
OntoMap: Portal for Upper-Level
Ontologies

Atanas Kiryakov
OntoText Lab., Sirma AI Ltd.,
Hr. Botev 38A, 1000 Sofia, Bulgaria, naso@sirma.bg
and
Kiril Iv. Simov
Linguistic Modelling Laboratory, Bulgarian Academy of Sciences,
Acad. G. Bontchev Str. 25A, 1113 Sofia, Bulgaria, kivs@bgcict.acad.bg
and
Marin Dimitrov
OntoText Lab., Sirma AI Ltd.,
Hr. Botev 38A, 1000 Sofia, Bulgaria, marin@sirma.bg

Abstract: Currently the evaluation of feasibility of general-purpose ontologies and upper-
level models is expensive mostly because of technical problems such as different representation
formalisms and terminologies used. Additionally, there are no formal mappings between the
upper-level ontologies that could ease any kind of studies and comparisons. We present the
OntoMap Project (http://www.OntoMap.org), a project with the pragmatic goal to facilitate
the access, understanding, and reuse of such resources. A semantic framework on conceptual
level is implemented that is small and easy enough to be learned on-the-fly. We tried to
design the framework so that it captures most of the semantics usually encoded in upper-
level models. Technically, OntoMap is a web-site providing access to several upper-level
ontologies and manual mapping between them.

Categories & Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

Keywords: knowledge representation, mapping, ontology, semantic web

1. Introduction
Currently the evaluation of feasibility of general-purpose ontologies and upper-
level models is pretty expensive mostly because of technical problems such as
different representation formalisms and terminologies used. Additionally, there
are no formal mappings between the upper-level ontologies that could ease any
kind of studies and comparisons. As a result, the upper-level models are not
widely used. In this paper we present a semantic framework on conceptual level

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FOIS ’01, October 17-19, 2001, Ogunquit, Maine, USA.
Copyright 2001 ACM 1-58113-377-4/01/0010...$5.00.

with the pragmatic goal to facilitate an easy access, understanding, and reuse of
such resources. We tried to design the framework so that it captures most of the
semantics usually encoded in upper-level models. The guideline was that the
ability to easily evaluate, for example, 80% of their value will be good motivation
for the developers of domain-specific ontologies, database schemas and other
semantic models to use them as a basis. Technically OntoMap is a web-site
(http://www.OntoMap.org) that provides access to upper-level ontologies and
manual mappings between them. Currently it supports online browsing as
well as export in DAML+OIL. The next step will be to provide the available
resources in various other formats. In this way OntoMap will become part of the
semantic web, i.e. machine-understandable rather than just human-readable.

The structure of the paper is as follows: first we present an introduction to
the upper-level ontologies, knowledge representation languages and primitives.
Section 3 describes the primitives used in the OntoMap project - the OntoMapO
ontology. Section 4 focuses on the OntoMapO methodology for mapping con-
cepts between ontologies. More technically section 5 discusses initial set of
ontologies to be hosted and the mappings between them, the formats in which
OntoMap will provide all the ontologies and mappings, and also the possible
services. The next section demonstrates the OntoMap usability with a sample
snapshot. Finally section 7 concludes the paper.

2. Upper-Level Ontologies
Upper-level ontologies capture mostly concepts that are basic for the human
understanding of the world. They are ”grounded” in (supported by, wired to)
the common sense that makes it difficult to formalize a strict definition for them.
They represent prototypical knowledge using mainly taxonomic relations.

2.1 Domain-Specific vs. Upper-Level Ontologies

This division seems to be a question of goal and scope of the developers of
the ontology rather than a representational or management problem. However,
there exists a significant real difference between the two types of ontologies.
The domain-specific ontologies that are trying to capture, for example, a mar-
ket segment or certain scientific area typically consist of well-defined concepts.
For example, in the natural sciences (Mathematics, Physics, Chemistry, Biol-
ogy, Medicine) the knowledge is easy to formalize because it is more or less
systematic — it could be expressed using well-defined scientific terms. In such
cases, the objects in the universe of discourse are either purely abstract or they
are some idealized/simplified models of the real phenomena in the world.

2.2 Lexical Knowledge Bases

The so-called lexical knowledge bases (LKB, such as WordNet) are lexicons,
thesauri, or dictionaries that attempt to formalize the lexical semantics — the
meanings of the words in one or more natural languages. Similar to the upper-
level concepts, the meanings of the words are grounded in the common under-
standing of huge populations — there are no formal definitions, the words can
bear a number of different meanings often based on associations, typical uses,

collocations, and prototypical knowledge. Going further, the meanings of many
words are just primitive concepts. Some upper-level ontologies were developed
on the basis of a LKB — such an example is the SENSUS ontology ([Knight
and Luk 1994]). Other upper-level ontologies were developed in order to give
formal semantics to a LKB — such an example is the EuroWordNet Top Ontol-
ogy, [Vossen ed. 1999]. This is the reason to have a number of LKB semantic
resources included in the set of ontologies to be hosted in OntoMap.

2.3 Philosophical diversity

The existence of several upper-level ontologies that disagree on the most basic
concepts about the entities in the world demonstrates a significant philosophical
diversity. The practical goals of the OntoMap project seems to require clarifica-
tion of these basic discrepancies. Which properties of the entities in the world
are the most basic ones? On which level of generality the differences disappear
if they disappear at all?

Our understanding is that OntoMap should not try to choose the best upper-
model or to produce a new one. The upper-level has to be chosen according to
the specific application needs - the project goal is to facilitate this task.

2.4 Terminological Diversity

There is a number of different notions (or terminologies) that are currently used
in the knowledge management community. The differences (both phraseological
and conceptual) are rooted in the main paradigms in the knowledge represen-
tation. Here is a non-detailed overview of the most popular ”languages” used
by the ontologists:

—concepts, relations, properties — these are usually the terms inspired
by the early semantic networks, mathematics and philosophy. Concepts
are used to express any kind of static and cognitively autonomous semantic
phenomena. They classify the entities in the domain of discourse (instances
of the concept) — each entity either belongs to the interpretation of certain
concept, or does not. The properties come to represent characteristics, as-
pects, or attributes of the entities, as well, as relations between them. They
are further separated into attributes and relations.

—classes, slots, facets and frames — this is the frame-based terminology
(frames). Here classes correspond to concepts while the notion for the in-
stances remains the same. The slots correspond to the properties. Slots are
further distinguished into template-slots and own-slots. The template-slots
are defined on a class level — for example, Color is a template-slot for the
class Car. In contrast, own-slots connect some values of the template-slots to
certain instances of the class, say Colour(Ferarri, Red). Facets are properties
of the slots;

—concepts, roles, individuals — this is the terminology used in the so called
description logics (DL), the descendants of the KL-One knowledge represen-
tation language. This paradigm is close to the one used in the semantic net-
works. It is developed to make them more precise on epistemological level.
roles correspond to properties while individuals correspond to instances;

—classes, objects, attributes - this is the terminology used in the object-
oriented paradigm, mostly developed for the purposes of the software en-
gineering. The classes correspond to the concepts while the attributes (data
members) correspond to properties. Equivalent of the class-attributes are the
static data members. The objects are always instances of certain class;

—collections, individuals, predicates, constants - this is the terminology
used by the cyclists, the people developing the Cyc knowledge base at Cyc
Corp. Roughly, collections correspond to concepts, individuals to instances,
and binary predicates (that are kind of collections themselves) correspond to
properties. The constants are names of collections, individuals, or predicates.

In our view in order to provide a uniform representation of the ontologies
and the mappings between them, a relatively simple meta-ontology (let us call
it OntoMapO) of property types and relation-types should be defined. Before
presenting OntoMapO we will give an overview of the related approaches.

2.5 The Conceptual Level of Unification

There are many attempts to resolve the terminological diversity by managing
ontologies in a representation-independent fashion on the so called knowledge-
level or conceptual level. Two of the most popular approaches are reported in
[Gomez-Perez et al. 1998] (ODE) and [Maedche et al. 2000] (OntoEdit). Even
kept within the frame-based terminology, the knowledge-model of Protégé-2000
(see [Noy et al. 2000]) is also a good example for a self-contained and well
designed conceptualization that provides sufficient expressive power to capture
ontologies encoded in different languages.

A comprehensive classification of the different kinds of properties is reported
in [Guarino and Welty 2000] — according to different combinations of the meta-
properties indentity, rigidity and dependence it introduces seven different no-
tions corresponding to ”Concept” in ODE. The primitives used in Cyc (see
[Cycorp 1997] and the previous sub-section) are interesting at least because the
approach is proven in a really large-scale knowledge base.

3. OntoMapO: The OntoMap primitives
OntoMap is an attempt to use the minimal useful set of primitives. We are
driven by the understanding that the oversimplification is not as fatal for the
overall usability as a complex system of primitives could be. Thus we undertake
an approach opposite to the one employed in Ontolingua, [Gruber 1991], follow-
ing the rationale that even though many distinctions could be clearly defined
in Ontolingua, many semantic-model developers have difficulties using them.

We developed a minimalistic meta-ontology that is as self-describing as pos-
sible. Thus, most of the primitives are defined just in terms of the rest of the
OntoMapO primitives. Another primary consideration was to keep it decidable.
Here is the point to mention that OntoMapO ontology could also be understood
as a language. A simple language that provides some expressive power via single
kind of expressions – binary relations between concepts. We are intentionally
not providing specific syntax in order to keep it as representation independent

as possible. In the paper we use a LISP-like syntax to serialize the relations,
however, it is obvious that many other notations could perform equally well.

3.1 Concepts, Relations, and Ontologies

Concept is the most basic primitive, so, we are leaving it to the reader’s intu-
ition. Just as a reference point the concepts could be compared to the constants
in Cyc. The concepts could be related to each other by binary relations. Each
binary relation has a type that is a concept. Each concept belongs to an ontol-
ogy and, of course, there could be many different ontologies.

3.2 Instantiation in addition to inheritance

Our semantic framework was inspired Cyc ([Cycorp 1997]), Protégé-2000 ([Noy
et al. 2000]), and RDFS ([W3C 1999]) representation models — in addition to
the inheritance relations we also employ as a basic mechanism the instantiation.
So, the concepts are not only described by their parents and children in the
subsumption hierarchy but also form the classes that they belong to. The
classes themselves are also concepts that could belong to other classes and so
on. This way an infinite number of meta-levels could be defined.

We will use a simple set-theoretical semantics to explain the distinction be-
tween the inheritance and instantiation. Suppose that each concept is inter-
preted as a set of its instances. So, (InstanceOf I C) means that I ∈ C. In
the same fashion (ChildOf C1 C2) means that C1 ⊂ C2. This interpretation
has some pretty reasonable consequences:

—the inheritance relations are transitive — if (ChildOf C1 C2) and (ChildOf
C2 C3) then (ChildOf C1 C3) holds. Really, from C1 ⊂ C2 and C2 ⊂ C3 it
follows that C1 ⊂ C3

—the instantiation is not-transitive — if I ∈ C and C ∈ MetaC it does not mean
that I ∈ MetaC

—the instantiation is transitive with respect to inheritance — if (InstanceOf
I C1) and (ChildOf C1 C2) it follows that (InstanceOf I C2). Really,
from I ∈ C1 and C1 ⊂ C2 it follows that I ∈ C2

An obvious advantage of such extensive use of instantiation is that it makes
the hierarchy less tangled by avoiding multiple-inheritance on many places. As
a design principle, instantiation should be used to express non-sortal properties
of the concepts (see [Guarino and Welty 2000]). For example, in OntoMapO
(see below) we represent the transitivity of a relation type (say, ChildOf) via
instantiation. The fact that certain relation is transitive does not determine its
identity - it is just a rigid property, namely a Category for relations.

3.3 Relations

Each relation between two concepts is an instance of the concept representing its
type. Let us extend the set-theoretical interpretation of our model — if (RelA
B C) then the pair < B, C > ∈ RelA. Suppose there are two concepts RelA and
RelB that represent relation types and the first one inherits the second one
(ChildOf RelA RelB). Our interpretation correctly predicts that RelB holds
between all concepts where RelA holds. Let us show how it works:

—let us assume that there exist concepts A and B and there is a relation of type
RelA between them (RelA A B)

—following our interpretation we can state that < A, B > ∈ RelA

—also (ChildOf RelA RelB) means that RelA ⊂ RelB

—now it is obvious that < A, B > ∈ RelB, which means that
—there is a relation of type RelB holding between the concepts A and B.

In OntoMapO all the concepts representing relation types should be instances
of the BinaryRel concept or at least one of its children. Further, OntoMap
inference engine considers a binary relation to be transitive iff it is an instance
of TransitiveRel that is a child of BinaryRel. Examples for transitive relation
are ChildOf and Equivalent. Analogously, a concept represents a symmetric
relation type iff it is an instance of SymmetricRel — we can take Inverse
relation (discussed below) as such example.

3.4 Each OntoMapO Relation Has an Inverse Relation

Another principle that we followed was to define an inverse relation for each of
the OntoMapO relations except the symmetric ones, of course. The rationale
behind this was twofold:

—to emphasize that the OntoMap relations (in contrast to the slot notion, for
example) do not give any representational preference to the concept in the
first place

—to make the relations easy to read and follow in both directions

So, ChildOf relation has its inverse ParentOf relation; InstanceOf is inverse
to ClassOf. In order to keep some correspondence to the frame-based systems
we defined HasSlot relation as an inverse to the Domain relation that could
be defined between a relation type and the concept which instances could be
first arguments of the relation. Analogously, Reifies is inverse to the Range
relation that holds between a relation type and a concept which instances could
be second arguments of the relation. Here are some real constraints that take
place in OntoMapO:

—(Domain Inverse BinaryRel) and the equivalent statement that (HasSlot
BinaryRel Inverse)

—(Range Inverse BinaryRel)

—(Domain ChildOf Concept) and its equivalent (HasSlot Concept ChildOf)

3.5 How Are the Predefined Relations Special

Let us call sub-relations of a relation R all its direct or indirect children as well
as the relations that are equivalent to it or one of its sub-relations.

OntoMap considers as an equivalence relation each relation that is sub-
relation Equivalent. In a similar fashion, all the sub-relations of ChildOf
and ParentOf are treated as inheritance relations. Analogously, one relation
is an instantiation relation iff it is a sub-relation of InstanceOf or ParentOf
relations. Obviously, all the sub-relations of Inverse are properly interpreted
as inversion by the OntoMap inference engine.

This approach makes the basic primitives that the OntoMap inference engine
understands extensible. For example, when explaining Cyc’s knowledge model
to OntoMap it is easy to define that (Equivalent #$genls ChildOf) — this
way OntoMap automatically starts to understand this kind of Cyc inference
relations without any need to translate them further.

3.6 The Hierarchy

The hierarchy below is basically an inheritance tree augmented with some in-
stantiation information — after each concept name in brackets we have the
classes it belongs to. Actually, just the informative classes are listed, i.e. the
most specific ones. The inverse relations are indicated after each non-symmetric
relation, to save space they are not separately presented.

Concept (Concept)
BinaryRel (Concept)

SymmetricRel (Concept)
TransitiveRel (Concept)

Ontology (Concept)
Context (Concept)

meta-level above
- -

language-level below
Inverse (SymmetricRel)
ChildOf (TransitiveRel) inverse: ParentOf
InstanceOf (BinaryRel) inverse: ClassOf
Domain (BinaryRel) inverse: HasSlot
Range (BinaryRel) inverse: Reifies
SimilarTo (SymmetricRel)

Equivalent (TransitiveRel, SymmetricRel)
DisjointWith (SymmetricRel)
IsPartOf (TransitiveRel) inverse: HasPart
MadeOf (BinaryRel) inverse: SubstanceOf
MemberOf (BinaryRel) inverse: GroupOf

The above hierarchy does not include the ontology mapping primitives dis-
cussed in the next section. The separation into meta-level and language-level
follows the scheme proposed in [Pan and Horrocks 2001]. However this sepa-
ration corresponds more to the intuition of the above mentioned scheme. For-
mally, OntoMapO (as well as RDFS and Cyc) has unfixed meta-modelling ar-
chitecture. This means that there can not be formally specified separate levels,
InstanceOf relation can connect virtually any two concepts and the language
itself does not constrain this. This is a major difference between OntoMapO
and DAML+OIL.

4. Ontology-Mapping Primitives
There is no formal difference between the relations that can be used inside an
ontology and those to be used for mapping of concepts in different ontologies.
However there exist relations that are not intended to be used inside well defined
ontology — those should be used for handling structural differences between
different ontologies. For example, the (TopInstance A B) should be used when
a concept A from one ontology exists as a concept B on the upper level of
denotation in another ontology, i.e. (ChildOf X A) holds iff (InstanceOf X
B) holds. Such design patterns should not be tolerated inside a single ontology.
Here are the explanations for these relations:

—MuchMoreSpecific – the first concept is much more specific than the second
one, transitive. Inverse to MuchMoreGeneral and a specification of ChildOf.
Both (with the next relation) have to be used to ”constrain” the meaning of
a concept that has to be mapped in another ontology but has no equivalent
or even similar concept there;

—MuchMoreGeneral – the first concept is much more general than the second
one, transitive. Inverse to MuchMoreSpecific and a specification of ParentOf

—TopInstance – the first concept is the most general instance of the second one
– a meta-concept. Inverse to ExactClass and a specification of InstanceOf

—ExactClass – the first concept is a meta-concept, the second concept is the
most general instance of the first one. Inverse to TopInstance and a specifi-
cation of ClassOf

—ParentAsInstance – the first concept is more general than all the instances
of the second one that is a meta-concept. Inverse to ChildAsClass

—ChildAsClass – the first concept is a meta-concept (class), all its instances
are more specific than the second concept. Inverse to ParentAsInstance

4.1 Representing Ontologies in OntoMap

When an ontology representation has a well defined conceptualization our ap-
proach is to map its primitives to the OntoMapO primitives. For example,
importing Upper-Cyc Model ([Cycorp 1997]) we just defined that

(Equivalent #$genls ChildOf)
(Equivalent #$isa InstanceOf)

an so forth with the rest of the Cyc’s relations. While OntoMapO interprets
each relation that is equivalent or more specific than ChildOf as inheritance
relation it starts perfectly understand the inheritance in Cyc.

Analogously importing Protëgë-2000 ([Noy et al. 2000]) meta ontology we
can establish that:

(Equivalent :DIRECT-SUPERCLASSES ChildOf)
(Equivalent :DIRECT-SUBCLASSES ParentOf)
(ChildOf :DIRECT-INSTANCES InstanceOf)
(ChildOf :DIRECT-TYPE ClassOf)

First, let us answer why :DIRECT-TYPE is more specific than ClassOf — in
Protégé each concept could be instance just of a single class. This limitation

makes :DIRECT-TYPE more specific relation than ClassOf. Even with this com-
plication, OntoMap will be able to interpret the instantiation as it is defined
Protégé because :DIRECT-TYPE is a specification (sub-relation) of ClassOf, so
:DIRECT-TYPE is an instantiation relation.

5. The Initial Set of Ontologies, Formats and Representations
The following ontologies will be hosted initially: Upper Cyc Ontology [UCYC];
EuroWordnet Top Ontology; EuroWordnet Clusters – the clusters of EWN base
concepts classified by top concepts, an extension of ETOP; WordNet 1.5, 1.6
and 1.7 [WNUB5,6,7] unique beginners and top nouns; CORELEX; SIMPLE
Core Ontology; MikroKosmos top-level [MKOSTOP]; SENSUS top-level [SEN-
STOP].

For each of the ontologies there will be available an ”executive summary” as
well as the most important documents about it (papers, reports, guides and so
on), URLs. Of course, the original ”distributives” provided by the creators will
be also available. The following ontologies are already hosted on OntoMap: ,
EWNTOP, WNUB7, SENSTOP, and MKOSTOP.

Mappings between some of the ontologies will be provided in order to en-
sure an easier understanding and comparison between them. So, the ontologies
hosted will form an inter-connected graph. Such mapping already exists be-
tween EWNTOP and UCYC (see [Kiryakov and Simov 2000]). The mapping
between WNUB7 and MKOSTOP and the later two ontologies was recently
developed. Some of the relations exist because of the nature of the ontologies:

—EWNCLUST and EWNTOP – the concepts of the former one are just con-
junctions of those of the later one

—CLEX and WNUB5 – same as above
—WNUB5, WNUB6, and WNUB7 – there exist a mapping provided by the

creators
—SENSTOP and UCYC – it is available as a part of the UCYC distributives

as well as separately by the SENSUS developers.

The following mappings will be developed as a part of the project:

—EWNCLUST to UCYC
—CLEX to EWNCLUST (both directions)
—ETOP to SIMC
—WNUB7 to UCYC, EWNTOP, and SIMC

The mappings will be available in the same formats as the ontologies. Ac-
tually, each mapping could be seen as an extension of the target ontology. For
example, the mapping between EWNTOP and UCYC can be considered as
an extension of the UCYC with the concepts of EWNTOP that are connected
appropriately to the UCYC constants (see [Kiryakov and Simov 2000]).

The ontologies in OntoMap project will be presented in a number of standard
forms: FIPA compliant Ontology Agent, PROLOG, KIF, DAML+OIL,
RDFS, HTML - an online ontology browser as well as static pages available for

download, SQL scripts for ORACLE and MS SQL Server, Ready-to-use files
for MS Access (MDB), Online application server accessible via CORBA,
EJB, RMI, and SOAP. At present, only the online ontology browser and the
DAML+OIL export are implemented. After the end of the project, in parallel
with the maintenance of the server we will be able to provide the following
services for both domain specific and upper-level ontologies:

—Creating/loading an ontology in the OntoMap system and hosting it there.
This way it will become accessible in all the formats/services supported. Also
its conformance profile could be determined (see [Genesereth and Fikes 1998]
and Unified Representation section). A security subsystem will be developed,
so the proprietary ontologies will not be publicly available.

—Developing of mappings with ontologies that are already hosted in OntoMap.
The mappings themselves will be also available in all the supported formats.

6. An Usability Example
Here is an example of how the OntoMap could help understanding a complex
case in the Upper Cyc Ontology - the #$MeetingTakingPlace constant. The
comprehension comes from the following sources: it is deeply positioned in the
tangled subsumption hierarchy; and also some important information is encoded
via instantiation. The most readable representation in [Cycorp 1997] is:

The collection of human meeting events, in which #$Persons gather intentionally
at a location in order to communicate or share some experience; business is often
transacted at such a meeting. Examples include: a particular conference,
a business lunch, etc.
isa: #$DefaultDisjointScriptType, #$ScriptType, #$TemporalObjectType
genls: #$SocialGathering
some subsets: (16 unpublished subsets)

The underlined text represents hyper-references to descriptions of the appro-
priate constants. Below follows the standard view on the same concept provided
by OntoMap:

Concept: #$MeetingTakingPlace [UpperCyc]

Gloss: The collection of human meeting events, ...

Super-concepts (parents): #$SocialGathering;

Indirect: #$IntangibleIndividual, #$CompositePhysicalAndMentalEvent,

#$TemporalThing, #$PhysicalEvent, #$MentalEvent, #$Intangible, #$Thing,

#$SpatialThing, #$MentalActivity, #$PurposefulAction, #$Situation,

#$HumanActivity, #$AnimalActivity, #$Event, #$Action, #$Individual,

#$SocialOccurrence

Indirect parents in other ontologies:

Physical[EWN Top], Top[EWN Top], Mental[EWN Top],

Social[EWN Top], 2ndOrderEntity[EWN Top]

Instance of: #$DefaultDisjointScriptType, #$TemporalObjectType

Indirect: #$Collection, #$ObjectType, #$Thing, #$SituationType,

#$SetOrCollection, #$Intangible,

#$MathematicalOrComputationalThing, #$ScriptType

Sub-concepts (children): none

Direct instances: none

All direct relations:

#$genls: #$SocialGathering

#$isa: #$TemporalObjectType

#$isa: #$DefaultDisjointScriptType

This was a ”snap-shot” of the current on-line interface of OntoMap. Pay at-
tention to the fact that both indirect parents and classes are displayed and
it is extremely useful — it requires serious efforts to reconstruct these in-
direct relations manually. Also, super-concepts in the EWN Top Ontology
can be seen, and that provides a good impression about a possible position of
#$MeetingTakingPlace there. So people that are familiar with EWN top can
get an idea about the meaning of the Cyc constant.

7. Conclusion
The OntoMap project is still in an early phase that makes it difficult to evalu-
ate it. The experience gained providing the Upper Cyc Ontology as MS Access
database is encouraging – even though the original resource is available for a
long time more than two hundred people have found it useful and have down-
loaded it in this format just for the last few months. We got a very positive
feedback for another experiment of ours – developing a mapping between the
Upper Cyc Ontology and the EuroWordNet Top Ontology and then providing
it as a database as well as an online service. Even without significant theoretical
innovation such facilitatory efforts seem to be important for the development
of the semantic modeling community.

The first practical result of the project is a Java implementation of an infer-
ence engine that already supports the OntoMapO language – it is sound and
complete with its support for inheritance, instantiation, inverse, transitive, and
symmetric relations. The biggest ontology that we experimented with (Upper
Cyc Ontology, about 3000 concepts) can be loaded in few seconds and than
queried real-time.

References
Cyc Ontology Guide: Introduction.
http://www.cyc.com/cyc-2-1/intro-public.html

Fensel, Dieter Ontologies: Their Glory and the new bottlenecks
they create. Presentation on ”Semantic Web Project Proposal” work-
shop, Vrije Universiteit Amsterdam (the Netherlands), Dec 8, 2000
http://www.ontoweb.org/workshop/amsterdamdec8/

Genesereth, Michael R., and Fikes, Richard eds. Knowledge Inter-
change Format draft proposed American National Standard (dpANS).
NCITS.T2/98-004 http://logic.stanford.edu/kif/

Gomez-Perez, A.; Fernandez, M.; Blazquez, M.; Garcia-Pinar, J. M. Build-
ing Ontologies at the Knowledge Level using the Ontology Design Environ-
ment. http://delicias.dia.fi.upm.es/articulos/ode/ode.html
Gruber, Thomas R. Ontolingua: A Mechanism to Support Portable Ontolo-
gies. TR KSL 92-66, Knowledge System Laboratory, Stanford University,
1991.
Guarino, Nicola; Welty, Christopher A Formal Ontology of Properties. In
the Proc. of the 12th International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW’2000), Juan-les-Pins, France. R.
Dieg and O. Corby (Eds.), LNAI 1937, pp. 97-112, Springer Verlag, 2000.
Kiryakov, Atanas; Simov, Kiril Iv. Mapping of EuroWordNet Top Ontol-
ogy to Upper Cyc Ontology. In: Proc. of “Ontologies and Text” work-
shop, during EKAW 2000. Juan-les-Pins, French Riviera, Oct. 2, 2000.
http://www.ontotext.com/publications/index.html

Knight, K. and Luk, S. Building a Large Knowledge Base for Machine
Translation. Proc. of the American Association of Artificial Intelligence
Conference AAAI-94. Seattle, WA, 1994.
Maedche, A.; Schnurr, H.-P.; Staab, S.; and Studer, R. Representation
Language-Neutral Modeling of Ontologies. In: Frank (ed.), Proc. of the
German Workshop ”Modellierung” 2000. Koblenz, Germany, April, 5-7,
2000.
Noy, Natalya F.; Fergerson, Ray W.; Musen, Mark A. The Knowledge
Model of Protege-2000: Combining Interoperability and Flexibility. In the
Proc. of the 12th International Conference on Knowledge Engineering and
Knowledge Management (EKAW’2000), Juan-les-Pins, France. R. Dieg
and O. Corby (Eds.), LNAI 1937, pp. 97-112, Springer Verlag, 2000.
Pan, Jeff; Horrocks, Ian Metamodeling Architecture of Web Ontology Lan-
guages. In the Proc. of International Semantic Web Working Symposium
(SWWS), July 30 - August 1, 2001, Stanford University, California, USA
Vossen, Piek (ed.) EuroWordNet General Document Version 3, Final, July
19, 1999. http://www.hum.uva.nl/ ewn/

World Wide Web Consortium; Brickley, Dan; Guha, R.V. (eds.)
Resource Description Framework (RDF) Schema Specification, 1999.
http://www.w3.org/TR/1998/WD-rdf-schema/

Uschold, Mike; King, Martin; Moralee, Stuart; and Zorgios, Yannis The
Enterprise Ontology, The Knowledge Engineering Review, 1998, Vol. 13,
Special Issue on Putting Ontologies to Use (eds. Mike Uschold and Austin
Tate).
Uschold, Mike Converting an Informal Ontology into Ontolingua: Some
Experiences, Univ. Edinburgh, Artificial Intelligence Application Institute
(AIAI), AIAI-TR-192, March 1996.

