
Conceptual Graph Matching for Semantic Search1

Jiwei Zhong, Haiping Zhu, Jianming Li and Yong Yu

1 This work is supported by IBM China Research Laboratory.

Department of Computer Science and Engineering,
Shanghai JiaoTong University,
Shanghai, 200030, P.R.China

{zjw035, zhp036, ljm038}@mail1.sjtu.edu.cn, yyu@mail.sjtu.edu.cn

Abstract. Semantic search becomes a research hotspot. The combined use of
linguistic ontologies and structured semantic matching is one of the promising
ways to improve both recall and precision. In this paper, we propose an
approach for semantic search by matching conceptual graphs. The detailed
definitions of semantic similarities between concepts, relations and conceptual
graphs are given. According to these definitions of semantic similarity, we
propose our conceptual graph matching algorithm that calculates the semantic
similarity. The computation complexity of this algorithm is constrained to be
polynomial. A prototype of our approach is currently under development with
IBM China Research Lab.

1. Introduction

Search engine techniques develop quickly in the past decade. However, the majority
of traditional search engine techniques, which are based on keyword matching and
link analysis [1], have inherent defects. Those engines can only retrieve documents
based on the containment of keywords or the document’s popularity instead of the
documents’ real contents. In recent years, semantic search has been brought to the
front as people realized that it is insufficient to search text only by keyword matching
without exploiting the hidden meaning. Thus, study of semantic search has been
carried out, such as [2], [3] and [4], etc. Objects involved in semantic search range
from (hyper)texts to multimedia descriptions. As shown in [3], the combined use of
linguistic ontologies and structured semantic matching can improve both recall and
precision. In this paper, we will propose an approach for semantic search by matching
Conceptual Graphs [5] that describe the documents’ contents. We will take garment
domain to demonstrate our approach, though our method is domain independent and
the system can be trained for various domains.

In section 1.1, we introduce the characteristics of domain specific sentences. In
section 2, the whole approach is outlined by giving an overview. The exact definition
of the similarity in our method and the description of our semantic matching algorithm
in detail are given in section 3. In section 4, we give an evaluation of our algorithm.
Finally, we compare our algorithm with related work in section 5, and draw the
conclusion.

1.1 Domain Characteristics

The set of sentences that occur only in one given application domain is called domain
specific sentences. We assume that domain specific sentences can be characterized as
follows [6]:

1. Vocabulary set is limited.
2. Word usage has patterns.
3. Semantic ambiguities are rare.
4. Terms and jargon of the domain appear frequently.

Accordingly the following assumptions could be derived:
1. Sentences that have similar meanings often have similar syntactic structures and

use synonyms.
2. CGs generated from sentences with similar meanings will have similar structures.
3. It is relatively easy to build a domain ontology that includes terms or jargon used

in a specified domain.
4. Relations used in a specific domain are limited.
Due to assumption 1 and 2, it is natural to consider that an approach based on

graph matching technique will work well in deciding the similarity between the
meanings of two sentences on thematic similarity level [7].

In addition, before using CG, concept hierarchy and relation hierarchy will be
constructed. In our project, WordNet [8] is employed as the main concept hierarchy,
and domain ontology hierarchy will be built by hand so as to extend the WordNet to
specific domain. This work is feasible considering assumption 3. At the same time, we
will manually construct a limited relation hierarchy based on Sowa’s thematic roles
theory [9]. Though it may be simple and limited, it will work because of assumption 4.

2. Architecture Overview

The whole architecture of our approach is shown in figure 1. Before performing the
semantic matching, we download and parse web pages from online garment shops.
Descriptions for each garment in web pages can be extracted by hand or by other
automating technique, such as wrapper induction [10]. After that, each description is
converted to a CG using ALPHA system (the CG generator in figure 1). Last year, we
proposed a machine learning based approach that can be trained for different domains
and requires almost no manual rules to automatically generate CGs from natural
language sentences [6]. ALPHA system is the prototype of this approach which had
been implemented and the original results gained from it demonstrated the feasibility
of the approach [11]. This makes our current work well-grounded.

After the conversion, those CGs will be stored into our resource CG repository. To
organize and manage the repository efficiently, we introduce the concept: ‘entry’ of
graph. Since a CG depicts only one garment in general, it is bound to our concept
hierarchy by the article it describes. The concept appearing in the CG on behalf of
each garment will be recorded as the ‘entry’ of graph (i.e. the ‘entry’ for further
semantic graph matching). For example, we will convert the online description “a

cotton shirt with a pocket” to the CG as figure 2. The core concept ‘shirt’2 will be
designated as the ‘entry’ of this graph. Other concepts like this include dress, pants,
etc. The CGs in the repository will be indexed by their entries.

When the enquiry sentence is entered, it is translated into a query CG. Here, we

also need to get entry of the query graph, i.e. the exact object that user is interested in,
which will help us to retrieve the repository and get the proper candidates efficiently.
Then how will we know the entry of the query graph? Within the UI (User Interface),
the user is obliged to specify the ‘central word’ from his/her query. Afterwards the
‘central word’ is mapped to the ‘entry’ of query graph by ALPHA and sent to CG
matching handler module with the query graph.

Since hyponymy of senses in WordNet could be regarded as relationship of
superclass and subclass, index on CGs by WordNet makes it possible to search all
categories within the user’s querying object. For instance, supposing ‘jersey’ is
subsumed by ‘shirt’ according to WordNet, when a user inquires about ‘shirt’,

2 The shirt is not in its word form but the concept ID in the domain ontology. We will use the

same convention in the following examples.

Resource
CG

Web
Pages

Query CG

Results

CG Matching
Handler

Query

Clawer and Pre-processor

CG Generator

UI

Concept
Hierarchy

Relation
Hierarchy Clothes

Description

 CG
Repository

Fig. 1. Overview of the whole architecture of search engine

Candidate
Resource CG

shirtmtrl partcotton pocket

Fig. 2. CG converted from ‘a cotton shirt with a pocket’

resource CG about ‘jersey’ will also be considered while matching the query although
they are different in their word form.

From the view of CG matching handler module, the input consists of one query
graph and one candidate graph fetched from the resource CG repository, while the
output is the ranking of the candidates returned to UI. The answers out of those
candidates will be returned to the user orderly. After surveying several related systems,
e.g. OntoSeek, SCORE, etc., we will, in the next section, present our definition of
similarity between the query graph and each candidate resource graph with the help of
domain ontologies.

3. Semantic Search by Matching Conceptual Graphs

In this section, we will introduce our approach that performs the semantic search by
matching CGs. We will define the similarity between CGs and give the
implementation of our method.

3.1 Semantic Similarity

The measure of semantic similarity between a query CG and a resource CG is the key
of our approach. Previous work in [7] defined three kinds of similarity, i.e. surface
similarity, structure similarity and thematic similarity. Surface similarity or structure
similarity is the similarity based on the matching of particular objects or relations,
while thematic similarity depends on the presence of particular patterns of concepts
and relations. We will focus attention on thematic similarity.

Since CG consists of concepts and relations, we will define the similarity between
CGs based on the similarity between concepts and the similarity between relations.

3.1.1 Similarity between Concepts
In our method, the similarity between two concepts is obtained by the distance
between them. Given two concepts c1 and c2, we will first calculate the distance
(denoted as dc(c1, c2)). The similarity between two concepts (simc(c1, c2)) is defined as
simc(c1, c2)=1-dc(c1, c2).

The distance between two concepts is calculated by their respective positions in the
concept hierarchy. Some previous work [5], [14] and [15] have studied the issue. We
borrow their original thought and make some modifications to reflect our intention. In
our method, every node in concept hierarchy has a value (we called it ‘milestone’),
which is obtained from the formula below:

Where k is a predefined factor larger than 1 that indicates the rate at which the

value decreases along the hierarchy (currently, we set k equals 2), and l(n) is the depth
of the node n in hierarchy (conservatively we choose the longest path from the node to
the root to measure it). For the root, l(root)=0.

)(
2/1)(nlk

nmilestone =

For any two concepts in the hierarchy, they have a closest common parent. The
distance between two concepts will be determined by the milestones of them and their
closest common parent as follows:

dc(c1, c2)= dc(c1, ccp)+ dc(c2, ccp) ccp is the closest common parent of c1,c2

dc(c, ccp)=milestone(ccp)-milestone(c)

This model stems from our thought that the differences between upper level
concepts are bigger than those between lower level concepts. The model also
supports our intent that the distance between ‘brothers’ should be longer than that
between ‘father’ and ‘son’.

In the formula of the milestone’s calculation, the numerator is set to 1/2 so that the
distance between the two deepest nodes taking the root as their closest common parent
will be 1. That is to say, the distance between other node pairs will be within 1.

Here’s an example. Suppose that we are going to find the distance between ‘jersey’
and ‘pullover’. Consulting WordNet, we get the ontology segment concerning these
two concepts shown in figure 3.

Since the closest common parent of ‘jersey’ and ‘pullover’ is ‘garment’, the

distance between these two concepts can be calculated as follows (the fractions in the
diagram show the ‘milestones’ of certain ontology levels):

dc(jersey, pullover)=dc(jersey, garment)+dc(pullover, garment)
=(1/128-1/512)+(1/128-1/512) =0.01171875

There is an exception that if the concept of a resource CG is a subclass of the
concept of a query CG, the distance will be set to 0, i.e. the similarity between these
two concepts will be 1. We think it is reasonable because the subclass is always a kind
of superclass.

3.1.2 Similarity between Relations
Likewise, we also define the similarity between two relations as simr(r1, r2)=1-dr(r1, r2)
and the distance between two relations is calculated by their respective positions in the
relation hierarchy too. The only difference is that the relation hierarchy is constructed
manually ourselves.

By adopting the similar method defined above to calculate the distance between
two relations, we can compute the distance between two arbitrary relations
theoretically. However, in practice, we think it worthless to assign a value to two
arbitrary relations from query’s perspective especially in a specific domain. Moreover

shirt sweater

jersey pullover

trousers …

1/128

1/256

1/512

garment

Fig. 3. Ontology segment concerning ‘jersey’ and ‘pullover’

it will increase the computation complexity of our algorithm. So we simply define the
similarity between two relations Qr (the relation in query CG) and Rr (the relation in
resource CG) as follows:

That is to say, only when the relation in query CG is the supertype of the relation in

resource CG, the similarity between these two relations is 1 and others will lead to 0.
This definition is consistent with our original definition.

3.1.3 Similarity between CGs
Based on the similarity definition for concepts and relations, we can calculate the
similarity between two CGs in the process of matching them. As shown in section 2,
every resource CG has an entry of graph and the users are required to set the central
word of query sentence which will then be mapped to the entry of query CG. These
entries of CGs indicate the key concepts which the CGs describe and will be the
entries of our matching algorithm. The matching process will begin with the entry and
expand along the relations affiliated to it. Each relation affiliated to the entry induces a
subgraph. We think the similarity between two CGs consists of the similarity between
the two entries and the similarity between each subgraph pair. To reflect user’s
preferences on the importance of different similarity values, i.e. reflect which parts are
more important and which are less important from user’s view, we introduce the
‘weight’ on every ‘entry’ of graph and relations associated with it. More important
part will have bigger weight value. Then where are these weights from? Within the UI,
user can specify the preference information and the information will then be
interpreted to the weights. The concept/relation similarity will be justified by the
‘weight’ in the CG matching process. However, this process is not mandatory, if user
doesn’t do it, the default weights value will be set and every part will be considered
coordinate. Recursively, the similarity between any two subgraphs is also determined
by the entries and their subgraphs according to their respective weights. The concept
in the subgraph associated with the relation which induces the subgraph will serve as
the entry of the subgraph. So the definition is recursive. The formula of similarity
computation will be given as follows:

Here, Qc and Rc are the entries of query graph and resource graph respectively.

),(RQ ccSoG represents the similarity between two CGs indicated by their entries.

Qr subsumes Rr

others

=−=
,0

,1
),(1),(RQrRQr rrdrrsim

(,) (,) (,)

max{ (,) (,) [(,)]}
j j

Q R

Q R Q c Q R

r rj j
Q r Q R Q R

j

SoG c c w c c sim c c

w c j sim r r SoG c c

= ⋅ +

⋅ ⋅∑
(,) (,) 1Q Q

j
w c c w c j+ =∑ , for each subgraph with Qc as its entry

for every
combination

The symbol j
Qr (j

Rr) denotes the jth relation which associated with the entry Qc (Rc)

of the query (resource) CG.
j

Qr
Qc (

j
Rr

Rc) is the entry of the subgraph which is induced

by j
Qr (j

Rr). The meaning of csim and rsim are the same as the definition above.

(,)Qw c c and (,)Qw c j represent the weights of the entry and the jth relation
association with the entry respectively. To ensure the similarity between two graphs
will not exceed 1, we normalize these weights. Moreover, for every graph (no matter
the query CG or the resource CG), each relation associated with the entry will induce
a subgraph and in theory a subgraph in query CG will be likely to mate any subgraph
in resource CG. There exist many combinations among these subgraphs and we must
find the best match from these candidate matches. So we choose the maximum
similarity from different combinations as our result in every recursive process.

Look at the following example in figure 4. Suppose the left graph is a user query
CG, and the right is a resource CG in our resource repository. Garment and shirt are
entries for these two graphs respectively. Every relation induces a subgraph. For
instance, part in the left induces a single node subgraph. Pouch will play the entry role
when matching the subgraph. Before we can determine the best match of the two
graphs, the similarity between each subgraph induced from garment in query CG and
each from shirt in resource CG will be calculated respectively. Here what we need to
do is to compute the similarity between concepts pouch, sleeve, and pocket, i.e.
simc(pouch, pocket), simc(pouch, sleeve), simc(sleeve, pocket), and simc(sleeve,
sleeve). As there are only two sorts of matches, the best is easily found, which is
shown in figure 4 by dash lines.

3.2 Algorithm Implementation

Given a user query, the following algorithm will be performed to calculate the
similarity between a resource CG and a query CG. One thing to remember is that the
central word should be designated explicitly by user to indicate what s/he wants which
then will be mapped to the entry of query CG.

part

shirt

pocket sleeve

part part

garment

pouch sleeve

part

Fig. 4. The similarity between a query CG and a resource CG

1 get user query and the central word set by user.
2 parse the query and generate query CG using ALPHA.
3 get the entry of query graph E and locate it in WordNet
4 for (each resource CG indexed by E and its sub-concept in the

domain ontology)
5 { // the beginning of the recursive process
6 calculate the similarity between entry pair
7 For (each relation directly associated with entry in query CG)
8 {
9 For (each relation directly associated with entry in

resource CG)
10 {
11 calculate the similarity between these two relations and

calculate the similarity between two subgraphs induced by
the two relations recursively(line 5 to 15). Each time,
The concept in current subgraph associated with the
relation which induces the subgraph will serve as the
entry of the subgraph.

12 }
13 }
14 find the best match from the above combinations of subgraphs

using Bellman-Ford algorithm and sum up the similarity between
entry pair and the similarity between each subgraph pair
according to their respective weights as the similarity between
the resource CG to the query CG

15 } // the end of the recursive process
16 Rank the results and return answers back to user in proper order

Algorithm 1. Conceptual graph matching algorithm

Some details are explained as follows:
I) Every CG (query or resource) has an entry and these entries will be the entry of

our matching process. We can theoretically calculate the similarity between two
arbitrary CGs. But we think it is worthless in practice since the user would know
exactly what s/he is interested in. So we only concern those resource CGs whose
entries are the subclass of the entry of query CG.

II) Our algorithm will calculate the similarity between subgraphs recursively. But
when the similarity between two relations equals 0, according to the formula defined
in section 3.1.3, the calculation of two subgraphs extended by these relations is
worthless. We will ignore these computations so as to make our algorithm more
efficient.

III) Each relation associated with the entry induces a subgraph; these subgraphs
will produce a lot of combinations. How to find the best match from these
combinations is the linchpin of the complexity of our algorithm. We use the Bellman-
Ford [12] algorithm to solve it. The complexity of the algorithm will be given and
briefly illustrated in section 4.

IV) The query CG is dominant in our algorithm. The matching process will stop
when all the relations and concepts in query CG have been checked. Relations in
query graph that cannot find proper mate in resource graph will be calculated as if
they are mapped to default relations in resource graph for we consider it as a kind of

omission of default values. This rule is especially fit for those relations that represent
the inherent attributes such as color, size and so on.

WordNet provides API to access senses and their hyponymy senses. After the entry
is located, the above rules are activated to keep the consistency, and a recursive
process is invoked to calculate the similarity between each subgraph pair and
determine which is the best matching. The results will be ranked according to their
similarity and displayed in an HTML page.

Here is an example to illustrate our algorithm.
Suppose the user enters the query sentence “a cotton garment with a pouch and a

red collar” and sets the word ‘garment’ as the central word. The query sentence will
then be converted to the CG as (a) in figure 5 and the entry of this graph is shown as
the grey node.

We locate the entry in the WordNet and find the appropriate resource CGs from
our repository. Suppose one candidate resource CG is as (b) in figure 5 (the grey node
represents the entry of graph; ‘mtrl’ is the abbr. for ‘Material’, while ‘colr’ for ‘color’).

In the following, we will calculate the similarity between the two graphs.
Firstly, we calculate the similarity between two entries. Since shirt is a subclass of

garment, according to our definition, the similarity between two entries simc(garment,
shirt)=1.

There are three relations associated with the entry in both the query CG and the
resource CG. These relations will induce three subgraphs respectively and these
subgraphs then produce nine subgraph pairs. We will calculate the similarity between
these nine subgraph pairs. Before the calculation, we first give the values of the
similarities between some concept pairs and relation pairs which will be used in the
following calculations.

simc(pouch, pocket) =1;(since pocket is the subclass of pouch)
simc(pouch, collar) =0.7734;
simc(collar, pocket) =0.7696;
simr(mtrl, part) =0;
simr(part, mtrl) =0;
Besides, when the two relations or concepts are the same, the similarity will be 1

obviously.

mtrl

cotton

red

colr

part

garment

pouch collar

part mtrl

cotton

red

colr

part

shirt

pocket collar

part

(a) (b)

Fig 5. A query CG (a) and a resource CG (b)

simr(R, R)=1;
simc(C, C)=1;
Now, we begin to calculate the similarity between the subgraph pair as follows:
(In this example, we think these relations are coordinate and set the weights on all

these three relations to 0.2. Then the weight on entry will be 0.4.)3
Consider the first relation (mtrl) in the query CG (which induces a subgraph with
entry ‘cotton’)
 Consider the first relation (mtrl) in the resource CG (which induces a subgraph

with entry ‘cotton’):
 Firstly, calculate the similarity between these two relations: simr(mtrl, mtrl)=1;

 Then, calculate the similarity between two subgraphs induced by these two
relations.

 Here, the two subgraphs are both ordinary and only contain one node. So the
similarity between two subgraphs equals the similarity between two concepts.
SoG(cotton, cotton)= simc(cotton, cotton)=1

 Consider the second relation (part I) in the resource CG (which induces a
subgraph with entry ‘pocket’):

 Firstly, calculate the similarity between these two relations: simr(mtrl, part)=0;
 Then, calculate the similarity between two subgraphs induced by these two

relations.
Here, since the similarity between two relations is 0, according to the formula
defined in section 3.1.3, the calculation of the two subgraphs is worthless and
we will ignore it.

 Consider the third relation (part II) in the resource CG (which induces a
subgraph with entry ‘collar’):

 Firstly, calculate the similarity between these two relations: simr(mtrl, part)=0;
 Then, calculate the similarity between two subgraphs induced by these two

relations.
Here, we will ignore it because of the same reason as above.

Now, we gained three results from different pairs:
relation pair sim. of relations sim. of subgraphs weight result
mtrl-mtrl 1 1 0.2 0.2
mtrl-part I 0 / 0.2 0
mtrl-part II 0 / 0.2 0

Similarly, after considering the second relation (part I) in query CG, we can get the
results as follows:

relation pair sim. of relations sim. of subgraphs weight result
part I-mtrl 0 / 0.2 0
part I-part I 1 1 0.2 0.2
part I-part II 1 0.7734 0.2 0.1547

Take notice of the relation pair part I-part I, the first part relation in query CG
induces an ordinary subgraph which only contains one node ‘pouch’. Though the first
part relation in resource CG induces a subgraph which is not ordinary and will induce
another subgraph further, the recursive process will not be invoked continuously
because the query CG is dominant in our algorithm. So the similarity between these

3 Here and the following example, the weights are all arbitrary and just an example to simplify

the computation. In practice, weights will be set according to user’s preferences.

two subgraphs equals the similarity between two concepts too. SoG(pouch, pocket)=
simc(pouch, pocket)=1.

After processing the last relation (part II) in the query CG, the rest results will be
gained.

relation pair sim. of relations sim. of subgraphs weight result
 part II-mtrl 0 / 0.2 0
 part II-part I 1 0.8618 0.2 0.1724
 part II-part II 1 0.9969 0.2 0.1994
Notice that in the relation pair part II-part I, each subgraph in query and resource

CG induced by these two relations is not ordinary and will induce subgraph further. In
order to calculate the similarity between these two subgraphs the recursive process
will be called. The work in the recursive process is similar to what we are describing.
Moreover, in each graph, only one subgraph can be induced further, which makes the
best match obviously. So we will not discuss the recursive process in detail again and
only give the calculation here. The calculation process is as follows (in this recursive
process, we set the weigh on the entry to 0.6, and the weight on relation ‘colr’ to 0.4):

SoG(collar, pocket)=0.6* simc(collar, pocket)+0.4* simr(colr, colr)* simc(red, red)
 =0.6*0.7696+0.4*1*1=0.8618
As regards the relation pair part II-part II, what we need to indicate is that in the

subgraph induced by the second ‘part’ relation in query CG, there exists another
subgraph which can be induced by the ‘colr’ relation. But this subgraph can’t find the
proper mate in the corresponding subgraph induced by the second ‘part’ relation in
resource CG to calculate. It seems that some information is missing in the resource
CG. However, we don’t simply handle it as mismatch. Since ‘colr’ represents the
inherent attribute of any object in our domain, we think every collar will have this
attribute. If in resource CG it isn’t described explicitly, we will add a ‘clor’ relation
automatically in program and set the concept ‘color’ (superclass of all concrete color
such as red, blue etc.) as a default value for this attribute. Then we can calculate the
similarity between these two subgraphs as alike as above (here, simc(red,
color)=0.9922).

SoG(collar, collar)=0.6* simc(collar, collar)+0.4* simr(colr, colr)* simc(red, color)
 =0.6*1+0.4*1*0.9922=0.9969

This process will be fit for other relations which represent the inherent attributes such
as material, size and so on.

Up to now, we have obtained all similarities of the nine different subgraph pairs.
What we need to do next is to choose the best match from the six different mate
combinations. Here, Bellman-Ford algorithm will be employed to solve this problem.
In this example, the best match is that mtrl-mtrl, part I-part I and part II-part II. This
mate combination makes the similarity larger than any other combinations.

Finally, after finding the best match, we calculate the similarity between two graphs
according to our formula. In this example, the similarity will be calculated as follows:

SoG(garment, shirt)=0.4* 1+0.2+0.2+0.1994=0.9994.
Now, we have processed one candidate CG completely. The rest of candidate

graphs will be processed analogously. Eventually, the resource graphs will be ranked
by their similarity and returned to user in descending order.

Currently a system implementing our method is under development with IBM
China Research Lab.

4. Algorithm Evaluation

When applying graph matching algorithm, the greatest worry comes about the
computation complexity, since it is well known that Maximum Subgraph Matching is
a NP-complete problem. Fortunately, it can be expected in our algorithm that the
computation complexity will be constrained to polynomial.

Before discussing the complexity of the algorithm, we firstly consider the effect
caused by cycles in graphs to our algorithm. Since the algorithm is recursive, the cycle
in graph will lead to an unending recursion and will be fatal to our algorithm. So we
must eliminate the cycles in graphs before we match them. We can handle it simply by
duplicating the concept in cycles. Surely, this will increase the computation
complexity, especially when the cycle is very complex. Fortunately, benefiting from
the domain specific characters, cycles in graphs are very rare especially in commodity
domain. So we ignore it here.

In the following, we will discuss the complexity of our algorithm. Since cycles in
graphs are very rare and the cycles can be eliminated simply, we will only concern the
tree structure. Without losing generality, we can suppose that the query graph and the
resource graph contain n arcs each and are both l-branch trees of i height, so there are
more than li relations. We use C(i) to denote the time complexity of matching two
trees both of i height. As shown in the algorithm, we will calculate the similarity
between the two entries firstly (algorithm 1, line 6). We use a constant c to represent
the time spent in calculating concept similarity. After this step, the time complexity is
c; then we need to calculate the similarity between each subgraph pair. Since each
entry will induce l subgraphs (line 7 and 9), we need l2 times recursive invocations.
These subgraphs are all l-branch trees of i-1 height, so in every invocation, the time
complexity is C(i-1) (line 11). Here we ignore the time to calculate similarity between
relations. After these two loops, the time complexity will be c+l2*C(i-1). Once we
determine the similarity between each subgraph pair, we should find out the best
match from different mate combinations (line 14). There exists l! combinations in
these l2 subgraph pairs, so how to handle it efficiently is important. We translate the
issue into a maximum flow problem and execute Bellman-Ford algorithm l times to
solve it4, whose computation complexity is l3, and the cumulative complexity is l4. So
the complexity can be described as follows:

From the formula, we can see that C(i) is about l2i+2. Generally, when l is not very

small, the number of arcs n will approximate li, so the complexity will be n2l2. If l<<n,
the complexity will be O(n2). For the worst case, suppose there is only 1 layer in the
query graph, i.e. l=n, the complexity is O(n4).

Since the algorithm combines syntactic and semantic context information in the
whole process, the advantages over traditional keyword match technique can easily be
seen. For example, a description is about ‘soft collar shirt’ and another is about ‘soft
shirt with straight collar’. They are both selected by keyword search when using ‘soft

4 In fact, before every invocation of the B-F algorithm, some additional work will be done. We

will not discuss them in details for brevity.

() 2 41 ()C i l C i l c+ = + +

()0C c=

i =0,1,2,…

collar shirt’ although ‘soft’ modifies different parts in the two sentences. While in our
method, the former will be more similar to user’s query through analyzing the object
which ‘soft’ modifies. We believe that this will improve the precision. For another
case, ‘slim waistband’ and ‘narrow waistband’ can be both used to depict a same kind
of skirt. Some simple keyword search methods can’t pick them out and some other
keyword search methods that use improved techniques (such as cluster, etc) will pick
them out without any other information. However, in our approach, we can not only
pick them out, but also calculate the similarity between query CG and resource CG
according to our ontologies and indicate the better, which is beyond the ability of
traditional keyword search methods. This will improve the recall of the search.

What is likely to be suspected is that our system requires users to give the central
word of graph in their queries. A query like “find a red thing” will lead to
unpredictable results. In practice, however, it is reasonable to ask the user to specify
the entry since s/he would know exactly what s/he is interested in. Moreover, some
simple techniques, such as the ‘shallow parsing’ [13] could help to find out the
implied ‘headword’. This is beyond our discussion and will be omitted here.

Since graph matching cannot do any inference, some deeper information will not be
available, which limits the utility of our approach.

5. Related work

Semantic matching has been raised for years to improve both recall and precision of
information retrieval. SCORE[4] finds first the most similar entities and then observe
the correspondence of involved relationship. However, with this kind of simplification,
matching on nodes is separate without the organization of subgraphs. In contrary, we
try to retain subgraph structure in our matching procedure with as less cost as possible.
OntoSeek [3] defines the match on isomorphism between query graph and a subgraph
of resource graph where the labels of resource graph should be subsumed by the
corresponding ones of query graph. The strict definition of match makes their system
can’t support partial matching. The assumption that user would encode the resource
descriptions by hand also limits its popularization. Different from it, our method not
only supports the partial matching but also introduces the weight to reflect user’s
preferences, which makes our method more flexible.

Some previous work have discussed the issue of semantic distance, such as [5] [14]
and [15]. The basic thought is to define the distance between two concepts as the
number of arcs in the shortest path between two concepts in the concept hierarchy
which does not pass through the absurd type. [14] modified the definition and defined
the distance as the sum of the distances from each concept to the least concept which
subsumes the two given concepts. We adopt their original thought and make some
modifications to make it suitable to our work.

The measurement of concept similarity was also studied before. [7] builds their
similarity definition on the information interests shared by different concepts, while
[16] defines the similarity between two concepts as the information content (entropy)
of their closest common parent, and besides take the density in different parts of the
ontology into account. The measuring of concept similarity in our approach is

different from them and is simpler. Of course, our approach is far from perfect. It
needs further study based on collected experiment data in the future.

Reference

1 L.Page, S.Brin, R.Motwani, and T.Winograd.: The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford University, 1998. Available at
http://www-db.stanford.edu/~backrub/pageranksub.ps

2 Lum et.al.: An architecture for a multimedia DBMS supporting content search. In the
Proceedings of International Conference on Computing and Information (ICCI'90),
LNCS Vol.468, Springer-Verlag, 1990.

3 N. Guarino, C. Masolo, and G. Vetere.: OntoSeek: Content-Based Access to the Web.
IEEE Intelligent Systems, 14(3), pp.70--80.

4 Y. A. Aslandogan, C. Thier, C. T. Yu, C. Liu, and K. R. Nair.: Design, implementation
and evaluation of SCORE (a System for COntent based REtrieval of pictures). In
Eleventh International Conference on Data Engineering, pages 280--287, Taipei,
Taiwan, March 1995

5 J. F. Sowa.: Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley. 1984.

6 Lei Zhang and Yong Yu.: Learning to Generate CGs from Domain Specific Sentences.
In proceeding of the 9th International Conference on Conceptual Structures,
(ICCS2001), LNAI Vol.2120, Springer-Verlag, 2001.

7 Jonathan Poole and J. A. Campbell.: A Novel Algorithm for Matching Conceptual and
Related Graphs. In G. Ellis et al eds, Conceptual Structures: Applications,
Implementation and Theory, pp. 293--307, Santa Cruz, CA, USA. Springer-Verlag,
LNAI 954, 1995.

8 George A.Miller.: WordNet: An On-line Lexical Database. In the International Journal
of Lexicography, Vol.3, No.4, 1990.

9 John F. Sowa.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 1999.

10 N. Kushmerick, Daniel S. Weld and Robert B. Doorenbos.: Wrapper Induction for
Information Extraction. Intl. Joint Conference on Artificial Intelligence pp.729--737

11 Jianming Li, Lei Zhang and Yong Yu.: Learning to Generate Semantic Annotation for
Domain Specific Sentences. In the Workshop on Knowledge Markup and Semantic
Annotation, the First International Conference on Knowledge Capture (K-CAP 2001),
Victoria B.C., Canada, Oct.2001.

12 T.H.Cormen, C.E.Leiserson and R.L.Rivest.: Introduction to Algorithms. The MIT
Press, 1994.

13 W. Daelemans, S. Buchholz, and J. Veenstra.: Memory-Based Shallow Parsing. In
Proceedings of EMNLP/VLC-99, pages 239-246, University of Maryland, USA, June
1999

14 Norman Foo, B. Garner, E. Tsui and A. Rao.: Semantic Distance in Conceptual
Graphs. In J. Nagle and T. Nagle, editors, Fourth Annual Workshop on Conceptual
Structures, 1989

15 A. Ralescu and A. Fadlalla.: The issue of semantic distance in knowledge
representation with conceptual graphs. In Proceedings of Fifth Annual Workshop on
Conceptual Structures, pages 141--142, 1990.

16 R. Richardson, A. F. Smeaton and J. Murphy.: Using WordNet as a Knowledge Base
for Measuring Semantic Similarity between Words. In the Proceedings of AICS
Conference, Trinity College, Dublin, Ireland, September 1994.

