
PROMPT: Algorithm and Tool for Automated Ontology Merging and
Alignment

Natalya Fridman Noy and Mark A. Musen

Stanford Medical Informatics, Stanford University, Stanford, CA 94305-5479
{noy, musen}@smi.stanford.edu

Abstract
Researchers in the ontology-design field have developed the
content for ontologies in many domain areas. Recently,
ontologies have become increasingly common on the World-
Wide Web where they provide semantics for annotations in
Web pages. This distributed nature of ontology development
has led to a large number of ontologies covering overlapping
domains. In order for these ontologies to be reused, they first
need to be merged or aligned to one another. The processes
of ontology alignment and merging are usually handled
manually and often constitute a large and tedious portion of
the sharing process. We have developed and implemented
PROMPT, an algorithm that provides a semi-automatic
approach to ontology merging and alignment. PROMPT
performs some tasks automatically and guides the user in
performing other tasks for which his intervention is required.
PROMPT also determines possible inconsistencies in the
state of the ontology, which result from the user’s actions,
and suggests ways to remedy these inconsistencies.
PROMPT is based on an extremely general knowledge
model and therefore can be applied across various platforms.
Our formative evaluation showed that a human expert
followed 90% of the suggestions that PROMPT generated
and that 74% of the total knowledge-base operations invoked
by the user were suggested by PROMPT.

1 Ontologies in AI and on the Web
Ontologies today are available in many different forms: as
artifacts of a tedious knowledge-engineering process, as
information that was extracted automatically from informal
electronic sources, or as simple “light-weight” ontologies
that specify semantic relationships among resources
available on the World-Wide Web (Brickley and Guha
1999). But what does a user do when he finds several
ontologies that he would like to use but that do not conform
to one another? The user must establish correspondences
among the source ontologies, and to determine the set of
overlapping concepts, concepts that are similar in meaning
but have different names or structure, concepts that are
unique to each of the sources. This work must be done
regardless of whether the ultimate goal is to create a single
coherent ontology that includes the information from all the
sources (merging) or if the sources must be made
consistent and coherent with one another but kept
separately (alignment).

Copyright © 2000, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Currently the work of mapping, merging, or aligning
ontologies is performed mostly by hand, without any tools
to automate the process fully or partially (Fridman Noy and
Musen 1999).Our participation in the ontology-alignment
effort within DARPA’s High-Performance Knowledge-
Bases project (Cohen et al. 1999) was a strong motivation
for developing semi-automated specialized tools for
ontology merging and alignment. Several teams developed
ontologies in the domain of military planning, which then
needed to be aligned to one another. We found the
experience of manually aligning the ontologies to be an
extremely tedious and time-consuming process. At the
same time we noticed many steps in the process that could
be automated, many points where a tool could make
reasonable suggestions, and many conflicts and constraint
violations for which a tool could check.

We developed a formalism-independent algorithm for
ontology merging and alignment—PROMPT (formerly
SMART)—which automates the process as much as
possible. Where an automatic decision is not possible, the
algorithm guides the user to the places in the ontology
where his intervention is necessary, suggests possible
actions, and determines the conflicts in the ontology and
proposes solutions for these conflicts. We implemented the
algorithm in an interactive tool based on the Protégé-2000
knowledge-modeling environment (Fridman Noy et al.
2000). Protégé-2000 is an ontology-design and knowledge-
acquisition tool with an OKBC-compatible (Chaudhri et al.
1998) knowledge model, which allows domain experts (and
not necessarily knowledge engineers) to develop ontologies
and perform knowledge acquisition. We have evaluated
PROMPT, comparing its performance with the human-
expert performance and with the performance of another
ontology-merging tool.

2 Related Work
Researchers in various areas of computer science have
worked on automatic or tool-supported merging of
ontologies (or class hierarchies, or object-oriented schemas,
or database schemas—the specific terminology varies
depending on the field). However, both automatic merging
of ontologies and creation of tools that would guide the user
through the process and focus his attention on the likely
points for actions are in early stages. In this section, we
give an overview of some of the existing approaches to
merging and alignment in the fields of ontology design,
object-oriented programming, and heterogeneous databases.

2.1 Ontology Design and Integration
Researchers working on tools for ontology merging have
expended the greatest amount of effort on finding mostly
syntactic matches among concepts in the source ontologies.
Such systems rely on dictionaries to determine synonyms,
evaluate common substrings, consider concepts whose
documentation share many uncommon words, and so on
(see, for example, (Chapulsky et al. 1997) or the Scalable
Knowledge Composition project (Wiederhold and Jannik
1999)). These approaches, however, do not take into
account the semantics of concepts, the structure of the
ontology, or the steps the user takes during merging.

Ontomorph (MacGregor et al. 1999) defines a set of
transformation operators that can be applied to an ontology.
A human expert then uses the initial list of matches and the
source ontologies to define a set of operators that need to be
applied to the source ontologies in order to resolve
differences between them, and Ontomorph applies the
operators. Therefore, aggregate operations can be
performed in a single step. However, a human expert
receives no guidance except for the initial list of matches.

Chimaera (McGuinness et al. 2000) is an interactive
merging tool based on Ontolingua ontology editor
(Farquhar et al. 1996). Chimaera allows a user to bring
together ontologies developed in different formalisms. The
user can request an analysis or guidance from Chimaera at
any point during the merging process. The tool will then
point him to the places in the ontology where his attention
is required. In its suggestions, Chimaera mostly relies on
which ontology the concepts came from and, for classes, on
their names. For example, Chimaera will point a user to a
class in the merged ontology that has two slots derived
from different source ontologies, or that has two subclasses
that originated in different ontologies. Chimaera leaves the
decision of what to do entirely to the user and does not
make any suggestions itself. The only taxonomic relation
that Chimaera considers is the subclass–superclass relation.
We discuss the differences between Chimaera and
PROMPT in more detail when we discuss the results of our
comparative evaluation in Section 7.

Medical vocabularies provide a rich field for testing of
various ontology-merging paradigms. Not only is there a
wide variety of large-scale sources, but also medicine is a
field where standard vocabularies change constantly. Oliver
and colleagues explored representation of change in
medical terminologies using a frame-based knowledge-
representation system. The authors compiled a list of
change operations that are relevant for the domain of
medical terminologies, and developed a tool to support
these operations. However, the user has to do all the
operations manually; there is no automated help or
guidance.

2.2 Object-Oriented Programming
Subject-oriented programming (SOP) (Harrison and Ossher
1993)—an area of object-oriented programming—supports
building object-oriented systems through composition of

subjects. Subjects are collections of classes that represent
subjective views of, possibly, the same universe that need
to be combined. The formal theory of subject-oriented
composition defines a set of possible composition rules,
these rules’ semantics, and how the rules work with one
another. Interactive tools for subject-oriented composition
are currently under development. However, the SOP
approach relies more heavily on the operational methods
associated with classes rather than on declarative relations
among classes and slots. Alignment (as opposed to
merging) is extremely uncommon in composition of object-
oriented hierarchies, whereas it is common in ontology
design.

2.3 Integration of Heterogeneous Databases
Developers of heterogeneous databases have dealt with
issues of bringing various information sources together.
These issues include merging or mediating between
relational and object-oriented databases, varying formats
from different database vendors, varying underlying
schemas or basic assumptions. The common theme in the
research on heterogeneous databases, however, is to bridge
the gaps on demand by creating an extra mediation layer.
The approaches include:
• Develop mediators —a facility for answering queries

about an information source. Each source may have a
wrapper that works as an interface between the mediator
and the source itself. TSIMMIS is an example of such
mediator-based systems.

• Define a common data model and then map the source
and target to it .

• Specify a set of matching rules that directly translate
between source and target .

Database are usually integrated at the syntactic rather than
semantic level. And, in fact, ontologies are more
semantically complex and are often larger than database
schemas.

3 Knowledge Model
We now turn to the discussion of the PROMPT ontology-
merging and alignment algorithm. We start with the
description of the knowledge model underlying PROMPT.
The knowledge model is frame-based and it is designed to
be compatible with OKBC (Chaudhri et al. 1998). At the
top level, there are classes, slots, facets, and instances:
• Classes are collections of objects that have similar

properties. Classes are arranged into a subclass–
superclass hierarchy with multiple inheritance. Each
class has slots attached to it. Slots are inherited by the
subclasses.

• Slots are named binary relations between a class and
either another class or a primitive object (such as a string
or a number). Slots attached to a class may be further
constrained by facets.

• Facets are named ternary relations between a class, a
slot, and either another class or a primitive object. Facets

may impose additional constraints on a slot attached to a
class, such as the cardinality or value type of a slot.

• Instances are individual members of classes.
These definitions are the only restrictions that we impose
on the input ontologies for PROMPT. Since this knowledge
model is extremely general, and many existing knowledge-
representation systems have knowledge models compatible
with it, the solutions to merging and alignment produced by
PROMPT can be applied over a variety of knowledge-
representation systems.

4 The PROMPT Algorithm
Figure 1 illustrates the PROMPT ontology-merging and
ontology-alignment algorithm. PROMPT takes two
ontologies as input and guides the user in the creation of
one merged ontology as output. First PROMPT creates an
initial list of matches based on class names. Then the
following cycle happens: (1) the user triggers an operation
by either selecting one of PROMPT’s suggestions from the
list or by using an ontology-editing environment to specify
the desired operation directly; and (2) PROMPT performs
the operation, automatically executes additional changes
based on the type of the operation, generates a list of
suggestions for the user based on the structure of the
ontology around the arguments to the last operation, and
determines conflicts that the last operation introduced in the
ontology and finds possible solutions for those conflicts.

Since there are several research groups working on
methods for determining linguistic similarity among
concept names (see Section 2.1), a specific implementation
of the PROMPT algorithm will use whatever measure of
linguistic similarity among concept names is appropriate. In
our Protégé-based implementation (Section 5), we use
Protégé component-based architecture to allow the user to
plug in any term-matching algorithm. In PROMPT, we start
with the linguistic-similarity matches for the initial
comparison, but concentrate on finding clues based on the
structure of the ontology and user’s actions.

The following is at the heart of our approach: We
identify a set of knowledge-base operations for ontology
merging or alignment. For each operation in this set, we

define (1) changes that PROMPT performs automatically,
(2) new suggestions that PROMPT presents to the user, and
(3) conflicts that the operation may introduce and that the
user needs to resolve. When the user invokes an operation,
PROMPT creates members of these three sets based on the
arguments to the specific invocation of the operation.

The set of ontology-merging operations that we
identified includes both the operations that are normally
performed during traditional ontology editing and the
operations specific to merging and alignment, such as:
• merge classes,
• merge slots,
• merge bindings between a slot and a class,
• perform a deep copy of a class from one ontology to

another (includes copying all the parents of a class up to
the root of the hierarchy and all the classes and slots it
refers to),

• perform a shallow copy of a class (just the class itself,
and not its parents or the classes and slots it refers to).

We identified the following conflicts that may appear in the
merged ontology as the result of these operations:
• name conflicts (more than one frame with the same

name),
• dangling references (a frame refers to another frame that

does not exist),
• redundancy in the class hierarchy (more than one path

from a class to a parent other than root),
• slot-value restrictions that violate class inheritance.
Both lists grow as we gain more experience.

For example, suppose the user is merging two
ontologies and he performs a merge-classes operation
for two classes A and B to create a new class M. PROMPT
then performs the following actions:
• For each slot S that was attached to A and B in the

original ontologies, attach the slot to M with the same
value type and other facets. If S did not exist in the
merged ontology, create S.

• For each superclass of A and B that has been previously
copied into the merged ontology, make that copy a
superclass of M (thus restoring the original relation). Do
the same for subclasses.

• For each class C in the original ontologies to which A and
B referred (that is, for each superclass, subclass, slot
value, and class restricting a slot value of A and B), if C
has not been copied to the merged ontology, suggest that
it is copied to the merged ontology.

• For each class C that was a facet value for A or B and that
has not been copied to the merged ontology, declare a
dangling-reference conflict.

• For each pair of slots for M that have linguistically similar
names, suggest that the slots are merged. Later, if the
user chooses to merge the slots, suggest that the classes
restricting the values of these slots, are merged as well.

• For each pair of superclasses and subclasses of M that
have linguistically similar names, suggest that they are
merged: these classes have similar names and, in
addition, they were both superclasses (or subclasses) for
A and B, which the user declared to be similar.

Make initial suggestions

Select next operation

Perform automatic updates

Find conflicts

Make suggestions

Figure 1. The flow of PROMPT algorithm. The gray
boxes indicate the actions performed by PROMPT. The
white box indicates the action performed by the user.

• Check for redundancy in the parent hierarchy for M: If
there is more than one path to any parent of M (other than
the root of the hierarchy), suggest that one of M‘s parents
is removed.

Note, that PROMPT bases most of the decisions in the
preceding list on the internal structure of the concepts and
their position in the ontology and not syntax.

When we describe the tool based on the algorithm in the
next section, we outline a few other actions that can be
taken after each operation, such as rearranging the current
list of suggestions to maintain the user’s focus.

5 Protégé-based PROMPT Tool
We implemented the PROMPT ontology-merging
algorithm as an extension to Protégé-2000—the latest in a
series of knowledge-acquisition tools developed in our
laboratory (Grosso et al. 1999). Protégé-2000 is a
knowledge-base development tool, which is designed to
make it easier for domain experts to create and maintain
knowledge bases. Protégé-2000 uses direct-manipulation
techniques for ontology editing. The Protégé-2000
component-based architecture allows users to add new
features by developing plug-ins—applications that use
Protégé as the knowledge-base access layer and that use
Protégé graphical user interface to create the knowledge
base itself. PROMPT is such a plug-in for merging two
source ontologies in Protégé-2000 into one coherent
ontology. The tool and a sample interaction with it have
been described in detail elsewhere (Fridman Noy and
Musen 1999). We will outline a few of its features here.

Setting the preferred ontology. It often happens, that
the source ontologies are not equally important or stable,
and that the user would like to resolve all the conflicts in
favor of one of the source ontologies. We allow the user to
designate one of the ontologies as preferred. When there is
a conflict between values, instead of presenting the conflict
to the user for resolution, the system resolves the conflict
automatically.

Maintaining the user’s focus. Suppose a user is
merging two large ontologies and is currently working in
one content area of the ontology. We believe that the
system’s suggestions that the user sees first should relate to
the frames in the same area of the ontology in which the
user is working and should not force him to change focus to
a different part of the ontology. PROMPT maintains the
user’s focus by rearranging its lists of suggestions and
conflicts and presenting first the items that include frames
related to the arguments of the latest operations.

Providing feedback to the user. For each of its
suggestions, PROMPT presents a series of explanations,
starting with why it suggested the operation in the first
place. If PROMPT later changes the operation placement in
the suggestions list, it augments the explanation with the
information on why it moved the operation.

Logging and reapplying the operations. The process
of ontology merging or alignment is not a one-time
exercise. After the user has merged or aligned ontologies

and perhaps has even developed an application based on the
result, the source ontologies may change. This scenario is
particularly likely for distributed ontologies developed by
independent users. Ideally, reapplication of the merging or
alignment process to the changed ontologies should be
almost automatic. PROMPT logs knowledge-level
ontology-merging and editing operations. If the original
ontologies change, the user only needs to make adjustments
to the operations in the log that explicitly refer to the
changed frames and the system can then reapply the
operations automatically to merge the original ontologies
again.

6 Evaluation
We have evaluated PROMPT formatively. We measured
the quality of its suggestions, measured its utility, and
compared it to another ontology-merging tool. We
performed three controlled experiments, in which human
experts merged two ontologies using Protégé-2000 with
PROMPT, generic Protégé-2000, and Chimaera (see
Section 2.1).

The two source ontologies were the same for all the
experiments: (1) the ontology for the unified problem-
solving method development language (Gennari et al. 1998;
Fensel et al. 1999) and (2) the ontology for the method-
description language (Gennari et al. 1998). Both ontologies
describe reusable problem-solving methods, and merging
them was a real-life task in our laboratory. The source
ontologies contained the total of 134 class and slot frames,
and the resulting merged ontology had 117 frames.

All the testers had unlimited time to complete their
tasks and we did not compare the actual rate at which the
experts performed the tasks: Each merging process was
performed by one expert, and the impact of the individual
differences on any rate data is extremely significant. These
test are preliminary and we plan to perform extensive
testing with more subjects using the same sources and
protocols later.

6.1 Quality of PROMPT’s Suggestions
In the first experiment, human experts who were initially
unfamiliar with PROMPT, used Protégé-2000 augmented
with PROMPT to merge the two source ontologies. We
evaluated the quality of PROMPT’s suggestions by
measuring the following: (1) how many of the PROMPT’s
suggestions the human experts decided to follow when
merging the source ontologies, and (2) how many of the
conflict-resolution strategies that PROMPT proposed were
followed by the experts. We present the average value
among the experts.

Our results showed that the human experts followed
90% of PROMPT’s suggestions. The experts followed 75%
of the conflict-resolution strategies that PROMPT
proposed. During the merging process, PROMPT suggested
74% of the total knowledge-base operations that the users
invoked.

6.2 PROMPT versus Generic Protégé-2000
We performed an ablation experiment to determine the
value that PROMPT adds to a generic knowledge-editing
environment. Two experts initially unfamiliar with
PROMPT merged the same source ontologies: One expert
used Protégé-2000 augmented with PROMPT and the other
used the generic version of the Protégé-2000 ontology
editor. We compared the contents of the resulting merged
ontologies and the number of explicit knowledge-base
operations that each user had to specify.

The merged ontologies, which the two experts
produced, were quite similar: there was only one difference
in class hierarchy, and a number of minor differences in
slot names and their types. The user who was using the
generic Protégé-2000 was able to find all the classes that
should have been merged. However, using the generic
Protégé required performing and explicitly specifying 60
knowledge-base operations. Since PROMPT generated and
suggested most of the necessary knowledge-base
operations, the PROMPT user needed to specify explicitly
only 16 operations.

6.3 PROMPT versus Chimaera
In the third experiment, we compared the performance of
PROMPT and Chimaera, which is the tool closest to
PROMPT in the limited set of existing ontology-merging
tools (see Section 2.1).1 We used PROMPT and Chimaera
to merge the same source ontologies and we executed
exactly the same sequence of merging steps in each of the
tools. The executed operations included merging both slots
and classes. After each step, we compared the set of new
suggestions that the two systems generated. We used a
human expert who has previously merged the two
ontologies manually to judge whether the suggestions that
the systems produced were correct or not.

PROMPT had 30% more correct suggestions than
Chimaera did. Suggestions from Chimaera constituted a
proper subset of PROMPT’s suggestions. 20% of
Chimaera’s correct suggestions were roughly the same as
PROMPT’s. The remaining 80% were much less specific
than the corresponding PROMPT’s suggestions: Chimaera
pointed to the class in the ontology where action was
required, and PROMPT suggested a specific action (or
alternative actions), which were required for that frame.

7 Discussion
Our results in the first two experiments demonstrated that a
human expert agreed with a very large fraction of both the
suggestions and the conflict-resolution strategies that
PROMPT produced. PROMPT was able to perform a large
number of merging operations on its own (or with simple
“approval” of a human expert), thus saving the expert time
and effort.

1 Chimaera software is available at
http://www.ksl.Stanford.EDU/software/chimaera/

We intentionally chose the source ontologies that were
relatively small and uncontroversial to merge in order to
factor out subjective differences in the experts’ opinions.
However, choosing the source ontologies in this way made
it almost inevitable that the two resulting ontologies in the
experiment that compared Protégé-2000 augmented with
PROMPT and generic Protégé-2000 would be similar. This
approach allowed us to compare the number of operations
that needed to be generated but did not allow us to compare
the quality of results. We believe that for larger ontologies,
when it is harder for a human expert to track down all the
frames that need merging, the results would be different.
We plan to perform experiments to test that in the future.

There is a significant difference in the way Chimaera
and PROMPT guide the user in the merging process:
PROMPT presents a list of specific operations that it
suggests to the user. Chimaera points to the classes where it
determines that the user needs to do something, but it does
not specify what exactly the user needs to do there. For
instance, in the example in Figure 2, Chimaera suggested
that the class Ontology requires the user’s attention
because some of the slots of that class came from different
source ontologies. It did not specify which slots the user
needs to consider and what he needs to do. In the
corresponding case, PROMPT suggested that the axioms
slots, which came from two different ontologies, must be
merged. For classes with large number of slots, PROMPT’s
suggestion, which lists the slots, would be more helpful
than simply suggesting that there are slots in this large list
that require attention. On the other hand, the user may get
overwhelmed if there are too many specific suggestions and
in that case Chimaera’s approach may be better.

We now plan to continue experimenting with ontology-
merging and alignment to define more heuristics that will
allow us to automate a larger part of the merging and
alignment process. We will also extend our approach to

Explanation for
the suggestion

Slots axioms at the
class Ontology

need to be merged

Pointer to the class
Ontology. No indication

what slots require
attention

a)

b)
Pointer to the class

Ontology: some slots
of the class Ontology

require attention

Figure 2. Differences in suggestions between (a)
PROMPT and (b) Chimaera. PROMPT suggests that the
user merges two specific slots (axioms) of the Ontology
class. Chimaera points the user to the Ontology class
that has two slots originating from different ontologies
without specifying which slots the user needs to consider

consider standard OKBC facets, such as maximum and
minimum cardinality, inverse, and so on. We will include
instances of classes, as well as axioms that define
additional constraints on frames in the ontology.

8 Conclusions
We have described a general approach to ontology merging
and alignment. We presented PROMPT—an algorithm for
semi-automatic merging and alignment. We discussed
strategies that PROMPT uses to guide a user to the next
possible point of merging or alignment, to suggest what
operations should be performed there, and to perform
certain operations automatically. The strategies and
algorithms described in this paper are based on a general
OKBC-compliant knowledge model. Therefore, these
results are applicable to a wide range of knowledge-
representation and ontology-development systems. We
extended Protégé knowledge-modeling environment with a
tool based on the algorithm and performed an empirical
evaluation of the tool. Our results showed that PROMPT
was very effective in providing suggestions: A human
expert followed 90% of PROMPT’s suggestions. PROMPT
was also very effective in its coverage: 74% of the
knowledge-based operations invoked by the user were
suggested initially by PROMPT.

Acknowledgments
We are extremely grateful to Monica Crubézy, Ray Fergerson and
Samson Tu for participating in the evaluation experiments and for
the valuable feedback on the earlier drafts of this paper. This work
was supported in part by the grants 5T16 LM0733 and 892154
from the National Library of Medicine, by a grant from Spawar,
and by a grant from FastTrack Systems, Inc.

References
Abiteboul, S., Cluet, S. and Milo, T. (1997).
Correspondence and Translation for Heterogeneous Data.
In: Proceedings of the International Conference on
Database Theory (ICDT).
Brickley, D. and Guha, R.V. (1999). Resource Description
Framework (RDF) Schema Specification. Proposed
Recommendation, World Wide Web Consortium:
http://www.w3.org/TR/PR-rdf-schema.
Chapulsky, H., Hovy, E. and Russ, T. (1997). Progress on
an Automatic Ontology Alignment Methodology.
Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D. and
Rice, J.P. (1998). OKBC: A Programmatic Foundation for
Knowledge Base Interoperability. In: Proceedings of the
Fifteenth National Conference on Artificial Intelligence
(AAAI-98), Madison, Wisconsin, AAAI Press.
Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr,
B., Gunning, D. and Burke, M. (1999). The DARPA High-
Performance Knowledge Bases Project. AI Magazine 19(4):
25-49.
Farquhar, A., Fikes, R. and Rice, J. (1996). The Ontolingua
Server: a Tool for Collaborative Ontology Construction. In:

Proceedings of the Tenth Knowledge Acquisition for
Knowledge-Based Systems Workshop, Banff, Canada.
Fensel, D., Benjamins, V.R., Motta, E. and Wielinga, R.
(1999). UPML: A Framework for knowledge system reuse.
In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-99), Stockholm, Sweden.
Fridman Noy, N., Fergerson, R.W. and Musen, M.A.
(2000). The knowledge model of Protégé-2000: combining
interoperability and flexibility. Stanford Medical
Informatics Technical Report, Stanford University.
Fridman Noy, N. and Musen, M.A. (1999). SMART:
Automated Support for Ontology Merging and Alignment.
In: Proceedings of the Twelfth Banff Workshop on
Knowledge Acquisition, Modeling, and Management,
Banff, Alberta.
Garcia-Molina, H., Papakonstantinou, Y., Quass, D.,
Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V. and
Widom, J. (1997). The TSIMMIS approach to mediation:
Data models and Languages. Journal of Intelligent
Information Systems.
Gennari, J.H., Grosso, W. and Musen, M.A. (1998). A
method-description language: An initial ontology with
examples. In: Proceedings of the Eleventh Banff Knowledge
Acquisition for Knowledge-Bases Systems Workshop,
Banff, Canada.
Harrison, W. and Ossher, H. (1993). Subject-Oriented
Programming (A Critique of Pure Objects). In: Proceedings
of the Conference on Object-Oriented Programming:
Systems, Languages, and Applications (OOPSLA’93),
Washington, DC, ACM Press.
MacGregor, R., Chalupsky, H., Moriarty, D. and Valente,
A. (1999). Ontology Merging with OntoMorph.
http://reliant.teknowledge.com/HPKB/meetings/meet04079
9/Chalupsky/index.htm
McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S.
(2000). An Environment for Merging and Testing Large
Ontologies. In: Proceedings of the Seventh International
Conference on Principles of Knowledge Representation and
Reasoning (KR2000), Breckenridge, Colorado.
Milo, T. and Zohar, S. (1998). Using Schema Matching to
Simplify Heterogeneous Data Translation. In: Proceedings
of the 24th International Conference on Very Large Data
Bases, New York City, Morgan Kaufmann.
Oliver, D.E., Shahar, Y., Shortliffe, E.H. and Musen, M.A.
(1999). Representation of Change in controlled medical
terminologies. Artificial Intelligence in Medicine 15: 53-76.
Ossher, H., Kaplan, M., Katz, A., Harrison, W. and
Kruskal, V. (1996). Specifying Subject-Oriented
Composition. Theory and Practice of Object Systems 2(3):
179-202.
Wiederhold, G. (1992). Mediators in the architecture of
future information systems. IEEE Computer 25(3): 38-49.
Wiederhold, G. and Jannik, J. (1999). Composing Diverse
Ontologies. In: Proceedings of the IFIP Working Group on
Database, 8th Working Conference on Database Semantics
(DS-8), Rotorua, New Zealand.

