
Representing and Reasoning about Mappings between Domain Models

Jayant Madhavan
University of Washington
jayant@cs.washington.edu

Philip A. Bernstein
Microsoft Research

philbe@microsoft.com

Pedro Domingos
University of Washington

pedrod@cs.washington.edu

Alon Y. Halevy
University of Washington
alon@cs.washington.edu

Abstract

Mappings between disparate models are fundamental to any
application that requires interoperability between heteroge-
neous data and applications. Generating mappings is a labor-
intensive and error prone task. To build a system that helps
users generate mappings, we need an explicit representation
of mappings. This representation needs to have well-defined
semantics to enable reasoning and comparison between map-
pings. This paper first presents a powerful framework for
defining languages for specifying mappings and their associ-
ated semantics. We examine the use of mappings and identify
the key inference problems associated with mappings. These
properties can be used to determine whether a mapping is ad-
equate in a particular context. Finally, we consider an in-
stance of our framework for a language representing map-
pings between relational data. We present sound and com-
plete algorithms for the corresponding inference problems.

1 Introduction
The emergence of the World-Wide Web (WWW) and the
promise of the Semantic Web have refocused our attention
on building systems in which knowledge can be shared in an
ad hoc, distributed environment. For example, information
integration systems allow queries to be answered using a set
of data sources on the WWW or across several databases in
an enterprise. The Semantic Web goes a step further, and
envisions a less centralized architecture where agents can
coordinate tasks using rich ontologies.

A crucial element of all these system architectures is the
ability to map between different models of the same or re-
lated domains. It is rare that a global ontology or schema can
be developed for such a system. In practice, multiple ontolo-
gies and schemas will be developed by independent entities,
and coordination will require mapping between the different
models. Such a mapping will be a set of formulae that pro-
vide the semantic relationships between the concepts in the
models. There will always be more than one representation
of any domain of discourse. Hence, if knowledge and data
are to be shared, the problem of mapping between models is
as fundamental as modeling itself.

In current systems, mappings between models are pro-
vided manually in a labor-intensive and error-prone process,
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which is a major bottleneck to scaling up systems to a large
number of sources. Recently, several tools have been devel-
oped to provide support for constructing mappings. The ap-
proaches underlying these tools are usually based on heuris-
tics that identify structural and naming similarities between
models (Noy & Musen 2000; Rahm & Bernstein 2001) or
on using machine learning to learn mappings (Doan, Domin-
gos, & Halevy 2001; Lacher & Groh 2001; Doan et al. 2002;
Berlin & Motro 2002). In both cases, the systems require
feedback from a user to further refine a proposed mapping.

Our opening claim in this paper is that the study of map-
pings between models needs to be recognized as an impor-
tant item on the research agenda. A robust tool for aiding
users to generate mappings will need the ability to incor-
porate heuristics (domain dependent and independent), use
machine learning techniques, and incorporate user feedback.
To exploit all of these techniques in concert and in a princi-
pled fashion, we must have an explicit and well-defined rep-
resentation of mappings that enables reasoning about map-
pings and evidence supporting these mappings, comparing
between different mappings, and ultimately, learning map-
pings.

First, we must define semantics for such mappings. We
therefore offer a framework for defining representations of
mappings with associated semantics (Section 3). An in-
stance of the framework is a particular mapping language,
where the source and destination representation languages
have been fixed. The framework makes three important
contributions. First, it enables mapping between models
in vastly different representation languages (e.g, relational
data, XML, RDF, DAML+OIL (Horrocks, van Harmelen, &
Patel-Schneider 2001)) without first translating the models
into a common language. Second, the framework introduces
a helper model in the mapping, which is needed in cases
where it is not possible to map directly between a pair of
models. Third, the framework enables representing map-
pings that are either incomplete or lose information.

While this paper focuses on the issue of representing
mappings and reasoning about them, the problem of gen-
erating the mappings is still the ultimate goal. Our recent
work on the problem of generating mappings (Doan, Domin-
gos, & Halevy 2001; Madhavan, Bernstein, & Rahm 2001;
Doan et al. 2002) has led us to the conclusion that in or-
der to make further progress on the problem we need a well



founded representation of mappings. With such a represen-
tation, we will be able to combine in a principled way dif-
ferent types of knowledge about mappings and make some
inferences that will further help the process. Previous work
has mostly avoided defining mapping semantics formally ei-
ther because the focus was on how to obtain the mappings,
or because finding mappings was a part of other application
dependent goals (e.g., ontology merging, data migration),
and hence the properties of mappings themselves were not
investigated.

A mapping between models rarely maps all the concepts
in one model to all the concepts in another, because mod-
els don’t usually cover precisely the same domains. As a
result, there are usually several possible mappings, so we
need a way of determining whether a mapping is acceptable
for a particular task. In Section 4 we identify a core set of
properties that can be used to determine whether a mapping
suffices for a particular context: (1) the ability to answer
queries over a model, (2) inference of mapping formulas,
and (3) compositionality of mappings.

As our final contribution, we demonstrate the applica-
tion of the framework to a particular mapping language that
maps between relational models. The mapping language
we consider is the one used in several data integration sys-
tems (Levy, Rajaraman, & Ordille 1996; Duschka & Gene-
sereth 1997; Friedman & Weld 1997; Lambrecht, Kamb-
hampati, & Gnanaprakasam 1999; Gribble et al. 2001).
However, the point of this section is not to argue for this
particular language, but to illustrate our framework on one
concrete (and important) case. We describe sound and com-
plete algorithms for deciding each of the above properties.
These results are also of independent interest in answering
queries using views (Halevy 2001) and information integra-
tion.

2 Problem definition
In this section we first demonstrate the pervasive role that
mappings between models play in several applications, and
then outline the desiderata for formalisms specifying and
manipulating such mappings.

Mappings between models are the foundation behind the
following classes of applications:
Information integration and the Semantic Web: In many
contexts, data resides in a multitude of data sources (e.g.,
many databases within an enterprise, data sources on the
WWW, etc). Data integration enables users to ask queries in
a uniform fashion, without having to access each data source
independently (or even know about the existence of multi-
ple sources). In an information integration system, users ask
queries over a mediated schema, which captures only the as-
pects of the domain that are salient to the application. The
mediated schema is solely a logical one (no data is stored
in it), and mappings are used to describe the relationship
between the mediated schema and the schemas of the data
sources. The Semantic Web goes one step further. Here,
there is no central mediated schema, tasks involve actions
in addition to queries, and coordination is achieved using
ontologies. Here too, mappings between ontologies are nec-
essary for agents to interoperate.

Data migration: The goal of data migration is to take
data/knowledge from an external source and merge it with
some existing data stored using a different schema or ontol-
ogy. In many cases, some information may be lost in the
transformation since the external source does not necessar-
ily represent the same aspects of the domain as the local
one. Here too, the migration needs to be guided by a map-
ping between the external and internal representations. In
data warehousing, several data sources are used to populate
a data warehouse, which is later used for analysis queries.
Here it is usually assumed that some information is lost dur-
ing the loading of the warehouse (e.g., the warehouse may
have only summary data, rather than detailed data).
Ontology merging: Several applications require that we
combine multiple ontologies into a single coherent ontol-
ogy (Noy & Musen 2000; Stumme & Maedche 2001). In
some cases, these are independently developed ontologies
that model overlapping domains. In others, we merge two
ontologies that evolved from a single base ontology. The
first step in merging ontologies is to create a mapping be-
tween them. Once the mapping is given, the challenge of a
merge algorithm is to create a minimal ontology that covers
the given ones.

The creation of mappings will rarely be completely auto-
mated. However, automated tools can significantly speed up
the process by proposing plausible mappings. In large do-
mains, while many mappings might be fairly obvious, some
parts need expert intervention. There are several approaches
to building such tools. The first (and more prevalent) uses a
wide range of heuristics to generate mappings. The heuris-
tics are often based on structure (e.g., if two classes match,
then some of their sub-classes probably match), or based
on naming (course and class may refer to the same con-
cept). In some cases, domain-independent heuristics may
be augmented by more specific heuristics for the particular
representation language or application domain. A second
approach is to learn mappings. In particular, manually pro-
vided mappings present examples for a learning algorithm
that can generalize and suggest subsequent mappings.

Our ultimate goal is to build a system that uses a multitude
of techniques to help users construct mappings. The sys-
tem will combine different heuristics, hypotheses of learn-
ing modules and user feedback to guide the mapping pro-
cess. Such a system needs a principled representation of
mappings that it can manipulate in a well defined fashion.
To fill this need, in the next section we offer a framework
in which mappings between models can be defined. The
framework can be instantiated to a particular context by con-
sidering a specific language (or set of languages) relevant to
that context. The following example illustrates the issues
involved.

Example 1 Figure 1 includes two different models of a
domain of students. The first model, MyUniv, is in
DAML+OIL (Horrocks, van Harmelen, & Patel-Schneider
2001) (i.e., a description logic). The second one, YourUniv,
is a relational schema.

The ontology MyUniv includes the concepts STUDENT
with subclasses ARTS-STD and SCI-STD and COURSE with



STUDENT

ARTS-STD SCI-STD

CITY GPA

COURSE

ARTS-CRS SCI-CRS

student(s-number,address,major, gpa,gender)
enrolled-in(s-number,c-number)
course(c-number,description)Taken

Lives-in Grade

MyUniv YourUniv

Figure 1: Models of the student domain

subclasses ARTS-CRS and SCI-CRS. The binary relation-
ship Taken represents the courses taken by students, and the
relationships Grade and Lives-in represent properties of stu-
dents. Lives-in is constrained to have the value “myCity”.

The schema YourUniv includes the tables student, course
and enrolled-in. In addition, the schema includes an integrity
constraint specifying that the attribute address must contain
the string “yourCity”. Our goal is to specify a mapping be-
tween the two models.

The first issue illustrated by this example is that we need
to specify a mapping between models in different represen-
tation languages. The second issue is that not all concepts
in one model exist directly in the other. For example, arts
students in MyUniv are identified by a concept, while in You-
rUniv they can only be identified by a query (all students
with major=“arts”). A majority of works in the related litera-
ture have concentrated more on obtaining simple correspon-
dences between concepts, and have ignored richer mappings
such as this. Also note that some concepts in one model
might not have corresponding ones in the other (gender of
students in YourUniv).

A more subtle issue is that the mapping cannot simply
equate MyUniv.STUDENT with YourUniv.student. The con-
straints on the addresses imply that these are disjoint sets
(assuming that myCity and yourCity are distinct). The only
way to relate the students in the different models is to define
a third model that represents a set of students from (at least)
both cities, and then relate MyUniv and YourUniv to the third
model. 2

To summarize our discussion, we pose the following
desiderata for representations of mappings:
Clear semantics: The meaning of mappings should be for-
mally defined. The semantics will provide a basis for rea-
soning about mappings (e.g., determining whether two map-
pings are equivalent or if a certain mapping formula is en-
tailed by a mapping), combining evidence to propose likely
mappings, and learning mappings.
Accommodate incompleteness: Incompleteness can arise
in two ways: (1) because of loss of information when the
two models cover different domains, and (2) when a certain
concept can be mapped between the models, but the map-
ping is unknown or hard to specify. An example of the latter
would occur if the two universities had different grading sys-
tems, and there is no direct mapping between them. The key
point here is that even if the mapping is incomplete, it still
may suffice for the task at hand. Detecting this is one of the
important issues of interest to us.
Allow heterogeneity: By nature, mappings between models

will involve multiple representation languages. Therefore, a
mapping language needs to be able to represent mappings
between models in different languages. An alternative ap-
proach would be to first translate all the models into a com-
mon representation language, and then specify mappings as
formulas in this language. However, it is often desirable to
avoid the problems associated with designing a single repre-
sentation language for all models (such as finding a suitably
rich language in which inference is still tractable).

3 Mappings: syntax and semantics
We now define the basic terms we use for our framework.
Unfortunately, the term “model” is overloaded. In our dis-
cussion we use the word model to denote a representation
of a domain in a formal language, and use logical model to
refer to an interpretation that satisfies all the formulas in a
model. Our description considers mapping between a pair
of models, but the framework can be extended in a straight-
forward way to multiple models.

Representation languages and models: We represent a
domain of discourse using a set of expressions in some for-
mal representation language. In this paper we consider lan-
guages with formal semantics (e.g., First-order logic, De-
scription Logics, Horn rules, relational schemata, graph-
structured data such as XML). We denote a language used
in a representation by L possibly with a subscript. The set
of expressions to represent a domain is called a model, and
is denoted by T . We do not assume that the model is closed
under logical deduction or even that reasoning in the repre-
sentation language is decidable.

A model of a domain is often (but not always!) specified
in two parts, terminological and extensional. The first part
identifies the concepts in the domain and relations between
them (or the set of relations in a relational schema). The
second part populates the model with facts about specific in-
dividuals in the domain. The phrase an extension of a model
T refers to a model in which we added an extensional com-
ponent to the terminological component T . If T has a single
component, then the phrase simply refers to T itself.

Expressions and formulas: A mapping between models
consists of a set of relationships between expressions over
the two models. An expression is built from the terms in the
language and a set of operators. In order to be comparable,
the expressions need to have compatible output types. For
example, a SQL query produces a relation; a concept in a
description logic represents a unary relation. An XML query
language generates as output a nested XML document.

The expression language used in a mapping varies de-
pending on the languages of the models being mapped. For
our semantics to be well defined, we require the following:
given a model T in a language L and an instance ā of the
data type of the output of an expression e, and an interpre-
tation I of T , the question of whether I satisfies e(ā) (i.e.,
I |= e(ā)) is well defined in L (and hence, T |= e(ā) is
well defined as well). This essentially means that the set of
outputs of an expression is well defined. Note that we don’t



require the entailment to be decidable. Also note that the
output of an expression can be a constant.

A formula relates expressions over two models. Given
two models T1 (in language L1) and T2 (in L2), a formula
over T1 and T2 is of the form e1 op e2, where e1 and e2 are
expressions, and the operator op is well defined w.r.t. the
output types of e1 and e2. For example, if both expressions
have relations as output types, then op can be =,⊆, and if
they both output numeric constants, then op can be ≥,≤,=.
If e1 outputs a constant and e2 outputs a unary relation, then
op can be ∈. Note that given an interpretation I1 (I2) for T1

(T2), {I1, I2} |= e1 op e2 is well defined.
This ability of a formula to relate expressions of different

languages implies a measure of compatibility between the
languages, namely that some of their types are in common.
This aspect of formulas is what enables us to define map-
pings between models in different representation languages.

Syntax of mappings

We are now ready to define the syntax of a mapping between
models T1 and T2.

Definition 1 Let T1 and T2 be models in languages L1 and
L2 respectively. A mapping between T1 and T2 may include
a helper model T3 (in language L3), and consists of a set of
formulas each of which is over (T1, T2), (T1, T3) or (T2, T3).

Example 2 One possible mapping between YourUniv and
MyUniv uses a helper model Univ, a relational schema with
tables Student, Course, Arts-Std, Sci-Std, Arts-Crs, and Sci-
Crs. The following are examples of the mapping formulae.
Univ.Student(std,ad,gpa)⊇ MyUniv.STUDENT(std) ∧

MyUniv.Lives-in(std,ad) ∧ MyUniv.Grade(std,gpa)
Univ.Student(std,ad,gpa)⊇YourUniv.student(std,ad,x,gpa,y)
Univ.Arts-Std(std)⊇MyUniv.ARTS-STD(std)
Univ.Arts-Std(std)⊇YourUniv.student(std,x,“arts”,y,z)

The first two formulae map students in the two universi-
ties to the single student concept in the helper model. The
other two formulae map art students and art majors to a sin-
gle table for arts students. Other mappings can be defined
similarly.

Semantics of mappings

The semantics of a model constrains its possible interpreta-
tions by specifying which ones are logical models. The se-
mantics of a mapping between two models is a constraint on
the pairs of interpretations (or triplets, when a helper model
is used), and therefore specifies which pairs of interpreta-
tions can co-exist, given the mapping. Formally, satisfaction
of a mapping is defined as follows:

Definition 2 Let M be a mapping between the models T1

and T2, and assume that M also involves a helper model
T3. Let Ii be an interpretation of an extension of Ti for
i = 1, 2, 3. The triplet (I1, I2, I3) satisfies the mapping M
if the following hold:

• Ii is a logical model of Ti, for i = 1, 2, 3, and

• For each formula e ∈ M , {I1, I2, I3} |= e.

In practice, it is often useful to restrict mappings to be
conservative augmentation of the models being mapped. In-
tuitively, a mapping is a conservative augmentation if it does
not entail new facts within the model, given the mapping.
Formally, M is a conservative extension of T1 if whenever
I1 |= T1, there exist I2 and I3 such that (I1, I2, I3) |= M .

Note that in examples 1 and 2, if the mapping formulae
were simple equalities between expressions in the two mod-
els, their semantics would not be well-defined. There can be
no interpretations of the two models over a common domain
of discourse (body of students) since they have conflicting
constraints on the city addresses of students. The use of the
helper model enables a well-defined mapping.

There are a few points worth noting about our framework.
First, the mapping formulae can be fairly expressive, and
therefore it is possible to represent complex relationships
between models. In particular, the expression language may
even translate data elements in one model into schema ele-
ments in another (or vice versa), which is an important fea-
ture in practice. Second, though we have only emphasized
mapping between concepts (or schema elements) here, the
framework can also be used to map between data elements in
the two models. Finally, our semantics are defined in terms
of instances in the domain (interpretations map instances in
the domain of discourse to elements in the models). How-
ever, that does not mean that we must have actual instances
in the models; in fact, many ontologies do not have associ-
ated instances. Even in such cases, since these ontologies
have well-defined semantics, there exists some implicit in-
terpretation over their intended domains of discourse.

4 Important properties of mappings
In this section we identify several important properties of
mappings that are worth studying. These properties are
needed to decide whether a mapping is adequate for a partic-
ular task at hand. The first property is query answerability.
A mapping between two models rarely maps all the concepts
in one model to all concepts in the other. Instead, mappings
typically lose some information and can be partial or incom-
plete. However, lossy mappings can be adequate for some
tasks. Query answerability is a formalization of this prop-
erty. The second property, mapping inference, provides a
reasoning tool for determining whether mappings are equiv-
alent. Mapping composition enables creating mappings be-
tween models that are related by intermediate models.

Query answerability: Mappings are typically required to
enable a certain task. For example, in data integration a
mapping is adequate if it enables the answering of queries
over the mediated schema. For data migration, a mapping
is adequate if we can populate the target schema, given an
extension of the source schema. For ontology or schema
merging, the merged ontology is adequate if we can use it to
answer all the queries that were answerable in the original
ontologies. Hence, it seems natural to consider a mapping
adequate if it enables correct answering of a certain set of
queries over the models at hand (note that the set of queries
may be infinite!). We define the problem formally as fol-



lows. (The definition is written w.r.t. queries over T1, but it
can be defined similarly for queries over T2).

Definition 3 Let M be a mapping between models T1, T2

and an optional helper model T3, and let Q be a query over
T1. We say that the mapping M enables query answering of
Q if the following holds.

Let T2’ be an extension of T2. Let I be the set of interpre-
tations of T1 for which there exists an interpretation I3 of T3

and a logical model I2 of T2’ such that (I1, I2, I3) |= M .
Then, for every tuple of constants ā, either I1 |= Q(ā) for
every I1 ∈ I or I1 6|= Q(ā) for every I1 ∈ I.

Informally, the definition states that given an extension of
T2, it uniquely determines the answers for Q over T1.

Example 3 Consider the two models in example 1. For
simplicity we ignore the constraints on the addresses, and
hence, there is no need for a helper model. Instead, con-
sider that the grades at the two universities are on different
scales. Consider the mapping formula
YourUniv.student(std,x,y,α×gpa,z) =

MyUniv.STUDENT(std)∧MyUniv.Grade(std,gpa)
where α is an unknown conversion factor between the
grades. Consider the following two queries over MyUniv,
(1) max-grade :- Max{ gpa | MyUniv.Grade(std,gpa)}, and
(2) high-grade(std,gpa) :- MyUniv.Grade(std,gpa) ∧ gpa ≥
3.8

The mapping formula enables answering query (1) on
YourUniv because the max does not depend on the particular
scale, i.e., given any database of students for YourUniv, the
answer to max-grade will be uniquely determined. However
the mapping does not enable answering query (2) because
the answers to the query will differ depending on the value
of α.

Mapping Inference: A formal semantics for mappings
enables a precise definition of several reasoning tasks. One
particularly important task is determining whether a given
mapping formula is entailed by a mapping (in which case,
it doesn’t provide new information). This, in turn, enables
other reasoning tasks such as (1) whether two mappings are
equivalent, and (2) whether a mapping is minimal (i.e., re-
moving any formula from the mapping loses information).
We formalize the mapping inference problem as follows:

Definition 4 Let M be a mapping between models T1 and
T2, and let e be a formula over T1 and T2. The mapping
inference problem is to determine whether M |= e, i.e.,
whether whenever (I1, I2, I3) |= M , then (I1, I2, I3) |= e,
where (I1, I2, I3) are interpretations for T1, T2 and a helper
model T3, respectively.

Mapping Composition: The need to compose mappings
arises when we need to piece together a mapping given other
mappings. In its simplest form, given two mappings from
models T0 to T1 and T1 to T2, we might have to obtain a
mapping directly between T0 and T2. Formally, the problem
is defined as follows.

Definition 5 Let M01 be a mapping between models T0 and
T1, and M12 be a mapping between models T1 and T2.
Let e be a formula over T0 and T2. The mapping compo-
sition problem is to determine whether {M01,M12} |= e,
i.e., whether whenever a triple of interpretations (I0, I1, I2)
for T0, T1, T2 respectively, satisfies (I0, I1) |= M01 and
(I1, I2) |= M12 then (I0, I1, I2) |= e.

In section 5, we solve the problems of query answerability,
mapping inference and mapping composition for a mapping
language over relational representations.

5 Mappings between Relational Models
In this section we consider a specific instance in our frame-
work, show that the properties discussed in the previous
section can be decided, and specify the complexity of the
decision problems. The language we consider expresses
mappings between a pair of relational-database models (i.e.,
schemas). Formally, each model includes a set of relations,
and an extension of the model includes a set of ground facts
for each relation. The expressions in our language are of the
following form:

q(X̄) ⇔ p1(X̄1) ∧ . . . ∧ pn(X̄n)

where the pi’s are database relations, X̄i and X̄ are tuples of
variables (and X̄ ⊆ X̄1 ∪ . . . ∪ X̄n). The variables in X̄ are
called distinguished and the other variables are called exis-
tential. The distinguished variables are assumed to be uni-
versally quantified, while the others are existentially quanti-
fied. We also use the same notation to describe queries, and
the answer to the query is the set of tuples for X̄ . We note
that although simple, this is a rather expressive language,
since it enables defining relations in a very common subset
of the SQL query language.

A formula in our language has the form q1(X̄) = q2(X̄),
where q1 (q2) is defined by the left-hand side of a single ex-
pression over the relations in T1 (T2). We assume mappings
that are conservative augmentations. Recall that this only
means that a mapping cannot entail new conclusions about
the schema but still allows to deduce new ground facts.

Our results assume the following restriction on map-
pings in our language: a mapping is said to be variable-
partitionable if whenever a variable x appears in position i
of relation R in one of the formulae in a mapping M , and
is an existential variable in the formula, then there is no for-
mula in M where a variable that appears in position i of R
is distinguished. Note that this property holds trivially in the
common case where the expressions in M do not contain
existential variables.

Our first result concerns query answerability in our lan-
guage. In the complexity analysis we are mostly concerned
with the size of data in T1 and T2.

Theorem 1 Let M be a variable-partitionable mapping be-
tween models T1 and T2, and let Q be a query in our lan-
guage. The problem of deciding whether M enables answer-
ing Q is NP-complete. 2

The proof is based on showing that M enables answering
Q if and only if there exists an equivalent rewriting of the



query Q using the expressions over T1 used in M . The latter
problem is NP-complete (Halevy 2001). 2

Our next result shows that reasoning about mappings is
decidable:

Theorem 2 Let M be a mapping between models T1 and
T2, and let u(X̄) = v(X̄) be a mapping formula. If
M is variable-partitionable, then the problem of deciding
whether M |= u(X̄) = v(X̄) is NP-complete. 2

The proof of Theorem 2 is quite lengthy and omitted be-
cause of space limitations. Below we sketch the algorithm
underlying the proof.

Suppose M is of the form ui(X̄) = vi(X̄) for 1 ≤ i ≤ k,
where the ui’s and the vi’s are defined using expressions
in the language. The ui’s are defined over the schema of
T1 and the vi’s over T2. We denote by Qv (resp. Qu) the
rewriting of v (resp. u) using v1, . . . , vk (resp. u1, . . . , uk).
The rewriting can be found using the techniques in (Halevy
2001).

We denote by Qu
v

the result of substituting ui for vi in
Qv . Note that Qu

v
is an expression over the schema T1. The

algorithm checks that (1) Qv is equivalent to v, and (2) Qu
v

is equivalent to u, and outputs that M |= u(X̄) = v(X̄)
if and only if both (1) and (2) hold. Equivalence checking
for these expressions is NP-complete (Sagiv & Yannakakis
1981). 2

It should be noted that the above algorithm is sound even
when M is not variable-partitionable.

Example 4 Consider two relational models identical to
YourUniv (from example 1) - Univ1 and Univ2. Model Univi

has tables studenti, enrolled-ini and coursei (i=1,2). Con-
sider the following view definitions,

Major-Genderi(std,mjr,gnd) :- studenti(std,x,mjr,y,gnd),
Some-Classi(std) :- enrolled-ini(std,x),
Some-Studenti(crs) :- enrolled-ini(x,crs), and
Majori(std,mjr) :- studenti(std,x,mjr,y,z).

Consider the mapping M = { course1 = course2, Some-
Class1 = Some-Class2, Major-Gender1 = Major-Gender2}.
Note that Majori is rewritable in terms of Major-Genderi, but
Some-Studenti is not rewritable in terms of coursei, Some-
Classi and Major-Genderi. It follows that,

• Given an extension of Univ2, M enables answering of
Major1, but does not enable answering of Some-Student1.

• M implies Major1 = Major2, but does not imply Some-
Student1 = Some-Student2.

Our final result shows that compositionality is also decid-
able for our language:

Theorem 3 Let T0, T1 and T2 be models, and let M01 (resp.
M12) be a variable-partitionable mapping between T0 and
T1 (resp. T1 and T2). Let e be a formula over T0 and T2.
Deciding whether M01,M12 |= e is NP-complete.

The proofs for each of the results in this section are avail-
able in the full version of our paper.

6 Discussion and Related Work
Thus far, our discussion has focused on manipulating map-
pings mostly as a form of logical reasoning. The next steps

are to incorporate inaccurate mappings and handle uncer-
tainty about mappings. Inaccuracy arises because in many
contexts there is no precise mapping. Reasoning about un-
certainty of mappings is necessary because the generation of
mappings often involves combining different heuristics and
learned hypotheses. The two issues are highly intertwined,
because heuristics are often used as a vehicle to choose the
best mapping when no perfectly accurate one exists. We be-
lieve that some form of first-order probabilistic representa-
tion of mappings will be the appropriate tool for representing
mappings, but none of the existing proposals (e.g. (Pfeffer et
al. 1999)) provide sufficient expressive power for reasoning
about formulas with variables and quantification.

In general, mappings may be inaccurate for multiple rea-
sons: either the mapping language is too restricted to express
more accurate mappings, or the concepts in the two models
simply do not match up precisely. As an example of the for-
mer, in ontology mapping, it might not be possible to get an
exact mapping when mapping formulae are restricted to be
one-one correspondences between concepts.

When no accurate mapping exists, the issue becomes
choosing the best mapping from the viable ones. A com-
mon heuristic is to restrict the language for expressing the
mapping in order to prune the search space (of viable map-
pings). Mapping formulae or correspondences are produced
in one of two ways: (1) applying a set of matching rules (Mi-
tra, Wiederhold, & Jannink 1999; Noy & Musen 2000;
Stumme & Maedche 2001), or (2) evaluating interesting
similarity measures that compare and help choose from the
set of all possible correspondences (Calvanese et al. 2001;
Melnik, Garcia-Molina, & Rahm 2002; Lacher & Groh
2001; Doan et al. 2002). These heuristics often use syn-
tactic information such as the names of the concepts or
nesting relationships between concepts. They might also
use semantic information such as the inter-relationship be-
tween concepts (slots of frames in (Noy & Musen 2000)),
the types of the concepts, or the labeled-graph structure of
the models (Calvanese et al. 2001; Melnik, Garcia-Molina,
& Rahm 2002). Other techniques use data instances be-
longing to input models to estimate the likelihood of these
correspondences (Doan, Domingos, & Halevy 2001; Lacher
& Groh 2001; Stumme & Maedche 2001; Berlin & Motro
2002). Several systems also have powerful features for the
efficient capture of user interaction (Noy & Musen 2000;
McGuinness et al. 2000). In (Chalupsky 2000), an expres-
sive rule language is proposed to support transformations
between different symbolic representations. In (Rahm
& Bernstein 2001) the authors survey the schema matching
techniques in the database literature.

It should be noted that in some contexts there may be
other factors than accuracy that affect the choice of map-
ping, such as the cost of applying the mapping to data. For
example, in a data management application, mappings that
result in more efficient query execution plans may be pre-
ferred.

The work of (Calvanese, Giuseppe, & Lenzerini 2001) de-
scribes a specialization of our framework to ontology inte-
gration. Their goal is to define the semantics of an ontology
integration system whose sources are described by different



ontologies. Since they focus on data integration, they require
a global mediated ontology, whereas in our framework a me-
diated ontology will exist only if it makes sense for the task
at hand. They do not address any of the inference questions
that we outlined in Section 5.

The results we presented in Section 5 make use of the the-
ory of answering queries using views (Friedman, Levy, &
Millstein 1999; Halevy 2001), but extend the theory in im-
portant ways. We defined the notion of mappings enabling
query answering, and showed the exact role that equivalent
rewritings, which have been studied in that literature, play
in this context. In addition, we presented results on equiv-
alence and compositionality of mappings, which were not
studied in previous work.

7 Conclusions
Mappings are crucial components of many applications. To
reason simultaneously about multiple models, we need well-
defined semantics for mappings. In addition to representing
mappings and making inferences across models, this enables
us to combine multiple techniques to mapping generation. In
this paper we proposed a framework and associated seman-
tics for mappings. We demonstrated an instantiation of our
framework to answer questions about query answerability,
mapping inference and composition for relational models.

Our work lays the foundation for research towards a
broader goal of building a system that combines multiple
techniques in helping users create mappings between mod-
els. The system should be able to improve over time and
even transfer knowledge from one mapping task to another
when appropriate. The next step in this work is to develop
an appropriate probabilistic representation of mappings that
enables capturing both inaccuracy and uncertainty.
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