the agreed understanding. This is done by connect-
ing only those instances that conform to the same type according to the agreed
understanding, as illustrated in Figure 4.

PSfrag replacements

river

river

stream

stream fleuve

fleuve

rivière

rivière

Mississippi Ohio Captina Rhône Saône Roubion

〈Mississippi,Rhône〉 〈Ohio,Saône〉 〈Captina,Roubion〉

Fig. 4. Aligning ontologies through a pair of maps

The resulting classification of connections 〈Mississippi,Rhône〉, 〈Ohio,Saône〉,
and 〈Captina,Roubion〉 into the four concepts river, stream, fleuve, and rivière,
determines a theory of how these concepts are related (e.g., that a fleuve is also
a river, or that a stream is also a rivière, but not vice versa). Figure 4 shows
what in channel theory is known as a an information channel [3]. It captures,
by means of two pairs of contra-variant functions, an existing duality between
concepts and instances: Each pair consists of a map of concepts on the so called
type level and map of instances on the so called token level, and pointing in
the opposite direction. From a channel-theoretic perspective, Figure 4 actually
illustrates us that sharing knowledge involves a flow of information that crucially
depends on how the instances of different agents are connected together. The
following table shows the classification relation, i.e., the connections as classified
according to the concept types involved in the example:

river stream fleuve rivière

〈Mississippi,Rhône〉 1 0 1 0
〈Ohio,Saône〉 1 0 0 1

〈Captina,Roubion〉 0 1 0 1

The merged set of concepts {river, stream, fleuve, rivière} has an additional
structure that we can deduce from the way the connections of instances are clas-
sified with respect to these concepts. Through techniques from formal concepts
analysis [14], for instance, we can make such structure explicit in the form of a
concept lattice, as shown in Figure 5. The concept hierarchy represented in this
lattice depends on the choice of instances and its classification with respect to
the agreed understanding. The fact that no instances were classified as of type
small-into-sea was crucial in this example. Notice, also, that the resulting lattice
has a node labelled with the concept river ∧ rivière, which is a formal concept
that did not exist in the original vocabularies. It corresponds to the instances of
‘water-flowing entities’ that, although big, flow into other rivers, like Ohio and
Saône.

>

qqq
qqq

qqq
qq

NNN
NNN

NNN
NNN

river

vv
vv
vv
vv
v

MMM
MMM

MMM
M rivière

ppp
ppp

ppp
pp

JJ
JJ

JJ
JJ

J

fleuve

UUUU
UUUU

UUUU
UUUU

UUUU
river ∧ rivière stream

iiii
iiii

iiii
iiii

iiii
i

⊥

Fig. 5. Concept lattice

3.3 Channel Theory

Channel theory provides the required mathematical machinery to describe the
information flow between communities in terms of their connection by means
of tokens and types. In order to specify the regularities of each component in
a distributed systems channel theory uses the notion of a local logic. Separate
interacting components will typically use different vocabularies, i.e., they will use
different systems of types, and also tokens and of how these classified according
to the types.

In addition, each community will have its own particular constraints that
describe the local behaviour of their instances with respect to their system of
types. A local logic brings all these ideas together:

Definition 1. A local logic is a quadruple L = (I, T, |=,`), where

1. I is a set of instances (also called tokens);
2. T is a set of types;
3. |= is a classification relation, a binary relation between elements of I and T ;
4. ` is a consequence relation, a binary relation between subsets of T ;

There are two parts of a local logic that are of particular importance in
the channel-theory framework. The first one is the triple (I, T, |=), and is called
the classification of the local logic, because the binary relation |= determines a
classification of instances in I with respect to types in T . Thus, x |= a means
that instance x ∈ I is classified as of type a ∈ T .

The second important part is the pair (T,`), which is called the theory of
the local logic. This theory is specified by a set of sequents 〈Γ,∆〉, i.e., pairs
where Γ,∆ ⊆ T . The set of types Γ is to be interpreted conjunctively, the set ∆
disjunctively, so that an instance x ∈ I satisfies a sequent 〈Γ,∆〉 provided that,
if x is of every type in Γ , then x is of some type in ∆. Sequents that belong to
the theory of a logic are called constraints and denoted Γ ` ∆. Theories of local
logics must satisfy the following conditions of regularity :4

1. Identity: a ` a, for all a ∈ T ;
2. Weakening: If Γ ` ∆ then Γ, Γ ′ ` ∆,∆′, for all Γ, Γ ′,∆,∆′ ⊆ T ;
3. Global Cut: If Γ, T ′

0 ` ∆,T
′
1 for each partition5 〈T ′

0, T
′
1〉 of any T ′ ⊆ T , then

Γ ` ∆, for all Γ,∆ ⊆ T .

There is an additional element in local logics that we have deliberately left
out in Definition 1. Ideally, instances of a local logic adhere to its constraints,
although, we cannot presuppose this in general, and exceptions may occur. Local
logics also distinguish a subset N ⊆ I of normal instances that must satisfy all
constraints of the local logic. The idea of a normal instance is needed if we want
to model reasonable but unsound flow of information. For the purposes of IF-
Map, though, we shall assume that all instances are normal. Such logics are said
to be sound.

For information to flow between separate components of a distributed system,
we need to link local logics that characterise components in a sensible way. This
will essentially affect the system of classifications and its associated theory, but
in a way that allows the information to flow. This latter is captured with the
idea of a logic infomorphism:

Definition 2. A logic infomorphism f : L À L′ from local logic L = (I, T, |=
,`) to local logic L′ = (I ′, T ′, |=′,`′) is a contra-variant pair of functions f =
〈f?, f?〉, where f

? : T → T ′ and f? : I ′ → I, such that,

4 Regularity arises from the observation that, given a classification of instances to
types, the set of all sequents that are satisfied by all instances do fulfil these prop-
erties.

5 A partition of T ′ is a pair 〈T ′
0, T

′
1〉 of subsets of T ′, such that T ′

0 ∪ T ′
1 = T ′ and

T ′
0 ∩ T ′

1 = ∅; T ′
0 and T ′

1 may themselves be empty (hence they form actually a
quasi-partition).

1. for all x ∈ I ′ and a ∈ T , f?(x) |= a if and only if x |=′ f?(a);
2. for all Γ,∆ ⊆ T , if Γ ` ∆, then f?[Γ] `′ f?[∆].6

The restriction of a logic infomorphism to the classification part of local logics
is called only an infomorphism.

3.4 Ontologies and Ontology Morphisms

For the purposes of IF-Map described in this paper, we adopt a definition of
ontology that includes some of the core components that are usually part of
an ontology: Concepts, organised in an is-a hierarchy, which we capture with
a partial-order relation ‘6’; relations defined over these concepts; and notions
of disjointness of two concepts—when no instance can be considered of both
concepts—and coverage of two concept—when all instances are covered by two
concepts.7

Disjointness and coverage are typically specified by means of ontological ax-
ioms. IF-Map takes these kind of axioms into account including disjointness and
coverage into the hierarchy of concepts by means of two binary relations ‘⊥’ and
‘|’, respectively.

Definition 3. An ontology is a tuple O = (C,R,6,⊥, |, σ) where

1. C is a finite set of concept symbols;
2. R is a finite set of relation symbols;
3. 6 is a reflexive, transitive and anti-symmetric relation on C (a partial or-

der);
4. ⊥ is a symmetric and irreflexive relation on C (disjointness);
5. | is a symmetric relation on C (coverage); and
6. σ : R → C+ is the function assigning to each relation symbol its arity; the

functor (−)+ sends a set C to the set of finite tuples whose elements are in
C.

When discarding binary relations ⊥ and |, this definition is equivalent to that
of a core ontology in [41].

When an ontologyO = (C,R,6,⊥, |, σ) is used in some particular application
domain, we need to populate it with instances. First, we will have to classify
objects of a set X according to the concept symbols in C by defining a binary
classification relation |=C. This will determine a classification C = (X,C, |=C).
Next, we will have to specify over which instances the relations represented by
the symbols in R are to hold, thus classifying finite tuples of objects of X to the
relation symbols in R by defining a binary classification relation |=R. This will
determine a classification R = (X+, R, |=R). Both classifications will have to be
defined in such a way that the partial order 6, the disjointness ⊥, the coverage
|, and the arity function σ are respected:

6 f?[Γ] and f?[∆] denote the set images of sets Γ and∆ along function f ?, respectively.
7 Both disjointness and coverage can easily be extended to more than two concepts,
although we stay with binary relations, for the ease of presentation.

Definition 4. A populated ontology is a tuple Õ = (C,R,6,⊥, |, σ) such that
C = (X,C, |=C) and R = (X+, R, |=R) are classifications and O = (C,R,6,
⊥, |, σ) is an ontology; we say the ontology is correct when, for all x, x1, . . . , xn ∈
X, c, d ∈ C, r ∈ R, and σ(r) = 〈c1, . . . , cn〉,

1. if x |=C c and c 6 d, then x |=C d;
2. if x |=C c and c ⊥ d, then x 6|=C d;
3. if c | d, then x |=C c or x |=C d;
4. if 〈x1, . . . , xn〉 |=R r then xi |=R ci, for all i = 1, . . . , n.

Notice that we write Õ for a populated ontology and O for the respective un-
populated one.

Transformations of mathematical structures that preserve the structure that
characterises them are usually described with homomorphism (or morphisms,
for short). Thus, we study the mapping of ontologies through the morphisms of
those mathematical structures we have defined for ontologies in Definition 3. The
concept of ‘populated ontology’ is central to our approach to ontology mapping,
and we shall use it later in Proposition 1 in order to justify the following definition
of an ontology morphism:

Definition 5. Given two ontologies O = (C,R,6,⊥, |, σ) and O′ = (C ′, R′,

6′,⊥′, |′, σ′), an ontology morphism 〈f?, g?〉 : O → O′ is a pair of functions
f? : C → C ′ and g? : R → R′, such that, for all c, d ∈ C, r ∈ R, and σ(r) =
〈c1, . . . , cn〉,

1. if c 6 d, then f?(c) 6′ f?(d);
2. if c ⊥ d, then f?(c) ⊥′ f?(d);
3. if c | d, then f?(c) |′ f?(d);
4. if σ′(g?(r)) = 〈c′1, . . . , c

′
n〉, then c′i 6

′ f?(ci), for all i = 1, . . . , n.

3.5 Information Flow between Ontologies

Our approach to ontology mapping is built upon the assumption that, in the
context of channel theory, local logics characterise ontologies.

Hence, a populated ontology Õ = (C,R,6,⊥, |, σ)—with C = (X,C, |=C)—
determines a local logic L = (X,C, |=C,`) whose theory (C,`) is given by the
smallest regular consequence relation (i.e., the smallest relation closed under
Identity, Weakening, and Global Cut) such that, for all c, d ∈ C

c ` d iff c 6 d

c, d ` iff c ⊥ d

` c, d iff c | d

The characterisation of an ontology as a local logic justifies the IF-Map
method presented in next section, which stems from our intention— explained in
Section 2—to map an unpopulated ontology O = (C,R,6,⊥, |, σ) to a populated

one Õ′ = (C′,R′,6′,⊥′, |′, σ′), by looking at the information flow. For this rea-
son we “artificially” populate the concept types given in C and the relation types

given in R to obtain classifications C = (Y,C, |=C) and R = (Z,R, |=R) (unlike
a populated ontology, the instances of R need not to be finite tuples of instances
of C), and further establish infomorphisms f : C À C′ and g : R À R′, such
that their type-level components f? and g? constitute an ontology morphism;
because in that case we know that the populated ontology Õ′ will be a correct
extension of O, in the sense that the images of Õ′’s instances conform to O, as
stated in the following proposition:

Proposition 1. Let O = (C,R,6,⊥, |, σ) be an (unpopulated) ontology, and

let Õ′ = (C′,R′,6′,⊥′, |′, σ′) be a populated ontology with classifications C′ =
(X ′, C ′, |=C′), R′ = (X ′+, R′, |=R′). Let C = (Y,C, |=C) and R = (Z,R, |=R)
be two classifications whose types are the concept and relation types of O. If
Õ′ is correct and f : C À C′ and g : R À R′ are infomorphisms, such that
(f?, g?) : O → O′ is an ontology morphism, then, for all x, x1, . . . , xn ∈ X,
c, d ∈ C, r ∈ R, and σ(r) = 〈c1, . . . , cn〉,

1. f?(x) |=C c and c 6 d imply f?(x) |=C d;

2. f?(x) |=C c and c ⊥ d imply f?(x) 6|=C d ;

3. c | d implies f?(x) |=C c or f?(x) |=C d;

4. g?(〈x1, . . . , xn〉) |= r implies f?(xi) |= ci, for all i = 1, . . . , n.

Proof.

1. Suppose f?(x) |=C c and c 6 d. Since f is an infomorphism, x |=C′ f?(c).
Furthermore, c 6 d implies f?(c) 6′ f(d) because 〈f?, g?〉 is an ontology
morphism; consequently, x |=C′ f?(d). Finally, since f is a infomorphism,
f?(x) |=C d.

2. Analogous to 1.

3. Analogous to 1.

4. Suppose g?(〈x1, . . . , xn〉) |= r. Because g is an infomorphism, 〈x1, . . . , xn〉 |=

g?(r). Let σ(g?(r)) = 〈c′1, . . . , c
′
n〉. By the correctness of Õ′, xi |= c′i, for all

i = 1, . . . , n, and since 〈f?, g?〉 is an ontology morphism, xi |= f?(ci), for all
i = 1, . . . , n. Consequently, and because f is a infomorphism, f?(xi) |= ci,
for all i = 1, . . . , n.

In the next section we describe the ontology mapping method based on the
above characterisation of ontologies as local logics, and ontology morphisms as
logic infomorphisms.

4 The IF-Map Method

We propose a method for mapping ontologies that draws on the mathematical
foundations of information-flow, and we shall use a small easy-to-follow example
to illustrate the core parts of IF-Map.

4.1 Reference and Local Ontology

Let us assume that we want to map two ontologies, a reference ontology with
a local ontology. We follow the scenario given in Section 2 and assume that the
reference ontology has no instances defined, just concept types and constraints
over those types. The local ontology, however, has instances classified under its
concept types according to a classification relation.

Let the reference ontology be O = (C,R,6,⊥, |, σ), with

– concepts C = {building,vehicle,car};
– relations R = {hasParkingSpaceFor};
– arities σ(hasParkingSpaceFor) = 〈building, vehicle〉; and
– partial order 6, disjointness ⊥, and coverage | as defined by the following

lattice:

¥

ww
ww
ww
ww
w

FF
FF

FF
FF

F

building

55
55

55
55

55
55

55
5 vehicle

car

ww
ww

ww
ww

w

¤

where ¥ is the top and ¤ is the bottom of the lattice, i.e., building | vehicle
and building ⊥ vehicle.

Let the local ontology be O′ = (C ′, R′,6′,⊥′, |′, σ′), with

– concepts C ′ = {house,cottage,automobile};
– relations R′ = {hasGarageFor,hasShelterFor};
– arities σ′(hasGarageFor) = 〈house, automobile〉, σ′(hasShelterFor) =
〈cottage, automobile〉; and

– partial order 6′, disjointness ⊥′, and coverage |′ as defined by the following
lattice:

¥

ww
ww
ww
ww
w

JJJ
JJJ

JJJ
J

house automobile

¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈
¨̈

cottage

GG
GG

GG
GG

G

¤

where ¥ is the top and ¤ is the bottom of the lattice, i.e., house |′ automobile

and house ⊥′ automobile.

The local ontology, unlike reference ontology, is populated with instances X =
{cabrio,my-home, 4wd ,new -inn, old -inn, coupe}, which are classified as follows,

|=C′ house cottage automobile

cabrio 0 0 1
my-home 1 0 0
4wd 0 0 1

new-inn 1 1 0
old-inn 1 1 0
coupe 0 0 1

This table contains the following information: cabrio, 4wd and coupe are auto-

mobiles, my-home is a house, new-inn and old-inn are specific kinds of houses,
namely cottages. It specifies the classification C′ = (X,C ′, |=C′).

4.2 Characterisation as Local Logics

In order to automatically find mappings between the reference and the local
ontologies that conform to the definition of ontology morphism given in Defini-
tion 5, we will need to look for logic infomorphisms between the local logics that
characterise these ontologies. First we shall concentrate on the concepts symbols
and leave the relation symbols for Section 4.4.

The reference ontology, which is not populated, is characterised by the fol-
lowing local logic. Its regular theory (C,`) has concept symbols as types, and `
is the smallest consequence relation closed by Identity, Weakening, and Global
Cut that includes the following constraints:

building,vehicle `

car ` vehicle

` building,vehicle

Recall that the comma on the left-hand side of these constraints has conjunctive
force whereas on the right-hand side it has disjunctive force. Following this,
we can give a declarative reading of the above constraints: Nothing is both a
building and a vehicle; all cars are vehicles; and everything is either a building
or a vehicle.

Since the reference ontology does not have instances of its own, we will need
to provide the theory with a set of instances and a classification of these in-
stances with respect to the types. This can be achieved due to a Fundamental
Representation Theorem (see [3]), which states that a local logic that is gener-
ated from the structure given in a classification is equivalent to the local logic
constructed from its theory by generating formally created instances as follows:

1. We take as instances Y all those sequents 〈Γ,∆〉 that

– form a partition of the set of concepts (Γ ∪∆ = C and Γ ∩∆ = ∅); and
– are not constraints of the theory (Γ 6` ∆)

For the theory given above, these sequents are

〈{vehicle,car}, {building}〉

〈{building}, {vehicle,car}〉

〈{vehicle}, {building,car}〉

2. We then classify these instances according to the concepts that occur in the
left-hand side component of the sequent:

|=C building vehicle car

〈{vehicle,car}, {building}〉 0 1 1
〈{building}, {vehicle,car}〉 1 0 0
〈{vehicle}, {building,car}〉 0 1 0

The generation of instances by means of sequents and their classification to
types may not seem obvious, but it is based on the fact that these sequents
‘code’ the content of the classification table (the left-hand sides of the these
sequents indicate which columns of the table bear a ‘1’, while the right-hand
sides indicate which columns bear a ‘0’). The local logic that characterises the
reference ontology, i.e., the ontology given by O, is L = (Y,C, |=C,`).

The local ontology is populated, and hence has already instances and a clas-
sification relation. We only need to derive the theory of the local logic that
characterises its concept hierarchy as specified in the lattice above. Therefore,
its regular theory (C ′,`′) has concept symbols as types, and `′ is the small-
est consequence relation closed by Identity, Weakening, and Global Cut that
includes the following constraints:

house,automobile `′

cottage `′ house

`′ house,automobile

The local logic that characterises the local ontology is, thus, L′ = (X,C ′, |=C′

,`′).

4.3 Generation of Ontology Morphisms via Infomorphisms

To map the ontologies, we must find an ontology morphism from O to O′, which
means that there must exist a logic infomorphism f = 〈f ?, f?〉 from local logic
L to local logic L′. This amounts to first look for an infomorphism between their
respective classifications:

– A map of concepts f? : C → C ′ (concept-level);

– a map f? from instances cabrio, . . . , coupe to the formally created instances
of the reference ontology (instance-level);

Note that an ontology morphism, as defined in Definition 5, only captures
the concept-level of the infomorphism, i.e. f ?. But f? has to map the concepts
in a way that it respects the hierarchy. One possible way would be:

f?(building) = house

f?(vehicle) = automobile

f?(car) = automobile

However, we should point out that the automatic generation of these maps is
growing exponentially. But we can use the constraint that the map has to respect
the concept hierarchy and limit the number of possible maps. Once the map is
fixed, there is at most one acceptable way to map the instances in order for f
to be an infomorphism.

We do that by building the following table that represents an infomorphism:8

We label rows by the instances in X = {cabrio, . . . , coupe} of the local ontology,
and columns by the reference ontology’s concepts C = {building,vehicle,car}. We
put under each of these concepts the values of the column of the local ontology’s
classification table that corresponds to the image along the map of ontologies f ?

(i.e., under building we put the column of house):

building vehicle car

cabrio 0 1 1
my-home 1 0 0

4wd 0 1 1
new -inn 1 0 0
old-inn 1 0 0
coupe 0 1 1

Each row should identify (taking into account the classification table of the
reference ontology) the formal instances to which each local instance should be
mapped onto. Hence, we have the following instance-component of our infomor-
phism:

f?(cabrio) = 〈{vehicle,car}, {building}〉
f?(my-home) = 〈{building}, {vehicle,car}〉
f?(4wd) = 〈{vehicle,car}, {building}〉
f?(new -inn) = 〈{building}, {vehicle,car}〉
f?(old -inn) = 〈{building}, {vehicle,car}〉
f?(coupe) = 〈{vehicle,car}, {building}〉

We can also interpret the above table (and its resulting mapping of instances) as
follows: cabrio is classified as both a vehicle and a car, according to the reference
ontology. No other classification is possible without violating the definition of
infomorphism. If cabrio was a vehicle but not a car, the local ontology would
have been classifying its instances in a way that does not conform to the reference
ontology and the fixed map of concepts.

8 Infomorphisms can themselves be represented by means of classification tables; this
draws on theoretical work based on Chu spaces [17, 1, 36].

4.4 Relations and their Arities

In order to constrain the search space when infomorphisms are generated in an
automated way, we use ontological relations to guide the classification process
that will result in the ontology mapping, namely by looking for infomorphisms
g : R→ R′ in a similar fashion as before. So, in our example case, we have the
following relation defined in the reference ontology:

hasParkingSpaceFor : building× vehicle

that is, the binary relation hasParkingSpaceFor holds over building and vehicle.
Similarly, in the local ontology we have the following two binary relations:

hasGarageFor : house× automobile

hasShelterFor : cottage× automobile

These Local relations could be used to classify pairs of local instances:

hasShelterFor hasGarageFor

〈my-home, cabrio〉 0 0
〈my-home, 4wd〉 0 0
〈my-home, coupe〉 1 1
〈new -inn, cabrio〉 1 0
〈new -inn, 4wd〉 0 0
〈new -inn, coupe〉 1 0
〈old-inn, cabrio〉 0 0
〈old-inn, 4wd〉 1 0
〈old-inn, coupe〉 0 0

That is, my home has a garage (also considered a shelter) only for a coupe,
the new inn has a shelter for a cabrio and a coupe, and the old inn has shelter
for a 4wd. We then take these pairs and classify them according to the concepts
of the reference ontology to determine the mapping of these ontologies:

1. Generate a classification of the above pairs with respect to the reference
ontology’s relation, by taking any of the two columns of the table above;
this gives us two possibilities to explore, suppose we choose:

hasParkingSpaceFor

〈my-home, cabrio〉 0
〈my-home, 4wd〉 0
〈my-home, coupe〉 1
〈new -inn, cabrio〉 1
〈new -inn, 4wd〉 0
〈new -inn, coupe〉 1
〈old-inn, cabrio〉 0
〈old-inn, 4wd〉 1
〈old-inn, coupe〉 0

This is the column corresponding to hasShelterFor, and consequently
g?(hasParkingSpaceFor) = hasShelterFor.

2. The arity of relation hasParkingSpaceFor forces to classify the instances as
follows:

building vehicle car

cabrio 1
my-home 1
4wd 1

new -inn 1
old -inn 1
coupe 1

3. Then we need to complete the table according to the definition of infomor-
phism. This is done as follows: Columns have to correspond to columns of
the local ontology’s classification table. The only possible completion is:

building vehicle car

cabrio 0 1
my-home 1 0
4wd 0 1

new -inn 1 0
old -inn 1 0
coupe 0 1

Hence,

f?(building) = house

f?(vehicle) = automobile

Rows have to correspond to rows of the reference ontology’s classification
table. The only possible completion is:

building vehicle car

cabrio 0 1 1
my-home 1 0 0
4wd 0 1 1

new -inn 1 0 0
old -inn 1 0 0
coupe 0 1 1

Hence,

f?(car) = automobile ,

which completes one possible valid ontology mapping.

The steps described above constitute the core part of the IF-Map method.
We complement it with heuristic-based techniques to help us initiate the info-
morphism generation.

4.5 Initiating the IF-Map Method

Our definition of ontology morphism (Definition 5) enforces an arity-compatibili-
ty check to ensure that the local instances are mapped onto appropriate reference
types. When automating this step though, we have to be careful for undesired
assignments. These arise when the prospective relations to be mapped share
the same types but do not have the same semantics. For instance, assume that
the reference ontology has relation hasJobTitle defined over concepts employee

and string and the local ontology has relation authoredBy defined over string and
employee.9 The infomorphism generation will map the reference concept employee

to the local concept string and the reference concept string to the local concept
employee, which will inevitably map the hasJobTitle relation to authoredBy by
virtue of sharing the same types.

To tackle this problem we are thinking of two possible ways: (a) We provide a
partial map of concepts from one ontology to concepts of the other or (b) classify
some instances from the local ontology to their counterparts in the reference
ontology. This way we can say that the reference concept employee maps onto
the local concept employee and the reference concept string maps onto the local
concept string and only this mapping between these types is possible. This will
constrain the infomorphism generation and the undesired infomorphisms will not
appear. To do this partial mapping automatically we employ a set of heuristics
(originally described in [20], pp.95–97, and enhanced for IF-Map). In particular,
these heuristics are working on a purely syntactic match fashion but they use
the is-a hierarchy and type checking to find types that are shared by relations
in both ontologies. The algorithm goes like that:

1. Find relation names from both ontologies that are syntactically equivalent
(i.e., publishedBy from the reference ontology matches publishedBy from the
local ontology);

2. check if their argument types match (since we are dealing with binary re-
lations, both argument types have to match, for instance employee for the
reference and ontologies; paper for the reference and local ontologies);

3. use these types to fix a partial map to start the infomorphism generation;
4. if step 2 fails, then traverse the is-a hierarchy of types and find syntactically

common types that subsume or are subsumed by the common relations’
argument types (we traverse the is-a hierarchy in both directions: We check
for parent and child nodes of the starting node);

5. those that are found syntactically equivalent will be used as in step 3 for
partially fixing the initial map of the two ontologies;

6. if step 2 yields only one argument type match, use it and do step 4 for the
other argument type.

Note that this algorithm relies on the existence of common relation names
in both ontologies. These are syntactically invariant type names. We assume

9 Note that here the reference and local ontologies are not the same ontologies used
in the mapping example.

that since the role of reference ontologies within a community is to favour the
sharing of knowledge expressed by means of different local ontologies, many of
the names of concepts and relations used to express the reference ontology are
syntactically equivalent to the ones used in the local ontologies to express the
same (or similar) concepts and relations. If they are not, in which case we have
syntactically variant type names, we use another algorithm which makes use of
similar heuristics but the main difference is that step 2 above is now the first
step and we don’t employ step 1 at all. This will allow us to find syntactically
variant type names that hold over the same argument types (or their dependants
after the taxonomy of types has been traversed). However, this algorithm can
yield irrelevant results as the types might be semantically different and not be
a simple syntactic variation of the same concept.

In this case, the algorithms described cannot initiate IF-Map and then we
turn to the second solution proposed above, which is to let the knowledge en-
gineer classify instances manually. This solution though, requires familiarisation
of the engineer with both the reference and local ontologies.

5 Application of IF-Map

We applied the algorithmic steps described in the illustrative example of Sec-
tion 4 in a large-scale experiment that we conducted in the context of the AKT
project (http://www.aktors.org). We have not finished our experiments yet,
but we have done enough to assess IF-Map. The setting of the experiment is
as follows: In the AKT project, five participating universities are contributing
their own ontologies representing their own important concepts in the domain
of computer science departments in the UK. There is also a reference ontology,
AKT Reference, which was built collaboratively by interested participants
from all five sites. So, we had to deal with five local ontologies and one reference
ontology. The local ontologies were populated whereas the reference ontology
was not. That is in-line with the IF-Map scenario we described in Section 4.
Furthermore, since local ontologies are maintained locally by each participat-
ing site, it is anticipated to face a variety of formalisms and use different tools
for ontology design, development, and deployment. IF-Map’s architecture (see
Section 2) however, allows for different formalisms to be used as input.

One of our case studies was to apply IF-Map to map AKT Reference

to Southampton’s and Edinburgh’s local ontologies, Soton and Edin. These
local ontologies are populated with a few thousand instances (ranging from 5k
to 18k) and a few hundreds of concepts. There are a few axioms defined, and
both have relations. AKT Reference is more compact, it has no instances and
approximately 65 concepts with 45 relations. There are a few axioms defined as
well. In Figure 6 we include two screenshots, one from Ontolingua-encoded AKT

Reference—in particular, the organisations sub-ontology—and the translated
version of this fragment in Prolog clauses.10 As we mentioned earlier (Section 2),

10 The reader should bear in mind that clauses in the Prolog version denote the typing
of the relations and not logical implications.

Fig. 6. A window with an Ontolingua fragment of AKT Reference overlapped by a
smaller window showing a partial translation of this in Prolog clauses.

our translation is a partial and customised for the IF-Map application. Therefore,
from the Ontolingua fragment shown in Figure 6 we only extract and transform
to Prolog clauses the class hierarchy (by regarding frames as classes) and the
relations along with their arities (which is used for type checking to bind appro-
priate tokens to types when using Prolog’s backward chaining inference engine).

In Figure 7 we include two screenshots, one from the Protégé-edited So-

ton—in particular, highlighting the class person and its template slots—and
the translated version of this fragment in Prolog clauses. As with the reference
ontology translation, we partially translate predefined fragments of the local
ontology like class hierarchy and relations along with arities.

In Figure 8 we include a screenshot of our Web accessible RDF results page
for some relations and concepts. In this page, we show a small fraction of the
results from mapping concepts and relations from AKT Reference to to their
counterparts in Soton. The concepts shown can be traced back to the previous
figures where the original format is shown. As we can see, apart from mapping
concepts, like AKT Reference’s document to Soton’s publication we also map
relations: AKT Reference’s hasappellation to Soton’s title. The arities of
these relations allow this sort of mapping, whereas in other ontologies this would

Fig. 7. A window with a Protégé fragment of Soton overlapped by a smaller window
showing a partial translation of this in Prolog clauses.

have been inappropriate, when for example title refers to title of a paper. These
mappings were generated automatically, and IF-Map initiated these with the
semantically-rich heuristics we described in 4.5.

The algorithms we have implemented so far are of exponential complexity in
the number of concepts, because they are based on a declarative Prolog spec-
ification of the mapping principle explained in in Section 4. Consequently, we
currently base the IF-Map method on an incremental construction of ontology
morphisms, in order to tackle large-scale ontologies: First, only certain manage-
able fragments of the ontologies are mapped, and next, these fixed maps are used
to guide the generation of larger fragments, in the manner explained in Section 4.
We are currently investigating heuristics for the automatic identification of such
fragments.

Fig. 8. Results of ontology mapping in Web accessible RDF format.

6 Related work

IF-Map, amid its well-defined purpose of ontology mapping and, extensionally,
merging, taps on a number of areas and uses techniques discussed in diverse
communities. Therefore, it is impossible to compile an exhaustive list of refer-
ences to related work, but we have deliberately expanded the scope of references
to cover as many representative works as possible; for a more in-depth survey on
ontology mapping, see [21]. At the same time though, we were careful to identify
works that are related somehow with IF-Map’s core characteristics: Use of formal
definitions of ontology mapping, use of information-flow theory, expressed in a
declarative and executable language in a domain and tool independent manner,

applied as a method and as a theory for ontology mapping, and being—under
circumstances—fully automatic.

Not all of the references we cite here meet these criteria; some provide features
that IF-Map does not support and others focus on a single criterion of the list
given above. Nevertheless, the diversity of works reported in this section demon-
strates the importance of the topic in a number of communities. This paper’s
scope, though, prevents us from getting into great detail when describing related
work hereinafter, but we give a flavour of the current landscape in ontology map-
ping research across different communities. Among the few formal approaches in
ontology mapping and merging is that of FCA-Merge [41]. It is based on Formal
Concept Analysis [14] and it is aimed, mainly, at merging ontologies. Its devel-
opers, Stumme and Maedche, incorporate natural language techniques in their
FCA-based method to derive a lattice of concepts. The lattice is then explored
manually by a knowledge engineer who will build the merged ontology with
semi-automatic guidance from FCA-Merge. In particular, FCA-Merge works as
follows: The input to the method are a set of documents—from which concepts
will be extracted—together with the ontologies that will be merged. These doc-
uments should be representative of the domain at question and be related to
the ontologies. They also have to cover all concepts from both ontologies as well
as separating them well enough. These strong assumptions have to be met in
order to obtain good results from the FCA-Merge. As this method relies heavily
on the availability of classified instances in ontologies to be merged, the authors
argue that this will not be the case in most ontologies so they opt to extract
instances from documents. In this respect, the first step of FCA-Merge could be
viewed as an ontology population mechanism. This initial step in FCA-Merge
could be skipped though, when there is a shared set of instances classified to the
concepts in both ontologies. Once the instances will be extracted,11 Stumme and
Maedche construct the concept lattice and from there provide semi-automatic
support for the knowledge engineer to derive the final merged ontology.

Formal Concept Analysis has also been used by the database community in
their federated databases domain. In particular, Schmitt and Saake employ For-
mal Concept Analysis techniques to assist database schema integration [37]. The
focus of their work is to merge different inheritance hierarchies by decomposing
overlapping class extensions into base extensions and use Formal Concept Anal-
ysis techniques to inform algorithms for integrating the databases schemata. In
the Scalable Knowledge Composition (SKC) project, Jannink et al. [19] presented
the use of a rule-based algebra for encapsulating and composing ontologies. On-
tologies are clustered in contexts, and the authors use a rule-based algebra to
define interfaces to link the extracted contexts with the original ontologies.

Noy and Musen have developed two systems for performing ontology merg-
ing and alignment in the Protégé-2000 ontology development environment [16]:
SMART [33] and its successor PROMPT [34]. These tools use linguistic similar-

11 We do not refer to natural language techniques and methods used in this process
by FCA-Merge developers, since they are peripheral to our interests in ontology
mapping.

ity matches between concepts for initiating the merging or alignment process and
then use the underlying ontological structures provided by the Protégé-2000 envi-
ronment (classes, slots, facets) to inform a set of heuristics for identifying further
matches between the ontologies. A similar tool has been developed by McGuin-
ness et al. for the Ontolingua ontology editor: Chimaera [29]. As in PROMPT,
this tool is interactive and the engineer is in charge of making decisions that will
affect the merging.

From the machine learning perspective we report the works of Lacher and
Groh [26] and Doan et al. [9] where their systems employ machine learning
algorithms in conjunction with similarity measures to yield prospective map-
pings between ontology concepts. Other works worth citing here are Chalup-
sky’s OntoMorph [6] translation system for symbolic knowledge, Kiryakov et
al.’s OntoMap portal [25] for mapping linguistic ontologies, the OBSERVER
system [30] by Mena et al. for information integration, Gangemi et al.’s [13]
ONIONS methodology for medical ontologies, Visser and Tamma’s heterogene-
ity categorisation [42], and the reports from Pinto et al. [35] and Noy and Hafner
in [32].

7 Conclusion

In this paper we have presented a novel method and a theory for ontology map-
ping. We formalised the notion of ontology, ontology morphism and ontology
mapping and linked them to the formal notions of local logic and logic info-
morphism stemming from IF theory. We then applied them in a mechanised
manner—IF-Map—to map diverse ontologies. The first results are promising for
the application of IF-Map to large-scale ontology mapping efforts and we con-
tinue researching fruitful extensions of it, such as ontology merging, reasoning
about ontology evolution, and inclusion of ontological axioms.

The automation of ontology mapping as provided by IF-Map provides auto-
mated support in the alignment of ontologies by automatically generating map-
pings between a reference and various local ontologies. For instance, for the
special case of data integration, this would correspond to automatic generation
of source descriptions, e.g. formalised as views over a mediated schema [18]. The
correspondence, though, is not exact, as views over a mediated schema could
be more expressive than IF-Maps current concept-to-concept and relation-to-
relation mapping.

In this sense it would be interesting to work on the integration of previous
approaches to semantic integration by the database community with recent ef-
forts carried out by the ontology community (see, e.g., [21]) in the context of
our approach to ontology mapping based on the Barwise-Seligman theory of
information flow, as it might further illuminate the long road lying ahead.

Acknowledgements

An earlier version of this paper was presented under the title “Information-Flow
based Ontology Mapping” at the First International Conference on Ontologies,

Databases and Applications of Semantics (ODBASE’02), Irvine CA, USA, Oc-
tober 2002. We are grateful to Karl Aberer for selecting an extended version of
that paper for this special volume, and we would like to thank the audience of
ODBASE’02 and the reviewers for their valuable comments.

This work is supported under the Advanced Knowledge Technologies (AKT)
Interdisciplinary Research Collaboration (IRC), which is sponsored by the UK
Engineering and Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Ed-
inburgh, Sheffield, Southampton and the Open University.

Marco Schorlemmer is also supported by a ‘Ramón y Cajal’ Fellowship from
the Spanish Ministry of Science and Technology.

References

1. M. Barr. The Chu construction. Theory and Applications of Categories, 2(2):17–35,
1996.

2. J. Barwise and J. Perry. Situations and Attitudes. MIT Press, 1983.
3. J. Barwise and J. Seligman. Information Flow: The Logic of Distributed Systems.

Cambridge University Press, 1997.
4. C. Batini, M. Lenxerini, and S. B. Navathe. A comparative analysis of method-

ologies for database schema integration. ACM Computing Surveys, 18(4):323–364,
1986.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

6. H. Chalupsky. OntoMorph: A translation system for symbolic knowledge. In 7th
International Conference on Principles of Knowledge Representation and Reason-
ing, Breckenridge, Colorado, USA, Apr. 2000.

7. F. Corrêa da Silva, W. Vasconcelos, D. Robertson, V. Brilhante, A. de Melo,
M. Finger, and J. Agust́ı. On the insufficiency of ontologies: Problems in knowl-
edge sharing and alternative solutions. Knowledge-Based Systems, 15(3):147–167,
2002.

8. K. Devlin. Logic and Information. Cambridge University Press, 1991.
9. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between on-

tologies on the Semantic Web. In 11th International World Wide Web Conference,
Honolulu, Hawaii, USA, May 2002.

10. J. Domingue. Tadzebao andWebOnto: Discussing, browsing, and editing ontologies
on the web. In 11th Workshop on Knowledge Acquisition, Modeling and Manage-
ment, Banff, Alberta, Canada, Apr. 1998.

11. F. Dretske. Knowledge and the Flow of Information. MIT Press, 1981.
12. A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server: a tool for collabo-

rative ontology construction. International Journal of Human-Computer Studies,
46(6):707–727, 1997.

13. A. Gangemi. Ontology integration: Experiences with medical terminologies. In
N. Guarino, editor, Formal Ontology in Information Systems, volume 46 of Fron-
tiers in Artificial Intelligence and Applications. IOS Press, 1998.

14. B. Ganter and R. Wille. Formal Concept Analysis. Springer, 1999.
15. M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format (KIF). Draft

proposed American National Standard, NCITS.T2/98-004, 1998.

16. W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen. Knowledge
modeling at the millennium (the design and evolution of Protégé-2000). In 12th
Workshop on Knowledge Acquisition, Modeling and Management, Banff, Alberta,
Canada, Oct. 1999.

17. V. Gupta. Chu Spaces: A Model of Concurrency. PhD thesis, Stanford University,
1994.

18. A. Halevy. Answering queries using views. The VLDB Journal, 10:270–294, 2001.

19. J. Jannink, S. Pichai, D. Verheijen, and G. Wiederhold. Encapsulation and compo-
sition of ontologies. In AAAI’98 Workshop on Information Integration, Madison,
Wisconsin, USA, July 1998.

20. Y. Kalfoglou. Deploying Ontologies in Software Design. PhD thesis, Division of
Informatics, The University of Edinburgh, June 2000.

21. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The sate of the art. Knowl-
edge Engineering Review, 18(2), 2003.

22. R. Kent. The information flow foundation for conceptual knowledge organiza-
tion. In 6th International Conference of the International Society for Knowledge
Organization, Toronto, Canada, July 2000.

23. R. Kent. A KIF formalization of the IFF category theory ontology. In IJCAI 2001
Workshop of the IEEE Standard Upper Ontology, Seattle, Washington, USA, 2001.

24. R. Kent. The IFF foundation for ontological knowledge organization. In Knowledge
Organization and Classification in International Information Retrieval, Cataloging
and Classification Quarterly. The Haworth Press Inc., 2003.

25. A. Kiryakov, K. Simov, and M. Dimitrov. OntoMap: Portal for upper-level on-
tologies. In Second International Conference on Formal Ontology in Information
Systems, Ogunquit, Maine, USA, Oct. 2001.

26. M. Lacher and G. Groh. Facilitating the exchange of explicit knowledge through
ontology mappings. In 14th International FLAIRS Conference, Key West, Florida,
USA, May 2001.

27. O. Lassila and R. Swick. Resource description framework (RDF) model and syn-
tax specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, Feb.
1999. W3C Recommendation.

28. B. McBride. Jena: Implementing the RDF model and syntax specification. In
2nd International Workshop on the Semantic Web (SemWeb’2001), volume 40 of
CEUR Workshop Proceedings, Hong Kong, China, May 2001.

29. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and
testing large ontologies. In 7th International Conference on Principles of Knowl-
edge Representation and Reasoning, Breckenridge, Colorado, USA, Apr. 2000.

30. E. Mena, V. Kashyap, A. Illarramendi, and A. Sheth. Domain specific ontologies
for semantic information brokering on the global information infrastructure. In
N. Guarino, editor, Formal Ontology in Information Systems, volume 46 of Fron-
tiers in Artificial Intelligence and Applications, pages 269–283. IOS Press, 1998.

31. E. Motta. Reusable Components for Knowledge Modelling: Case Studies in Para-
metric Design Problem Solving, volume 53 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 1999.

32. N. Noy and C. Hafner. The state of the art in ontology design: A survey and
comparative review. AI Magazine, 18(3):53–74, 1997.

33. N. Noy and M. Musen. SMART: Automated support for ontology merging and
alignment. In 12th Workshop on Knowledge Acquisition, Modeling and Manage-
ment, Banff, Alberta, Canada, Oct. 1999.

34. N. Noy and M. Musen. PROMPT: Algorithm and tool for automated ontology
merging and alignment. In 17th National Conference on Artificial Intelligence
(AAAI’00), Austin, Texas, USA, July 2000.

35. S. Pinto, A. Gómez-Pérez, and J. Martins. Some issues on ontology integration.
In IJCAI’99 Workshop on Ontologies and Problem-Solving Methods, volume 18 of
CEUR Workshop Proceedings, Stockholm, Sweden, Aug. 1999.

36. V. Pratt. The Stone gamut: A coordination of mathematics. In 10th Annual
Symposium on Logic in Computer Science, pages 444–454. IEEE Computer Society
Press, 1995.

37. I. Schmitt and G. Saake. Merging inheritance hierarchies for database integra-
tion. In 3rd IFCIS International Conference on Cooperative Information Systems
(CoopIS’98). IEEE Computer Society Press, 1998.

38. M. Schorlemmer. Duality in knowledge sharing. In 7th International Symposium
on Artificial Intelligence and Mathematics, Ft. Lauderdale, Florida, USA, 2002.

39. A. Sheth and J. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys, 22(3):183–
236, 1990.

40. J. Sowa. Knowledge Representation and Reasoning: Logical, Philosophical, and
Computational Foundations. Brooks/Cole, 2000.

41. G. Stumme and A. Maedche. FCA-Merge: Bottom-up merging of ontologies. In
17th International Joint Conference on Artificial Intelligence (IJCAI’01), Seattle,
Washington, USA, Aug. 2001.

42. P. Visser and V. Tamma. An exeprience with ontology-based agent clustering.
In IJCAI’99 Workshop on Ontologies and Problem-Solving Methods, volume 18 of
CEUR Workshop Proceedings, Stockholm, Sweden, Aug. 1999.

