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Abstract. When knowledge in each agent is represented by an ontology of 
concepts and relations, concept communication can not be fulfilled through 
exchanging concepts (ontology nodes). Instead, agents try to communicate with 
each other through a common language, which is often ambiguous (such as a 
natural language), to share knowledge. This ambiguous language, and the 
different concepts they master, give rise to imperfect understanding among 
them: How well concepts in ontology OA map1 to which of OB? Using a method 
sim that finds the most similar concept in OB corresponding to another concept 
in OA, we present two algorithms, one to measure the similarity between both 
concepts; another to gauge du, the degree of understanding that agent A has 
about B’s ontology. The procedures use word comparison, since no agent can 
measure du directly. Method sim is also compared with conf, a method that 
finds the confusion among words in a hierarchy. Examples follow. 

1. Introduction and objectives 

The easiest thing for two agents seeking communication (information exchange) is 
agreeing first in what to communicate, how and in what order, and then, doing it. 
Unfortunately, this requires a “wiser creature” (a programmer, or a Standards 
Committee) to establish these agreements.2 In this paper we will assume that no 
creature of this kind is to be used. Then, what can an agent do to meaningfully 
communicate3 with other agents (or persons), even when it/they had not made any 
very specific commitment to share a private ontology and communication protocol? 

Concept communication can not be fulfilled through direct exchange of concepts 
belonging to an ontology, since they do not share the same ontology, and OA and OB 
are in different address spaces. Instead, they should use a common language for 
communication. Lucky agents can agree on a language whose words have a unique 
meaning. Others need to use an ambiguous language (such as a natural language) to 
share knowledge. This gives rise to imperfect understanding and confusion.  

In a different approach, [16] proposes to use natural language words as concepts. 

                                                           
1 OA and OB are the ontologies of agents A and B, in the rest of this document. 
2 That is, the agents need to communicate in order to agree about how to communicate. 
3 Agent A communicates with B “in a meaningful way” when A moves towards its goals as the 

information exchange progresses. Each could be a person or a piece of software. 
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When one agent is talking to another, can the talker discover on what it (or the 
listener) is confounded? Is it possible to measure this mix-up? How can I be sure you 
understand me? Can I measure how much you understand me? Can you measure it? 
These questions have intrigued sociologists; they are also relevant to agents “not 
previously known to each other”4 trying to “interact with free-will”,5 for which they 
have to exchange knowledge. The paper gives answers for them. 

Knowledge is stored in concepts (Cf. §1.2), which are mapped by the talker into 
words of the communication language; perceived words are internalized as concepts 
by the listener. If the concepts exchanged are animals and plants, Latin is fine: Felix 
Leo represents the concept lion-león-loin6 while Cannabis Indica stands for 
the concept marijuana. Other examples of words or symbols with a unique 
(universal) meaning: 4, π, Abelian group, Mexico, (23°22’57”N, 100°30’W), 
Abraham Lincoln, Berlin Symphony Orchestra. There are also semi-universal 
(popular) conventions [such as standard naming for chemical compounds, the Catalog 
for books of the Library of Congress, or the USA Social Security Number], which 
provide non-ambiguity for those who adhere. If two agents can select a non-
ambiguous language (each of its words maps exactly to one concept) or convention to 
exchange concepts, great. Otherwise, they have to settle for an ambiguous language, 
such as English [7]. 

If two agents do not share a concept (figures 1 and 2), at least partially, they can 
not communicate it or about it. Thus, a measure of the amount of understanding can 
be the number of concepts they share, and how well they share them.7 We will 
sharpen these measures for both cases: the ambiguous and the non ambiguous 
communication language. 
                                                           
4 It is much easier to design the interaction (hence, the exchange of concepts) between two 

agents (each could be  a person, or a piece of software), when the same designer designs both 
agents. In this sense, “they previously know each other:” each agent knows what the other 
expects, when, and the proper vocabulary to use. In contrast, our approach will allow my 
agents to interact with yours, as well as with Nigerian agents. 

5 Not-free will or canned interactions are those that follow defined paths. For instance, the 
interaction between a program and a subroutine it calls, where the calling sequence (of 
arguments) is known to both. Free will requires goals, resources, and planning [16]. 

6 We represent concepts in Courier font. A concept is language-independent: the concept 
cat is the same as the concepts gato-gata, gatto-gatta, chat-chatt, 
Katze, КОТ-КОШКА, meaning “a small domestic feline animal.” Concepts appear in 
English in this paper, for readers’ benefit.  

7 Knowledge is also stored in the relations (or verbs, actions, processes) between objects (or 
nouns, subjects): A balloon can explode. It is also stored in the properties (or adjectives, 
adverbs) of these nouns and relations. The value of a property also contains information. A 
relation such as explode can also have relations (such as father_of, 
speed_of_explosion) which can also be nodes (concepts) in the ontology. Words are 
not nodes, but they are attached to the node they denote. The definition of ontology in §1.2 
brings precision to these ideas: a concept is always a node of an ontology (and vice versa), 
whereas a relation and the other object related or linked (relations are arcs among two 
objects) may be a concept (node) or just a word or a token as defined in footnote 10. A 
relation that is just a token is called a property. If the “other object” is just a token, it is called 
a value. Examples: (cat drinks milk), (balloon price 50_cents), (balloon 
inflated_by JFKennedy), (balloon vanished languidly). 
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1.1 Related work 

An ancestor of our sim (§3.1) matching mechanism is [3], based on the theory of 
analogy. Most work on ontologies involve the construction of a single ontology (for 
instance, [13]), even those that do collaborative design [10]. Often, ontologies are 
built for man-machine interaction [12] and not for machine-machine interaction. 
Work [2] identifies conceptually similar documents using a single ontology. Sidorov 
[4] does the same using a topic hierarchy: a kind of ontology. Linguists [14] identify 
related words (semantic relatedness), not concepts, often by statistical comparisons. 

Huhns [11] seeks to communicate agents sharing a single ontology, such as OD 
(Fig. 1). The authors are motivated [7] by the need of agents to communicate with 
unknown agents, so that not much a priori agreement between them is possible.4 

 
thing (thing, something, object) { 
  living (organism, life, being, creature, living thing) {   
 animal (animal) { 
  man (man, person, human being, woman, girl)  

[eats = apple, peach ]  } 
 plant (plant, vegetal) } 
  inanimate (inanimate object, tangible object) { 
 rock (rock, stone) 
 food (food, foodstuff, provisions) { 
  solid_food (solid food){ 
   apple (apple)[shape = round][color = red, yellow, green] 
   peach (peach) [color = orange, green, yellow]  

             [shape = round] 
   bread (bread) [color = brown]  } 
  liquid_food (liquid, drink) { 
   water (water) 
   coffee (coffee, coffee drink, espresso) [color = black] 
   milk (milk) [color = white] 
   beer (beer)  wine (wine)  } } } 
  abstract_thing (intangible object, abstract object, abstract thing)  } 

Fig. 1. Ontology OD: Foods. Concepts appear in courier font, words denoting a concept 
are in (parentheses). Properties are inside [ ], such as [color = red, yellow, green] 

Simple measurements [9] between qualitative values (“words”) belonging to a 
hierarchy, find out how close two values are: the confusion between these values is 
measured. More at §3.1. Also, there is much work on tree distances. 

With respect to the communication language, we prefer, in decreasing order: 
1. A language whose tokens (words, atoms) are formed by concepts [8]; 
2. One with unambiguous tokens (a token represents only one concept). Examples: 

the Natural Numbers; the Proper Nouns; 
3. One where each token has a small number of ambiguities, for instance, a natural 

language [14]; 

Ontology 

OD 
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4. One where each token points to a foreign address space, thus representing a black 
box that can only be compared with = and ≠. Example: a language consisting of 
tokens such as “brillig”, “toves,” “borogove,” “mome”, “outgrabe”, “fromelic,” 
“meratroping”... 

Approaches and experimental results through semantic analysis are in book [1]. 

1.2 Definitions 

Level of a node in a tree. The root has level 0. A node has level l+1 if his father has 
level l.♦ 8 

Concept. An object, relation, property, action, process, idea, entity or thing that has 
a name: a word(s) in a natural language. ♦  Examples: peak-uttermost, angry-
mad, to_fly_in_air. So, concepts have names: those words (or word phrases, 
such as New York City) used to denote them. A concept is unambiguous, by 
definition.6 Unfortunately, the names given by different people to concepts differ and, 
more unluckily, the same word is given to two concepts (examples: words peak; fly; 
mad). Thus, words are ambiguous, while concepts are not. A person or agent, when 
receiving words from a speaker, has to solve their ambiguity in order to understand 
the speaker, by mapping the words to the “right” concept in his/her/its own ontology. 
The mapping of words to concepts is called disambiguation. 
There are also composite or complex concepts, such as “to ski in a gently slope under 
a fair breeze while holding in the left hand a can of beer.” These can be shared with 
other agents, too, but they do not possess a name: they have not been reified. 

Ontology. It is a formal explicit specification of a shared conceptualization [5].♦  It 
is a taxonomy of the concepts we know.9 We represent an ontology as a graph where 
each node is a concept and the arcs are relations to other concepts or tokens. 10 Some 
relations are concepts (such as subset, member_of, part_of, eats-
ingests, lives_in); others are just tokens (which are called properties), 
represented in Times font, such as “color.” Each relation links a node with other node 
(a concept) or with a token,10 in the last case the token is called the value of the 
relation; for instance, “blue.” In addition, associated to each node are the words that 
represent or denote that concept. The relation subset is represented by { }. §5 
suggests a better representation. Examples: OD and OT in figures 1 and 2.  

Size of OA. Written as |OA|, is the number of concepts in OA. ♦  
Teaching and learning. Agent T teaches agent S, and S learns from T, a set of 

concepts that T knows, if T patiently (incrementally) sends appropriate trios [of the 
form (concept relation concept)] to S such that S can build new nodes on its ontology, 
resembling those nodes already present in T. ♦  Agent T must often query S to see if 
“it has learned right”, and to resolve contradictions or questions from S arising from 
its previous knowledge. More at §3.3. 

 
                                                           
8 Symbol ♦  means: end of definition. Having a name in a shared language means that it is 

known to many people. 
9 Each concept that I know and has a name is shared, since it was named by somebody else. 
10 These tokens are words or strings of the types 2, 3, 4 of the list at the end of §1.1. 
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2. Measuring the amount of knowledge 

How much does an agent know?  
The amount of knowledge an agent has, is the number of concepts in its ontology. 

♦  It is |OA|. It is the area under the histogram of concepts (see Clasitex in [6]). This 
definition will be revisited in §3. To know a given discipline is to possess many 
concepts from that discipline.♦  

How much does an agent know of the knowledge possessed by other agent? By 
comparing their histograms of concepts, we can find out that A knows twice more 
concepts than B about Numismatics, and that A and B know the same number of 
concepts about dinosaurs. A more accurate measure is given in the next section, 
where it is called the degree of understanding. 

3. Measuring the degree of understanding 

Two definitions are needed to quantify the (imperfect) grasp of a concept by an agent. 
One is the most similar concept in OB to concept cA in OA; the other is the degree of 
understanding of B about the knowledge of A, which A keeps in OA. 

 
Assume that A knows that a diprotodonA11 is a mammal of the Tertiary Age, 

but B knows that a diprotodonB is a bear-like animal, of prehistory, has fur, two 
long milk teeth, and a size 5 meters long and 2 meters tall. All these concepts can be 
perfectly represented with the tools of §§1-2, since the trio (diprotodon-
fossil12 skin-epidermis fur-hair) is present (and true) in OB and absent in 
OA, and similarly for the other relations and concepts. Each concept and each trio of 
OA is known by agent A, and the same is true for OB and B. But it is also 
advantageous to “concentrate on the nouns” and to say that diprotodon is vaguely 
or less known to A than to B, since diprotodonB has more properties and more 
relations in OB than diprotodonA in OA.

                                                           
11 We use sub index A to stress the fact that diprotodonA belongs to OA. 
12 When explaining concepts to the reader (of this paper) through English words, the 

convention in [15] is good: we use the word for the concept followed by a dash followed by 
the word that represents the father of the concept. This provokes little ambiguity in the 
reader, and it has been programmed in sim, the mapper of a concept to the closest concept in 
another ontology (§3.1). Thus, we write star-person, star-animal, star-
astronomic_body, star-adornment, for the four meanings of word star. 
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thing (thing, something, object, entity) { 
  physical_object (concrete object, physical object) { 
       living_creature (creature, life form, live being, living creature, organism, being){ 

animal (animal) { 
  invertebrate (invertebrate) { 
    insect (insect, bug) { 

fly_animal(fly, flies) cockroach (cockroach) flea(flea) } 
    mollusk (mollusk) } 
  vertebrate (vertebrate) { 
    reptile (reptile)  {lizard (lizard)  iguana (iguana) } 
    batrachians (batrachians)   {frog (frog) } 
    mammal (mammal) { zebra (zebra) 

rodent (rodent) { 
  rat (mouse, mice, rat) { 
    domestic_rat (domestic rat) 
         country_rat (country rat) } 
  mole-rodent (mole) } 
fox (fox) cat(cat, kitty) dog(dog) lion(lion, cub) donkey(donkey) 
man (man, men, woman, women, person, people, human being,  

Homo Sapiens, boy, girl, child, miss, mister, sir) 
  [eats = tropical_plant, citrus] } 

    bird (bird)  { chicken (chicken, hen, cock, rooster, chick, poultry) 
duck (duck)  parrot (parrot)  hawk (hawk) } 

    fish (fish) } }   
plant-creature (plant, vegetal) { 
  tropical_fruit (tropical fruit) { 

 coconut (coconut)   mango (mango, mangoes)  } 
  citrus (citrus, citric) { lemon (lemon) orange (orange)  

tangerine (tangerine) [color = orange] 
rare_fruit [color = green] [texture = smooth]  [size = 5cm] }} 

bacteria (bacteria, microorganism) } 
 artificial_object (artifact, artificial object)  } 

  abstract_object (imaginary object, abstract thing, abstract concept) } 
 

Fig. 2. Ontology OT. Properties are of the form [property-name = value], where the property 
name or the value may be concepts as in [eats = tropical_plant, citrus] or tokens 
of the types of footnote 10, as in [color = orange]. 

Definition. The degree of knowledge of A about a concept c is a number between 0 
and 1, obtained by counting the number of relations containing c in OA, adding the 
number of properties of c in OA, and dividing into the similar calculation for c in the 
total ontology.13 ♦  The closer it is to 1, the less imperfect is A’s knowledge of c. ♦  
This definition is impractical to use since the total ontology is out of our reach. Thus, 
we shall compute instead the degree of knowledge of an agent with respect to another 
agent, which we refer to in §3.2 as the degree of understanding of A about OB: how 
much A understands about what B knows; how well each concept of A maps into the 
                                                           
13 The ontology of an agent that knows much, if not everything. 

Ontology OT 
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corresponding (most similar) concept in B. Our examples refer to figure 2. First, we 
need to find the concept in OB most similar to one given (through words describing it) 
by A, belonging of course to OA. 

3.1 Finding the concept in OB most similar to a given concept in OA 

Algorithm sim [8] (called “hallar(cA)” or COM in [15]) finds the most similar 
concept cB in OB to concept cA in OA. Agent A makes known concept cA to B by 
sending to B words14 denoting cA, and also sending words denoting cA’s father. Also, 
sim returns a similarity value sv ∈  [0, 1] expressing how similar was cB to cA. 

If cB is the concept most similar to cA, it is not necessarily true that cA is the 
concept most similar to cB. Function sim is not symmetric. Example: A physician P 
knows six kinds of hepatitis, including the popular hepatitis type A, while John 
only knows hepatitis. Each of the six hepatitis of P finds John’s 
hepatitis as “the most similar concept John has,” while John’s hepatitis best 
maps into P’s type_A_hepatitis. P knows more than John, so P can select a 
better target in his rich ontology for John’s vague concept. John can not make such 
selection. 

The function sim is only defined between a concept cA in OA and the most similar 
concept cB in OB. Extensions sim’ and sim’’ appear below. 

Who runs sim? Who compares these two concepts, since they belong to different 
ontologies? That is, who runs sim? Either agent A or B can execute it, since sim 
compares words, not concepts. But, when A runs sim, it needs the collaboration of B 
(and vice versa), which has to provide words to be used by sim (thus, by A). Also, 
even when A executes sim producing cB as result, A can not “have” or “see” cB: it is a 
pointer to the memory OB, a meaningless pointer for A, such as the tokens of point 4 
of §1.1. The most of what A can see of cB is (1) the words which denote cB, as well as 
(the words for) the relations of cB; (2) corresponding words for the father, 
grandfather, sons... of cB (and words for their relations); (3) value sv, indicating how 
similar that elusive cB is to its (very solid) cA. In fact, A still has cA as “the concept I 
have been thinking all along.” When B runs sim, B can see, of course, cB, but it can 
not “see” or “grasp” cA. The most of what B can see of cA is that “agent A wants to 
talk about something of which the closest I have is cB”.15 B can sense from the words 
sent to it by A differences between its solid cB and the elusive cA of A. More in §3.3. 

                                                           
14 By §1, A can not send any node of OA to B. If later in the algorithm, A needs to send a 

relation of cA to B (such as color), it sends the words (color, hue) corresponding to such 
relation color. No concepts travel from A to B or vice versa, just words denoting them. 

15 It will not help if A is more cooperative. For instance, dumping all its OA into B’s memory 
will not help B, who will still see a tangled mesh of meaningless pointers. Well, not totally 
meaningless –some understandable words are attached to each node (concept). Yes: B can 
slowly understand (untangle) OA by comparing each concept in OA with every concept in its 
own OB –that is, by using sim! See §5 “Suggestions for further work.” 
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Generalizing sim. Function sim’(cA, dA) for two concepts belonging to the same 
ontology, is defined as 1/(1+length of the path going from cA to dA in the OA tree). ♦  
The path is through subset and superset relations; its length is the number of 
such arcs traveled. sim’(cA, dA) ∈  (0, 1]. sim’ is symmetric. Example: Figure 3. 

Relation to confusion. In [9], the confusion conf(cA, dA) occurring by using cA instead 
of dA, is defined as the length of the descending16 path from cA to dA. ♦  This 
definition holds for hierarchies; it is here extended to ontologies. If we had defined 
sim’(cA, dA) = (1/(1 + length of the descending path going from cA to dA in the OA 
tree), we would have had sim’(cA, dA) = 1/1+conf(cA, dA). We prefer, for ontologies, 
the first definition of sim’, since it is symmetric, while conf is not. Example: for 
ontology OD of figure 1, conf(liquid_food, food) = 0; the confusion when 
using liquid_food instead of food is 0, since liquid food is food. But 
conf(food, liquid_food) = 1; when I want liquid food but I am given food, 
there is an error of 1 (a small error, you could think). More in figure 3. 

 
Confusion and similarity 
for concepts x and y 
belonging to the same 
ontology OD of figure 1 

conf(x, y); 
confusion in 
using x instead 
of y 

conf(y, x); 
confusion in 
using y 
instead of x 

sim’ (x,y) = 
sim’ (y,x); 
similarity 
between x and y 

x = man,  y = living 0 2 1/3 
x = peach, y = bread 1 1 1/3 
x = bread, y = water 2 2 1/5 
x = water, y = man 3 4 1/8 
x = bread, y = coffee 2 2 1/5 
x=thing, y=wine 4 0 1/5 

 

Fig. 3. Examples of confusion and similarity (sim’) for two concepts of the same ontology (OD, 
figure 1). Function conf is not symmetric; sim’ is. 

For similarity between any two objects in different ontologies, we have: 
sim’’(cA, dB) is found by making first s1 = sv returned by sim(cA) [this also finds 

cB, the object in OB most similar to cA]; then, find s2 = sim’(dB, cB). Finally, sim’’(cA, 
dB) = s1s2. ♦  

                                                           
16 Going towards more specialized concepts. Using a person from Dallas when I want to use a 

Texan person, confusion is 0; using a Texan person when a Dallas person is needed causes 
confusion=1; using a US person causes confusion=2. 
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3.2 Degree of understanding 

The value sv found in cB = sim(cA) in §3.1 can be thought of as the degree of 
understanding that agent B has about concept cA. A concept cA that produces sv=0 
indicates that B has understanding 0 (no understanding) about that cA. Averaging 
these sv’s for all concepts in OA, gives the degree of understanding that agent B has 
about the whole ontology OA of A.17 It is as if agent A examines and asks B, for each 
concept cA ∈  OA, «Do you understand what is cA?» «How much do you understand 
cA?» At the end, A and B have a good idea of the understanding of B (about OA). 
 

The degree of understanding of B about OA, du(B, OA) = {sum over all cA ∈  OA of 
sv returned by sim(cA)} / |OA|. ♦  It is the average of the sv’s. Similarly, we can 
measure the degree of understanding of B about some region of OA. ♦  Function du is 
not symmetric. In general, an agent understands some regions better than others. If 
|OA| >> |OB|, then du(B, OA) is small: B knows little about OA, even if all parts of OA 
known to B were to have sv=1. 

du(B, OA) ≤ 1; in regions where B knows more than A, du = 1. Example: assume 
agent T has the ontology OT of figure 2 and agent N has ontology ON of figure 4. 
Then, figure 5 shows the concept cT most similar to each cN ∈  ON, as well as the 
corresponding similarity value sv. Thus, du(T, ON) = (Σ sv)/|ON| = 9.58/15 = 0.64 is 
the degree of understanding that agent T has about ontology ON. 
 
living_creature (organism, being, living creature) { 

animal (animal) 
frog (frog, tadpole)  iguana (iguana) 
diprotodon  (diprotodon) } 

plant-creature (plant, vegetal) { 
  big_plant (big plant, large plant) { 

coconut (coconut)  mango (mango) } 
small_plant (small plant) { 

strawberry (strawberry)  lemon (lemon) } } 
   bacteria (bacteria)  { 

Escherichia_Coli (Escherichia Coli, E. Coli) 
Streptococus_aureus (Streptococus Aureus, S. Aureus)} } 
 

Fig. 4. Ontology ON. The degree of understanding that agent T has about ON is 0.64 (Fig. 5) 

On the other hand (figure 6), to find out the degree of understanding that agent N 
(with ontology ON) has about ontology OT of figure 2, we need to find sim(cT) for 
each cT∈ OT, and to average their sv’s. Thus, du(N, OT) = (Σ sv)/|OT| = 10.08/47 = 
0.21 is the degree of understanding that agent N has about ontology OT. N knows less 
about OT than T about ON. The understanding of ON by T increases as each sv 
                                                           
17 B does not know how many concepts there are in OA, so it needs cooperation from A, for 

instance, when B asks A “give me the next concept from your ontology.” 

ON 
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increases and OT grows. In more realistic ontologies, relations (such as eats, 
part_of, lives_in) are also nodes of the ontology, contributing to du. 

 
cN cT = sim (cN) sv of sim 

living-creature living_creature 0.8 
animal animal 1 
plant_creature plant_creature 1 
bacteria bacteria 1 
frog frog 0.64 
iguana iguana 0.64 
diprotodon son_of animal 0.5 
big_plant son_of plant_creature 0.5 
small_plant son_of plant_creature 0.5 
coconut coconut 1 
Escherichia Coli - 0 
Streptococus Aureus - 0 
mango mango 1 
lemon lemon 1 
strawbery - 0 

 

Fig. 5. How well T knows ON. Computing du(T, ON) is like asking T how much it knows about 
each concept cN. The sv’s in the last column are the answer. Adding these sv’s and dividing into 
|ON|=15, the degree of understanding of T with respect to ON is found to be 0.64 

3.3 Finding and correcting the source of a disagreement 

§3.1 shows that agent A can not perceive or see cB directly. Given cA ∈  OA and its 
most similar concept cB ∈  OB, can A perceive in what way cB differs from its cA? 
After all, A knows from the value sv returned by sim(cA), how imperfect is the 
matching of cB to cA. 

The answer is yes, and the following Process P computes it. Agent A can ask B 
about the relations in which cB takes part [That is, arcs linking cB with other concepts 
or with words or tokens10]. It will receive the answers in words. Then, A can process 
them (through sim) to see how cA’s relations differ from those received. It can do the 
same with the father_of(cB), and with the sons_of(cB). And so on. Some words 
received will refer to relations of which A is not sure (it has no name for them, or 
there is ambiguity), so that more processing (Process P is called again) on these 
relations is needed. Sometimes, B will mention (words for) a concept in OB of which 
A is not sure (so, Process P is called again) or is not in OA. Occasionally agent A will 
receive from B assertions about cB which A has as false for cA. 
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An agent learning from another agent. For concept cA, agent A can make a note 
NcA containing what B knows about cA which differs from what A knows about cA: 
the values cB, sv, and other differences between cA and cB. NcA could be considered a 
belief about agent B: B believes NcA about cA, and NcA is not what A knows about cA. 
As one step further, agent A can internalize NcA; that is, own (believe, digest) NcA: 
agent A can learn NcA about cA from OB. For this to happen, agent A needs to 
incorporate the new relations and concepts (in NcA) into its OA, and to resolve the 
ambiguities and inconsistencies coming from NcA (some of NcA’s trios are known to 
A to be false [there is a contradiction]; others are ambiguous to A). This has been 
solved for an agent teaching a person but not yet for an agent teaching another agent. 
We have no solution now. It can be done, we think, by using other knowledge services 
in the Web to referee disagreements between OA and OB and help A decide who is 
wrong about what (the “what” is already captured in NcA). 

 
cT CN = sim (cT) sv of sim 

living_creature living_creature 0.8 
animal animal 1 
invertebrate son_of animal 0.5 
vertebrate son_of animal 0.5 
Iguana iguana 0.64 
frog frog 0.64 
plant_creature plant_creature 1 
tropical_fruit son_of plant_creature 0.5 
coconut coconut 1 
mango mango 1 
citrus son_of plant_creature 0.5 
lemon lemon 1 
bacteria bacteria 1 

 

Fig. 6. How well N knows each concept cT in ontology OT? Each answer (cN, second column) 
yields a similarity value (last column); only sv’s ≠ 0 are shown. The following concepts in OT 
found no similar concept (sv=0) in ON (N does not know them): thing, 
physical_object, insect, fly_animal, cockroach, flea, mollusk, 
reptile, lizard, batrachians, mammal, zebra, rodent, rat, 
domestic_rat, country_rat, mole_rodent, fox, cat, dog, lion, 
donkey, man, bird, chicken, duck, parrot, hawk, fish, orange, 
tangerine, rare_fruit, artificial_object, abstract_object 

4 Conclusions 

•  Methods are given to allow interaction and understanding between agents with 
different ontologies, so that there is no need to agree first on a standard set of concept 
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definitions. Given a concept and associated words, a procedure for finding the most 
similar concept in another ontology is shown, with examples, as well as a measure of 
the degree of understanding between two agents. It remains to test our methods with 
large, vastly different, or practical ontologies. 
•  Work exposed is a step towards free will interactions among agents, perhaps strange 
to each other (footnote 4), needing to make sense of their utterances. It opposes 
current trends: (1) using canned interactions (footnote 5), (2) using agents written by 
the same group, or (3) following the same data exchange standards. 
•  Interaction through standards (trend 3 above) will dominate the market for some 
time. A standard ontology in a discipline is a good thing, although it feels rigid and 
archaic after a while.18 It is easier to follow standards than to be “flexible, 
uncompromising and willing to try to understand new concepts.” Irrespective of 
standardization, our approach allows agents to be flexible and have general ways of 
trying to understand what each has to say, specially new or unusual things. 
•  A standard ontology for concept-sharing is not needed; if one is built, it will always 
lag behind, since new concepts appearing every day will not be in it. 

5 Suggestions for further work 

Machine learning. Do the internalization of NcA mentioned in §3.3; then, generalize 
to each cA ∈  OA and somehow (we do not know how now) to each cB ∈  OB. This will 
allow agent A to learn (without human help) OB from B. The new OA = its old OA 
merged with OB. Alma-Delia Cuevas works along these lines. 
Ontology merging. Is there a faster way for A to learn OB in §3.3? Surely, agent A 
can get rid of its OA and use (copy) OB instead. This is too drastic: agent A forgets or 
erases what it already knows, in favor of B’s knowledge. Perhaps A can build OB on 
top of A, and patch somehow OA to accommodate for inconsistencies. Suggestion: use 
notes NcA. This we have called ontology merging; more work is needed. Or there is 
the proposal by [16] to use words as concepts. Improvement: Add a crawler that 
combs the Web for ontologies suitable for merging. 
Better notation for ontologies.  Tree notation is cumbersome, since only one 
subset relation is represented, and often a set S is partitioned into several partitions. 
Thus, a better notation could be: 
person partition sex (=M : male_person) (=F : female_person)} 

{partition age  (≤20 : young_person) 
(20< age ≤ 50 : adult_person)  
(>50 : old_person) } 

 Similarly, graphs are cumbersome for representing n-ary relations.  When 
characterizing the relations (as another sub-tree of the ontology), you need to define 
types of partitioning relations (sex, age…), or whether the partition is a “natural” 

                                                           
18 Compare the UNESCO Catalog of Sciences (which is 30-years obsolete in Computer 

Science) with the ACM Computing Classification System, which is 2-years obsolete. 
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one, like partitioning vertebrate into fish, bird, reptile, batrachian 
and mammal. 
Agent interaction. Establish necessary or sufficient conditions for agent interaction 
lacking a communication agreement, as mentioned in §1. 
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