
Data & Knowledge Engineering 67 (2008) 140–160
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/ locate/datak
Matching large ontologies: A divide-and-conquer approach

Wei Hu *, Yuzhong Qu, Gong Cheng
School of Computer Science and Engineering, Southeast University, Nanjing 210096, PR China
a r t i c l e i n f o

Article history:
Received 28 January 2008
Received in revised form 9 June 2008
Accepted 11 June 2008
Available online 20 June 2008

Keywords:
Ontology matching
Data integration
Semantic heterogeneity
0169-023X/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.datak.2008.06.003

* Corresponding author. Tel: +86 25 5209 0908; f
E-mail addresses: whu@seu.edu.cn, whu1982@gm
a b s t r a c t

Ontologies proliferate with the progress of the Semantic Web. Ontology matching is an
important way of establishing interoperability between (Semantic) Web applications that
use different but related ontologies. Due to their sizes and monolithic nature, large ontol-
ogies regarding real world domains bring a new challenge to the state of the art ontology
matching technology. In this paper, we propose a divide-and-conquer approach to match-
ing large ontologies. We develop a structure-based partitioning algorithm, which partitions
entities of each ontology into a set of small clusters and constructs blocks by assigning RDF
Sentences to those clusters. Then, the blocks from different ontologies are matched based
on precalculated anchors, and the block mappings holding high similarities are selected.
Finally, two powerful matchers, V-DOC and GMO, are employed to discover alignments in
the block mappings. Comprehensive evaluation on both synthetic and real world data sets
demonstrates that our approach both solves the scalability problem and achieves good pre-
cision and recall with significant reduction of execution time.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Semantic Web is an effort by the W3C Semantic Web Activity to achieve data integration and sharing across different
applications and organizations. Ontologies, as a new representational form of knowledge, play a prominent role in the devel-
opment and deployment of the Semantic Web. To date, the popularity of ontologies is rapidly growing, and the amount of
available ontologies continues increasing. For example, an ontology search engine, SWOOGLE [12], reports that it has collected
more than 10,000 ontologies on the Web so far.

Due to the decentralized nature of the Web, there usually exist multiple ontologies from overlapped application domains
or even within the same domain. In order to establish interoperability between (Semantic) Web applications that use differ-
ent but related ontologies, ontology matching has been proposed as an effective way of handling the semantic heterogeneity
problem. It is typically useful to some data management applications, such as information integration and distributed query
processing.

Generally, the well-known ‘‘80/20” rule applies in ontology matching [1]. Automatic matching algorithms and tools can
automate 80% of the work, covering common cases and creating results that are close to correct. As surveyed in [16], a wide
range of characteristics in ontologies to be matched are exploited by existing approaches, such as linguistic descriptions (e.g.,
rdfs:label), structural information (e.g., rdfs:subClassOf) and data instances. In addition, some of them also utilize background
knowledge from thesauri or third parties’ ontologies. The rest 20% requires manual contribution to perfect portions of the
results. Past work mainly focuses on human collaboration [40,65] and matching visualization [1,9,17,36], which significantly
facilitate matching understanding and refinement. In this paper, we aim at proposing automatic approaches for ontology
matching.
. All rights reserved.

ax: +86 25 5209 0880.
ail.com (W. Hu), yzqu@seu.edu.cn (Y. Qu), gcheng@seu.edu.cn (G. Cheng).

mailto:whu@seu.edu.cn
mailto:whu1982@gmail.com
mailto:yzqu@seu.edu.cn
mailto:gcheng@seu.edu.cn
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak

Phase 1.1

Computing
structural

proximities

Phase 1.2

Partitioning

Phase 1.3

Constructing
blocks

Phase 2.1

Finding
anchors

Phase 2.2

Generating
block

mappings

Phase 3.1

V-Doc
matcher

Phase 3.2

GMO
matcher

<1, c1, c2, = , 1.0 >

<2, c3, c4, = , 0.5 >

<3, c5, c6, = , 0.8 >

<4, p3, p4, = , 0.6 >

ontologies
blocks

block mappings

alignments

Phase 1:
Partitioning ontologies

Phase 2:
Matching blocks

Phase 3.3

Combination

Phase 3:
Discovering alignments

Fig. 1. Overview of the approach.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 141
Based on our investigation, most of the state of the art automatic approaches are merely applicable for small-scale ontol-
ogies, and the effectiveness of these approaches decreases for large ontologies. As concluded in the latest Ontology Align-
ment Evaluation Initiative 2007 (OAEI) [15], 17 ontology matching tools joined the campaign, but only four tools
(including the one described in this paper) accomplished all the three matching tasks with large ontologies (Anatomy, Food
and Library). But, the other three tools, namely DSSIM [43], RIMOM [58] and PRIOR+ [39], do not really solve the large ontol-
ogy matching problem. DSSIM manually partitions large ontologies into several smaller pieces, while RIMOM and PRIOR+ use
simple string comparison techniques as alternatives.

As of today, there are quite a lot of applications that require matching large ontologies. For example, in library manage-
ment, large book classification categories, such as Brinkman and GTT thesauri,1 are needed to be integrated to remove redun-
dant books. For another example, in the medicine and biology domains, large life-science ontologies, e.g., GALEN2 and FMA [50],
are required to be matched in order to provide a uniform service for access and manipulation [63]. Therefore, these emerging
demands on matching large ontologies bring a new challenge to the state of the art ontology matching technology.

It is our goal in this paper to explore ways of matching large ontologies. The main principle of our approach is based on
the divide-and-conquer philosophy. The framework of the approach is illustrated in Fig. 1. Specifically, the input is two large
ontologies to be matched. The approach firstly partitions the entities (i.e., classes and properties) of each ontology into a set
of small clusters by measuring their structural proximities, and then constructs blocks via assigning RDF Sentences [64] (i.e.,
a kind of integrated units over RDF triples) to the clusters (Phase 1). Those blocks are matched based on precalculated an-
chors (i.e., matched entities gained beforehand), and block mappings (i.e., matched blocks with high similarities) are selected
(Phase 2) to be further matched by two powerful matchers, V-DOC [46] and GMO [27], for outputting alignments (Phase 3). In
this paper, we focus on the ontologies written in RDFS [5] or OWL [45], because they are the latest common formats recom-
mended by W3C for publishing ontologies. Furthermore, the work in [8] has analyzed 3959 ontologies available on the Web,
in which 3258 (nearly 82%) are expressed in RDFS or OWL.

Our approach has two major advantages. Firstly, it solves the scalability problem of matching large ontologies, i.e., it does
not suffer from lack of memory (e.g., the ‘‘out of memory” error, which is caused by not enough memory to be allocated).
According to the OAEI 2007 report, most matching tools can only work on small ontologies with hundreds of entities, while
our approach can deal with very large ontologies with ten thousands of entities. Secondly, it significantly decreases the exe-
cution time with pretty good quality. For example, two large ontologies are provided in the Anatomy track of OAEI 2007 [15],
each one contains about 3000 entities. DSSIM, RIMOM and PRIOR+ spend 75 min, 4 h and 23 min to complete the task, respec-
tively, while our approach merely takes 12 min. More importantly, as compared to DSSIM, RIMOM and PRIOR+, our approach
achieves better (or at least comparable) precision and recall.

It is also worthy of noting that the approach presented in this paper substantially improves our previous conference paper
[30] with the following aspects: (1) it utilizes RDF Sentences [64] as basic units to construct blocks from the clusters. RDF
Sentences provide more integrated syntactic and semantic structures than RDF triples (i.e., statements), since they encapsu-
late blank nodes. As a result, the completeness of blank nodes, which is the lowest requirement for blocks, is preserved; (2) it
extends the partitioning algorithm for properties in ontologies, while our previous work only copes with class hierarchies;
(3) it integrates two powerful matchers, V-DOC and GMO, to discover alignments; and (4) we comprehensively evaluate our
approach on both synthetic and real world data sets. In the synthetic test, two new kinds of metrics (the partitioning quality
1 http://stitch.cs.vu.nl/ – semantic interoperability to access cultural heritage.
2 http://www.opengalen.org/.

http://stitch.cs.vu.nl/
http://www.opengalen.org/

142 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
and the mapping quality) are defined to assess the effectiveness of our approach. In the real world test, we attended OAEI
2007 and compared our approach with other participants.

The remainder of this paper is organized as follows: Section 2 defines the terminologies and notations used in this paper.
Section 3 discusses related work. Section 4 presents the computation of structural proximities, the partitioning algorithm
and the construction of blocks. Section 5 introduces the approaches to anchor generation and block matching. Section 6 sum-
marizes two matchers V-DOC, GMO and our combination strategy. Section 7 reports experimental results on both synthetic
and real world data sets. Finally, Section 8 concludes the paper with future work.

2. Problem formulation

An ontology is a formal, explicit specification of a shared conceptualization [21]. In this paper, we use a basic definition of
ontologies based on the RDF graph model [35,45], which is general enough to cover most of the state of the art large
ontologies.

Definition 1. (ontology) An ontology O is a set of RDF triples T. Any RDF triple t (t 2 T) denotes a statement of the form
hsubject;predicate;objecti. Any node in an RDF triple may be a URI with an optional local name (URIref), a literal, or a blank
node (having no separate form of identification). A predicate is always a URIref, and a literal cannot be a subject.

Without explanation, ontologies shown in this paper are expressed in RDFS or OWL. An OWL ontology can easily be trans-
formed to an RDF graph [45]. In our notation, we use c to represent a class and p to represent a property. The specification [5]
provides the basic mechanism to recognize classes and properties from nodes in RDF triples. For simplicity, classes and prop-
erties are uniformly called entities (d denotes an entity). In this paper, we consider an ontology containing more than one
thousand entities as a large ontology.

Ontology matching (also called mapping or aligning) aims at discovering alignments (also named mappings, correspon-
dences or matches) between semantically similar entities in different ontologies. These alignments might stand for equiva-
lence as well as other relationships, such as subsumption or disjointness, between entities [16]. Alignments can be used in a
variety of applications, such as ontology merging, query answering, data translation or for browsing the Semantic Web. In-
spired by the definitions in [54], we define ontology matching as follows.

Definition 2. (ontology matching) Let O;O0 be two ontologies. Matching O with O0 finds a set of alignments
A ¼ fa1; a2; . . . ; ang. Each ai (i ¼ 1;2; . . . ;n) is a 5-tuple: hid1; d; d0; u; vi, where id1 is a unique identifier; d is an entity in O,
and d0 is an entity inO0; u is an equivalence (=), subsumption (v orw) or disjointness (?) relationship holding between d and
d0; and v is a similarity between d and d0 in the ½0;1� range.

In this paper, matching large ontologies specifically indicates each of the ontologies to be matched is large, rather than
matching a large amount of small ontologies (called holistic matching in [25]). Furthermore, we only consider the equiva-
lence relationship between entities.

Precisely defining blocks requires the notion of the RDF Sentence, so we first give the definition of the RDF Sentence [64].
An equivalent definition of the RDF Sentence is the minimum self-contained graph [60]. Following the theorems in [60], an
RDF graph can be decomposed into a unique set of RDF Sentences.

In RDF (also RDFS and OWL), there is a special kind of nodes, called blank nodes (or bnodes), which are not identified by
URIs. Blank nodes are a sort of existentially quantified resource whose meaning is in the scope of the triples it appears. RDF
triples sharing a common blank node provide an integrated structure indicating a joint context of the blank node, and if such
triples are separated, the context is broken. For example, in the left part of Fig. 2, the ontology O has a blank node _:genid,
which is shared by three RDF triples: t1; t2; t3. Those three triples form a restriction structure, which constrains a Reference
at least has one Author. At present, RDF semantics [35] does not provide any intrinsic mechanism to guarantee this kind of
structure. We define it as an RDF Sentence.

We say that two RDF triples are b-connected if they share blank nodes. An RDF Sentence is the maximum closure of the b-
connected RDF triples.3

Definition 3. (RDF Sentence) Let O be an ontology. An RDF Sentence s is a set of RDF triples, which satisfies the following
conditions:

(1) s � O;
(2) 8ti; tj 2 s, i 6¼ j, ti; tj are b-connected;
(3) 8ti 2 s; tj 62 s, ti; tj are not b-connected.
3 In implementation, ontology parsing tools usually assign system-generated internal names to blank nodes. We transform an RDF graph into an undirected
triple graph, where each vertex represents an RDF triple in the original RDF graph. An edge exists between two RDF triples iff they contain blank nodes having
the same name. We call that the two RDF triples share a blank node. Then, each connected component in the triple graph forms an RDF Sentence.

rdfs:subClassOf

rdfs:subClassOf

rdfs:range

Reference

Book

Inproceedings

Au thor

has Author

_:genid

owl:onPr ope rty

rdfs:subClassOf

rdfs:dom ain

1

owl:minCardina lity

rdfs:subClassOf
rdfs:subClassOf

rdfs:range

Entry

Book ConferencePaper

Author

hasA uthor

_:genid

owl:onPr ope rty

rdfs:subClassOf

rdfs:dom ain

1

owl:minCardina lity

< 1, b1, b1', 1.0 >

b1

b2

b3

b1'

b2'

b3'

< 2, Re fe re nce , Entry, =, 1.0 >

O O'Monograph

rdfs:subClassOf

Person

rdfs:subClassOf

b1 t1: < Reference, rdfs:subC lassOf, _:genid >
 t2: < _:genid, owl:onP rope rty, hasAuthor >
 t3: < _:genid, owl:minCardina lity , "1" >
 t4: < Inproceedings , rdfs:subC lassOf, Reference >
 t5: < Book, rdfs:subC lassOf, Reference >
 t6: < Monograph, rdfs:subC lassOf, Book >

b2 t7: < Author, rdfs:subC lassOf, Person >

b3 t8: < hasAuthor, rdfs:dom ain, Reference >

 t9: < hasAuthor, rdfs:range , Author >

b1' t1': < Entry, rdfs:subC lassOf, _:genid >
 t2': < _:genid, owl:onP rope rty, hasAuthor >
 t3': < _:genid, owl:minCardina lity , "1" >
 t4': < ConferencePaper, rdfs:subC lassOf, Entry >
 t5': < Book, rdfs:subC lassOf, Entry >

b3' t6': < hasAuthor, rdfs:domain, Entry >
 t7': < hasAuthor, rdfs:range , Author >

rdfs
owl

= "h ttp ://www.w3.org/2000/ 01/ rdf-schema#"
= "h ttp ://www.w3.org/2002/ 07/owl#"

Fig. 2. A toy example.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 143
An RDF triple whose subject is not a blank node is defined as a main RDF triple. In principle, an RDF Sentence is composed
of a main RDF triple, and all the other triples in the RDF Sentence are b-connected to it. The subject of an RDF Sentence is the
subject of its main RDF triple.

Now, we give the definition of blocks by using RDF Sentences as basic units instead of RDF triples.
Generally speaking, a block can be viewed as a subset of an ontology (i.e., a set of triples). Compared to a module [20] or a

cluster [22], a block is neither strictly complete in logics nor merely a set of entities. For example, in [20], an ideal module
guarantees to capture the meanings of the entities in an OWL DL ontology. That is, when answering arbitrary queries against
an ontology, importing the module would give us exactly the same answers as if we had imported the whole ontology. A
cluster is comprised of a set of similar entities grouped together. A partitioning breaks all the entities in an ontology into a
set of clusters, satisfying: (1) for any two different clusters, they are disjoint; and (2) the union of all the clusters equals
to the entire set of the entities.

Definition 4. (block) Let O be an ontology and D be a set of all the entities in O. A partitioning, G, of D, breaks D into a set of
clusters fg1; g2; . . . ; gng, which satisfies: (1) 8gi; gj, i; j ¼ 1;2; . . . ;n and i 6¼ j, gi

T
gj ¼ ;; and (2) g1

S
g2
S
� � �
S

gn ¼ D. Let bi be
the block corresponding to a cluster gi (i ¼ 1;2; . . . ;n). bi is a union of RDF Sentences (bi ¼ s1

S
s2
S
� � �
S

sm), where each sk

(k ¼ 1;2; . . . ;m) satisfies subjectðskÞ 2 gi. 8bi; bj, i; j ¼ 1;2; . . . ;n and i 6¼ j, bi
T

bj ¼ ;.

In this paper, we carefully differentiate between clusters and blocks. A cluster is a set of entities, while a block is a set of
RDF triples. For any two different blocks, the triples in the two blocks are disjoint. But, the entities contained in these triples
may overlap. Furthermore, the union of all the blocks occasionally does not equal to the entire ontology, because a kind of
RDF triples is missing: those triples with blank nodes as subjects that have never been objects (e.g., owl:AllDifferent).

A block mapping is a pair of matched blocks from two ontologies. We refer to the process of discovering block mappings as
block matching. In this paper, please note that we allow a block to appear in several block mappings and do not specify the
relationship of two blocks within a block mapping.

Definition 5. (block matching) Let B;B0 be two sets of blocks derived from two ontologies O;O0, respectively. Block matching
B with B0 finds a set of block mappings BM ¼ fbm1; bm2; . . . ; bmng. Each bmi (i ¼ 1;2; . . . ; n) is a 4-tuple: hid2; b; b

0
; f i, where

id2 is a unique identifier; b; b0 are two blocks in B;B0 respectively; and f is a similarity between b and b0 in the ½0;1� range.

To help understanding, we illustrate a toy example here. Let us see the two ontologies shown in Fig. 2 (typing triples are
not depicted in the figure). The ontology O in the left part includes six classes Reference, Book, Inproceedings, Mono-
graph, Person and Author; and one property hasAuthor. We can generate three blocks b1; b2; b3 (enclosed by dotted lines)
from three clusters g1 ¼ fReference;Book;Inproceedings;Monographg; g2 ¼ fAuthor;Persong; g3 ¼ fhasAuthorg.
Note that the triples among b1, b2 and b3 are disjoint, not the entities. For example, hasAuthor is shared by b1 and b3,
but the RDF triple t8 only belongs to b3. The ontology O0 in the right part has five entities: Entry, Book, ConferencePaper,

144 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
Author and hasAuthor. We may also generate three blocks b01; b
0
2; b

0
3 (enclosed by dotted lines as well). Some block

mappings may be found such as h1; b1; b
0
1;1:0i. Some alignments might also be discovered such as h2;

Reference;Entry;¼;1:0i.

3. Related work

Although quite a lot of work has addressed the ontology matching problem, there are few generic approaches that raise
the issue of matching large ontologies. In this section, we will focus on discussing related work on large ontology matching.
Regarding matching small ontologies, it has been well surveyed in literature, and we refer the reader to [14,16,31,44,48,54].

3.1. Large ontology matching

To match large ontologies, a few light-weight ontology matching approaches, on the one hand, can be directly used. For
example, edit-distance based methods [37,55] compute the similarity between two strings (e.g., rdfs:label(s)) by counting the
number of operations required to transform one of them into the other. Because they only compare two strings in each time,
they do not have the scalability limit and can be applied to match ontologies with any size. On the other hand, some work
adapts the matching algorithms to reduce memory consumption. For example, the work in [42] simplifies a graph matching
algorithm to match two large medical taxonomies by only considering the direct children and grandchildren of entities. Be-
sides, using proper data structures (e.g., sparse matrices) and secondary storage (e.g., hard disks) might also facilitate large
ontology matching. Compared with these methods, our approach addresses the problem from another direction based on the
divide-and-conquer strategy.

In addition, there exist some domain-specific approaches that address matching large ontologies in particular areas (e.g.,
in biology [34,63] and geography [9]). Usually, they utilize certain light-weight methods to gain initial candidates and use
domain knowledge to infer alignments. AOAS [63] is a representative tool that is heavily specialized on matching biomedical
ontologies and makes extensive use of medical background knowledge. For the Anatomy track in OAEI 2007, it takes a broad-
er ontology FMA as the background knowledge to further improve the initial results. Because these approaches heavily de-
pend on domain knowledge, they are not general-purpose solutions and easily fail when such knowledge is unavailable. But,
if there is proper background knowledge, they can find some complex and interesting alignments.

In OAEI 2007, three generic ontology matching tools, DSSIM [43], RIMOM [58] and PRIOR+ [39], took part in all the three
tracks with large ontologies. DSSIM designs a query-like framework, which expands each entity from one of the two ontol-
ogies to be matched to a query fragment in terms of WordNet.4 RIMOM is based on the risk minimization model and integrates
seven different ontology matching strategies, each one aims at a specific ontological information. PRIOR+ is an automatic ontology
mapping tool based on propagation theory, information retrieval technique and artificial intelligence model. Although the three
tools showed their results for the large ontology matching tracks, they do not propose methods to solve the problem. DSSIM

manually divides large ontologies into small blocks, while RIMOM and PRIOR+ adopt edit-distance based methods as alternatives.

3.2. Ontology partitioning

In the first stage of our approach, two ontologies are partitioned into two sets of blocks, so it may be broken down into the
category of ontology modularization. Among the literature, some representative work is in [20,52,56]. The work in [52] intro-
duces a way of constructing stand alone fragments by exhaustively traversing various links (i.e., properties) from a specified
entity. The work in [56] presents a framework based on Distributed Description Logics, which uses bridge rules to support
modularization. But, the mechanism for manipulating the sizes of the modules is not clear. The work in [20] studies the prob-
lem of extracting minimal modules by approximation in the context of collaborative ontology development and controlled
integration, which makes the sizes of the modules relatively small. These ontology modularization approaches have realized
the importance of scalability and made progress in reducing the sizes of modules, however, they still have the scalability
problem and are inapplicable in the context of matching large ontologies yet. For example, by applying the approach in
[20] to GALEN, the maximum module still owns more than 7000 entities, which is not an easily manageable scale for the
state of the art matching approaches. Our partitioning approach aims at controlling the sizes of blocks, while it still satisfies
the lowest requirement for modules, i.e., the completeness of blank nodes in blocks [60]. However, please note that, if such
modularization approaches could flexibly control the sizes of modules in the future, they might be used to replace our par-
titioning approach.

Although the major contribution of the work in [59] is ontology visualization, it also gives a way of partitioning large
ontologies by using a data clustering algorithm (the Force Directed Placement algorithm). The basic ideas of the approach
in [59] and our approach are the same, and both of them transform ontologies into graphs and use clustering algorithms
to partition the graphs. However, compared to it, not only does our approach partition entities in an ontology to disjoint clus-
ters hierarchically, but it also uses RDF Sentences to recover RDF triples to the clusters, while the method in [59] does not
provide any mechanism to preserve the triples that contain blank nodes.
4 http://wordnet.princeton.edu/.

http://wordnet.princeton.edu/

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 145
3.3. Block matching

To the best of our knowledge, BMO [28] and COMA [2,13,49] are the only two work we know so far that consider the block
matching problem. BMO matches two ontologies from a linguistic perspective and generates a similarity matrix. Afterwards,
it applies a spectral partitioning algorithm to that similarity matrix to obtain block mappings directly. Because it requires to
match two full ontologies, it may suffer from the scalability problem and be not feasible to match large ontologies. Besides, it
uses a linguistic measure to calculate the distances between entities, so the quality of its generated blocks is not good.

COMA is a generic schema and ontology matching tool, providing a collection of elementary matchers and a flexible infra-
structure to combine those matchers. It develops a fragment-based matching method to solve the large schema matching
problem. It transforms each ontology into a directed acyclic graph and decomposes the graph from top to bottom. During
decomposition, when the number of entities in any block exceeds a pre-defined value, a compaction function would be
called to the bottom entities in the block. As a result, the descendants of a bottom entity are all represented by the entity,
and another block starts construction. It is originally used to partition database schemas or XML schemas, which are usually
represented as trees rather than complex graphs, so it does not well fit ontologies that have complex structures. Another
problem is that it ignores the different features of classes and properties. So, the partitioning quality of COMA is not very good.
Besides, when matching fragments, it merely uses the local descriptions of roots to represent the whole fragments, therefore
some matched fragments may be skipped.

In schema matching (see [14,48]), IMAP [10] semi-automatically finds both 1:1 and very complex alignments (e.g.,
room� price ¼ room� rate � ð1þ tax� rateÞ). It embeds two kinds of domain knowledge (overlapped data and external
data) to infer complex alignments. However, it is hard to specify the domain knowledge in some cases, and the granularity
of those complex alignments is low. ARTEMIS [6] is another work that vaguely presents the idea of block matching. It computes
the 1:1 alignments between two schemas by using WordNet and generates block mappings from the 1:1 alignments via a
clustering algorithm. This is similar to the framework of BMO. Hence, it also suffers from the high computational complexity
for finding the 1:1 alignments.

4. Partitioning ontologies

In this section, we will first present the measure of structural proximities (see Phase 1.1 in Fig. 1). Then, we will introduce
an agglomerative algorithm to partition entities into a number of clusters based on the structural proximities (Phase 1.2).
Finally, we will describe the construction of blocks by assigning RDF Sentences to the clusters (Phase 1.3).

4.1. Computing structural proximities

According to the investigation in [3], a large number of ontology design patterns are employed during the development of
ontologies. For large ontology construction, we highlight two design principles. The first principle is named the classification
principle, which categorizes and specifies concepts (e.g., in FMA [50]) so that the taxonomy feature is depicted; the second
one is the modularization principle [56], which provides different levels of granularity to support maintenance and re-use.
These two kinds of principles are mainly revealed in the hierarchies of large ontologies, i.e., embedded in the rdfs:subClassOf
and rdfs:subPropertyOf relationships between entities. They inspire us to measure the hierarchical distances in order to char-
acterize their structural proximities.

Structural proximities between classes are defined based on how closely they are related in the hierarchies of the rdfs:sub-
ClassOf relationships. Let ci; cj be two classes in a given ontology O, the structural proximity between ci and cj is:
5 http
proxðci; cjÞ ¼
2 � depthðcijÞ

depthðciÞ þ depthðcjÞ
; ð1Þ
where cij is the common superclass of ci and cj, and depthðckÞ gets the depth of ck in the original class hierarchy (i.e., without
inferencing). Please note that these class hierarchies of large ontologies are usually represented as directed acyclic graphs (if
there exists any cycle, we break up the cycle by arbitrarily removing an edge) rather than trees, so the depth of ck is not un-
ique. In this paper, we choose the maximum one as the depth of ck, since it is most specific in semantics. Also, the common
superclass of ci and cj is not unique, so we choose the one, which has the maximum depth, as the common superclass of ci

and cj.
Formula (1) gives two meanings: (1) the deeper the common superclass of two classes is, the closer the two classes are;

and (2) the structural proximity of two classes strengthens as their depths increase. For example, let us consider five classes:
Object, Human, Animal, Woman and Man. Woman and Man are two subclasses of Human, while Human and Animal are two
subclasses of Object. Hence, Woman and Man are closer than Human and Animal. (If we assume that the depth of Object
is 1, then proxðMan;WomanÞ ¼ 2 � 2=ð3þ 3Þ > 2 � 1=ð2þ 2Þ ¼ proxðHuman;AnimalÞ.)

Formula (1) has also been presented in [59] for ontology browsing. In practice, for many popular ontology visualization
tools such as Protégé,5 class hierarchies are the most important structure for browsing. Also, in large ontologies, the number
://protege.stanford.edu/.

http://protege.stanford.edu/

146 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
of the rdfs:subClassOf relationships is considerably dominant as compared to others. For instance, GALEN contains nearly
10,000 classes and 30,000 RDF triples excluding typing triples and annotations, in which more than 18,000 triples are about
rdfs:subClassOf. Moreover, for thesauri such as Brinkman, they only have the rdfs:subClassOf relationships.

The hierarchies of the rdfs:subPropertyOf relationships between properties are not so prevalent as the ones between clas-
ses. Therefore, structural proximities between properties are computed not only by how closely they are placed in the hier-
archies but also by whether they have overlapped rdfs:domain(s). The properties with the overlapped rdfs:domain(s) serve for
the same class, so they are related. Let pi; pj be two properties in a given ontology O, the structural proximity between pi and
pj is:
proxðpi;pjÞ ¼
depthðpijÞ

depthðpiÞ þ depthðpjÞ
þ
jdomðpiÞ

T
domðpjÞj

jdomðpiÞj þ jdomðpjÞj
; ð2Þ
where pij is the common super-property of pi and pj, depthðpkÞ gets the depth of pk in the original property hierarchy, and
domðpkÞ gets the domain(s) of pk.

Besides, two optimizations are adopted: (1) some entities are identified as the same in a preprocessing stage, such as two
entities are explicitly declared identical by using the owl:equivalentClass or owl:equivalentProperty relationships; and (2) only
the structural proximities of entities having adjacent depths are measured in order to reduce the computational complexity,
i.e., only computing the structural proximities of entities satisfying jdepthðdiÞ � depthðdjÞj 6 1. It is worthy of noting that this
approximation is often used in structure-based partitioning approaches (e.g., in [42]).

Let us see the example shown in Fig. 3. Given an ontology in the left part of the figure, after executing Phase 1.1, the struc-
ture proximities between the entities are depicted in the right part of the figure.

4.2. Partitioning

The objective of a partitioning algorithm is to partition a set of vertices V into a set of disjoint clusters g1; g2; . . . ; gn, where,
by certain measure, the cohesiveness among the vertices in a cluster gi is high; meanwhile the coupling crossing different
clusters gi; gj is low. In the context of this paper, we seek to partition entities of an ontology into several clusters, so that
the structural proximities among the entities in a cluster are high, while those crossing different clusters are low. Please note
that the computed clusters satisfy the two conditions given in Section 2, i.e., any two different clusters are disjoint; and the
union of all the clusters equals to the complete set of the entities.

The partitioning algorithm proposed in this paper is an agglomerative (i.e., bottom-up) partitioning algorithm mainly ex-
tended from ROCK [22], which is a very scalable agglomerative clustering algorithm in the area of data mining. The main dif-
ference between ROCK and our algorithm is that we use the cutð Þ function as the criterion function in order to improve the
efficiency. Another difference is that we consider floating point values (i.e., structural proximities) between entities instead
of binary values.

As the criterion function, cutð Þ is designed to calculate both the cohesiveness and the coupling, which measures the dis-
tance of two clusters by considering the aggregate inter-connectivity of them. Let gi; gj be two clusters and W be the struc-
tural proximity matrix between entities, the cutð Þ between gi and gj is defined as follows:
cutðgi; gjÞ ¼
P

di2gi

P
dj2gj

Wðdi;djÞ
jgij � jgjj

; ð3Þ
when gi and gj are the same, it computes the cohesiveness of the cluster, i.e., cohesiveðgiÞ ¼ cutðgi; giÞ; when gi and gj are dif-
ferent, it computes the coupling between them, i.e., couplingðgi; gjÞ ¼ cutðgi; gjÞ.

Similar cutð Þ functions are often introduced in spectral clustering [11,32,53] and information retrieval (e.g., cosine
similarity [47]). In our experiment, we also evaluate two popular variations jgij þ jgjj and logðjgij � jgjjÞ instead of the
rdfs:subClassOf

rdfs:subClassOf

rdfs:range

Reference

Book

Inproceedings

has Author

_:genid

owl:onPr ope rty

rdfs:subClassOf

rdfs:dom ain

1

owl:minCardinality

Author

Reference

BookInproceedings

has Author

Author
0.5

0.670.67

Monograph

Person

rdfs:subClassOf

rdfs:subClassOf

Monograph

0.80.4

Person

0.67

Fig. 3. An example about computing structural proximities.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 147
denominator in Formula (3). The experimental results show that our choice is better than the other two denominators, be-
cause they sometimes make the sizes of clusters heavily imbalanced (i.e., the skewed partitioning). In addition, using a uni-
form function to calculate both cohesiveness and coupling is also proposed in [51], called silhouette coefficient.

Our partitioning algorithm is illustrated in Fig. 4, which follows the popular framework of agglomerative partitioning
[23]. It accepts as input a set of entities to be clustered. Initially, it constructs a cluster for each entity. The cohesiveness
of an entity is its depth in the ontology hierarchy (Line 5). As a result, the more specific entities can be selected earlier
for merging. During an iteration, it selects the cluster gs having the maximum cohesiveness (Line 9) and searches for the clus-
ter gt that has the maximum coupling with gs (Line 10). After merging gs and gt to create a new cluster gp (Line 16), it updates
the cohesiveness of gp as well as its coupling with other ones (Lines 17–20). If gs is fully isolated (Line 13), we set its cohe-
siveness to zero (a trick in implementation), which implies that selecting it to merge further provides no benefit. The algo-
rithm terminates (Line 11) if the maximum number of the entities in any cluster exceeds � or there is no cluster whose
cohesiveness is larger than zero (indicating that it is unnecessary to continue merging, since every cluster is completely sep-
arated). In practice, � is determined based on the memory requirements of the following matchers such as GMO [27].

One may think that it is costly to update the cohesiveness and coupling when a new cluster is created. In fact, it is not
necessary to re-sum the structural proximities between the entities in the new cluster. For instance, let gp be the new cluster
merged from gs and gt , the sum of the structural proximities in gp can be computed as follows:
X

di2gp

X

dj2gp

Wðdi; djÞ ¼
X

di2gs

X

dj2gs

Wðdi;djÞ þ
X

di2gt

X

dj2gt

Wðdi; djÞ þ
X

di2gs

X

dj2gt

Wðdi; djÞ: ð4Þ
Recall Formula (3), the sum of the structural proximities in gs (or gt) could be generated by multiplying the cohesiveness of gs

(or gt) to ðjgsj � jgsjÞ (or ðjgt j � jgt jÞ). Also, the sum of the structural proximities between gs and gt can be got by multiplying the
coupling between gs and gt to ðjgsj � jgt jÞ. In the past steps, the cohesiveness and coupling have already been computed. In our
algorithm shown in Fig. 4, we use u to represent this optimization (Line 17 and Line 19).
Fig. 4. Partitioning algorithm.

148 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
Compared to some other data clustering approaches [23], our algorithm has two strengths: (1) it is efficient in our context
of large ontology matching. The time complexity of our algorithm is Oðn2Þ, where n is the number of entities (n ¼ jDj). The
maximum times of iterations for partitioning is n. In each iteration, the most time-consuming step is updating the coupling
of gp with others (Line 18). It takes at most k times, where k is the number of clusters in that iteration (k � n). Assuming that
we do not sort clusters by the cohesiveness (or coupling), thus selecting gs (or gt) spends no more than k times. Totally, the
time complexity is Oðn2Þ. In general, the time complexity of agglomerative partitioning is at least Oðn2Þ [23], hence our algo-
rithm has already achieved that lower bound. The time complexity of spectral clustering [11,32,53] (a kind of divisive par-
titioning) is even higher due to the high computational cost of singular value decomposition (Oðn3Þ); and (2) it is a
hierarchical algorithm, which can form a dendrogram (a typical type of tree structure) consisting of layers of clusters at dif-
ferent levels of granularity by saving the merging history. Thus, we can flexibly extract clusters with different scale according
to running environment. However, partitional clustering approaches such as K-MEANS [38] require to specify the number of
clusters in advance, which is difficult to decide in our scenario. Please note that extensive evaluation on clustering algo-
rithms is out of the scope of this paper.

Let us consider Fig. 5. Based on the structural proximities depicted in Fig. 3, by running the partitioning algorithm illus-
trated in Fig. 4 (Phase 1.2), the seven entities in Fig. 5 are partitioned into three different clusters g1; g2; g3. Every cluster is
just a set of entities. From the figure, we find that the partitioning result is reasonable: the four entities about publication are
grouped into g1, while classes and properties are separated into disjoint clusters.

4.3. Constructing blocks

In the previous subsection, all the entities in an ontology are partitioned into a set of disjoint clusters. However, these
clusters cannot be directly used for existing ontology matching approaches, because the RDF triples connecting these entities
are missing. Hence, we need to recover the triples to the clusters, i.e., constructing blocks from the clusters (Phase 1.3 in Fig.
1).

A very simple approach is by assigning each RDF triple to a cluster in which at least two entities are contained. For in-
stance, let us see the cluster g1 ¼ fReference;Book;Inproceedings;Monographg in Fig. 2, three triples

t4: hInproceedings; rdfs : subClassOf ;Referencei.
t5: hBook; rdfs : subClassOf ;Referencei.
t6: hMonograph; rdfs : subClassOf ;Booki.

should be assigned to g1. But, we would immediately recognize that an important restriction structure is omitted: a Ref-

erence at least has one Author. In fact, this restriction is useful for many ontology matching approaches [16].
Missing this restriction is caused by leaving out blank nodes. As introduced in Section 2, a blank node is a node that has no

intrinsic name [35]. Adopting RDF Sentences [64] rather than RDF triples can preserve more semantic information (e.g., the
restriction structure) when constructing blocks from the clusters, even the nested list structure. The entities between differ-
ent blocks are no longer disjoint, which may lead to additional computational cost. Since each RDF triple belongs to one and
only one RDF Sentence [60], such duplicate part at most equals to the number of RDF triples (every cluster includes only an
entity). However, the number of overlapped entities in practice is small (less than 3% in our experience), because the number
of blocks is much less than the number of entities.
Reference

Book

Inproceedings
hasA uthor

Author

Monograph

Book

Inproceedings

hasAuthor

g1

g2

g3

iteration1 iteration2

Monograph

Person
Perso

n

R
eference

Monograph

Book

Inproceedings hasA
utho

r

Author

Person

Reference

Monograph

BookInproceedings

hasA
uthor

Author
Person

Reference

iteration3

Author

iteration4

B
oo

k

Monograph

Inproceedings

Reference

hasA uthor

Author

Person

Fig. 5. An example about partitioning.

rdfs:subClassOf

rdfs:subClassOf

ReferenceBook

Inproceedings

has Author _:genid
owl:onProperty

rdfs:sub Class Of

1

owl:minCardina lity

s1

s3

s2
Reference

Book

Inproceedings

g1
b1

Monograph

Monograph

s4

rdfs:subClassOf

Fig. 6. An example about constructing a block from a cluster.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 149
Let us see the example shown in Fig. 6. The block b1 in the right part of the figure includes four RDF Sentences s1; s2; s3; s4

(encircled by dashed lines). s1 is composed of three RDF triples, and its subject is Reference. If we break down the context of
_:genid, the RDF triple h : genid; owl : minCardinality;100iwould never be assigned. Hence, the restriction structure about a
Reference at least has one Author is destroyed. But, by using RDF Sentences, such RDF triple can be well preserved. Fig. 6
also illustrates the process of constructing a block from a cluster (Phase 1.3): b1 is the block generated from the cluster g1 (in
the left part of the figure), since the subjects of s1; s2; s3; s4 are all included in g1 (recall Definition 4 in Section 2).

To the best of our knowledge, there is no distance-based clustering technique for directly grouping RDF triples (or RDF
Sentences), because: (1) the number of RDF triples in an ontology is much larger than the number of entities. For example,
GALEN has about 60,000 RDF triples, which is six times larger than the number of its entities; and (2) the distance between
two RDF triples is difficult to measure, since an RDF triple has not only three nodes but also an order. Computing the dis-
tances between RDF Sentences is even harder.

5. Matching blocks

In the previous section, two large ontologies to be matched have been partitioned into two groups of small blocks. A brute
force solution for discovering alignments is by directly matching every pair of blocks in the two ontologies. But, it is not nec-
essary to do so, because it is likely that large portions of one or both of them have no matching counterparts [13].

In this section, we will present a heuristic way of finding matched block pairs, i.e., block mappings. Therefore, only block
mappings are further inputted to V-DOC [46] and GMO [27] for alignment discovery. More specifically, a light-weight string
comparison technique, I-SUB [55], is firstly employed to exploit anchors between two full ontologies (Phase 2.1 in Fig. 1), and
then the blocks from the two ontologies are matched based on the distribution of the anchors (Phase 2.2).

5.1. Finding anchors

We refer to the alignments with high similarities as anchors. In our approach, anchors are unnecessarily to be numerous
or completely correct, so they can be found by some simple and fast approaches. We employ the following steps to gain an-
chors between large ontologies.

(1) Use I-SUB [55] to automatically generate a set of candidate anchors.
(2) Manually remove incorrect ones from the candidate anchors (optional).
(3) Manually add some omissions to the candidate anchors (optional).

Please note that the tradeoff between the correctness of anchors and the effort of human interaction should be consid-
ered. With the help of some visualization tools such as [1,17], the productivity can be significantly improved. However, man-
ually revising anchors for large ontologies is still time-consuming. In this paper, we do not involve any human interaction
during anchor generation.

We briefly introduce I-SUB here. Entities in ontologies contain human readable descriptions in their local names, rdfs:la-
bels, rdfs:comments and so on. I-SUB improves the traditional edit-distance [37] based string comparison approaches by con-
sidering not only the commonalities between the descriptions of entities but also their differences, hence it is more robust to
small diverges from the optimal cutoff taking place. Let p; q be two strings, the similarity between p and q is defined as
follows:
simðp; qÞ ¼ commðp; qÞ � diffðp; qÞ þwinklerðp; qÞ; ð5Þ
where commðp; qÞ stands for the commonality between p and q, diffðp; qÞ for the difference and winklerðp; qÞ for the
improvement of the result by using a correction coefficient introduced in [62].

150 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
If the similarity between two descriptions is greater than a pre-defined value l (l 2 ½0;1Þ), then I-SUB would consider the
two entities containing those two descriptions as a candidate anchor. In [55], it suggests l P 0:75.

Although computing anchors between two whole ontologies takes quite a lot of time in our approach (nearly half of the
run time), it compensates for the possibility of missing alignments due to only finding alignments within block mappings.
(The anchors generated by I-SUB are re-used as a portion of alignments.) According to our experiment, 10–20% alignments are
only found by I-SUB, which demonstrates the effectiveness of calculating anchors between two full ontologies. Besides, based
on the OAEI 2007 report [15], at least 50% alignments can be directly found by simple string comparison techniques, so it also
provides evidence to support the use of I-SUB. In addition, as compared to other matching techniques [16], I-SUB is very effi-
cient and scalable.

5.2. Generating block mappings

Similarities between blocks can be computed based on the distribution of the anchors gained above. The background idea
is that the more anchors can be found between two blocks, the more similar the two blocks are.

Let B; B0 be two sets of blocks from two ontologies O;O0 and Q be a set of anchors found between O and O0. anchorðb; b0;QÞ
returns the number of the anchors in Q between two blocks b and b0 (b 2 B, b0 2 B0). The similarity between b and b0 is defined
as follows:
simðb; b0Þ ¼ 2 � anchorðb; b0;QÞP
bk2Banchorðbk; b

0
;QÞ þ

P
b0k2B0anchorðb; b0k;QÞ

: ð6Þ
By setting a cutoff g (g 2 ½0;1Þ), any two blocks whose similarity is greater than g is selected to make up a block mapping.
Our experiment shows that g is stable with various values, because the number of correct anchors is considerably larger than
the number of wrong ones, i.e., a few wrong anchors cannot influence the overall distribution. Please note that we permit a
block to appear in more than one block mappings because of the difference in large ontology modeling. However, we would
see that, in our experiment, the number of block mappings is much less than ðjBj � jB0jÞ, so the computational cost of further
alignment discovery would be largely decreased.

Let us see the example in Fig. 2. Some anchors like h3;Book;Book;¼;1:0i and h4;hasAuthor;hasAuthor;¼;1:0i might
be easily discovered, because the entities in each anchor have the same local names. Next, some block mappings like
h1; b1; b

0
1;1:0i can be detected.
6. Discovering alignments

Each block in a block mapping is just a small sub-ontology. Now, we can use various existing ontology matching tech-
niques to discover alignments between the blocks in each block mapping. In this paper, we specifically integrate two pow-
erful matchers, V-DOC [46] and GMO [27], to support alignment discovery, because they are representatives of two kinds of
popular ontology matching technology, i.e., the linguistic matching and the structural matching. Our previous experiment
showed that they perform better than other similar approaches such as [37,41]. However, we should keep in mind that some
other methods [16,19] can also be freely chosen as alternatives. Due to the technical details of V-DOC and GMO have been
published in [46,27], in this section we only generally summarize their distinguishing features.

6.1. Linguistic matching

V-DOC adopts a linguistic approach to ontology matching, whose novelty lies in the construction of virtual documents.
Basically, as a collection of weighted words, the virtual document of an entity in an ontology contains not only the local
descriptions (e.g., rdfs:label), but also some neighboring information to reflect the intended meaning of the entity. Document
similarities can be calculated by traditional vector space techniques (e.g., TF/IDF [47,57]) and further be used in similarity-
based approaches to ontology matching. Technically, the RDF graph structure is exploited to extract the description informa-
tion from three sorts of neighboring entities, subject neighbors, predicate neighbors and object neighbors, based on their
positions in RDF triples.

6.2. Structural matching

GMO is an iterative structural matcher, which uses RDF Bipartite Graphs [24] to represent ontologies (there exist two kinds
of vertices in an RDF Bipartite Graph: entity vertices and triple vertices) and computes structural similarities between enti-
ties by recursively propagating their similarities in the bipartite graphs. The basic idea is as follows. The similarity of two
entities from two ontologies comes from the accumulation of similarities from the involved RDF triples taking the two enti-
ties as the same role (subject, predicate or object) in the triples, while the similarity of two triples comes from the accumu-
lation of similarities from the involved entities as the same role in these two triples being compared. GMO takes a set of

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 151
external alignments as input, which are typically found beforehand by other matchers (in our current implementation, the
external alignments come from V-DOC) and incrementally generates new additional alignments as output. The performance
of GMO improves with the accuracy of external alignments increases.
6.3. Similarity combination strategy

Similarity combination is an important and difficult issue in building ontology matching systems. We propose a heuristic
strategy to tune the thresholds (or cutoffs) of our matchers gradually based on the measures of linguistic comparability and
structural comparability, which makes the combination robust in a variety of ontology matching scenarios.

Our combination strategy follows the two-step method [4,18], which is a sequential composition of matchers [16,54]. (C
oma [13] and RIMOM [58] use parallel compositions.) First, we calculate the linguistic comparability by measuring the pro-
portion of candidate alignments against the minimum number of entities in two ontologies. The intuition is as follows. If the
number of alignments is close to the number of entities in the smallest ontology, we are nearly done with matching, and it is
unnecessary to execute GMO any more. Then, we determine the threshold of V-DOC based on the linguistic comparability in
order to select the strong (i.e., more reliable) alignments.

If the alignments are not enough (e.g., for low overlapped ontologies, the number of alignments might be considerably
smaller than the number of entities in the smallest ontology), then we start the second step. The structural comparability
is measured by the cosine similarity, which compares which built-in properties are used between two ontologies, and
how often. It is used to determine the threshold of GMO to obtain the weak (i.e., less reliable) alignments.

We divide these two kinds of comparability into three levels (i.e., low, medium and high) to automatically determine the
similarity combination strategy. For example, if the linguistic comparability is high, our approach would lower the threshold
of V-DOC, then more alignments from V-DOC can be combined to the final alignments. For another example, if the linguistic
comparability and the structural comparability are both low, our approach would combine less alignments from V-DOC and
GMO to the final result but make the alignments from V-DOC more than the ones from GMO, because the alignments from V-D
OC are assumed to be more reliable than the ones from GMO.

We adopt a greedy alignment selection algorithm [25] to select the final alignments. Here, the anchors generated by I-SUB

are also considered. More specifically, we choose alignments with multiple iterations. In an iteration, the candidate align-
ment with the highest similarity is selected, and all its conflicting alignments are removed. (We only permit each entity
to appear in one alignment. Therefore, if an alignment that contains the entity d is chosen, then all the other candidates that
include d would be deleted.) The process terminates until no candidate is left.

Please consider the example in Fig. 2 again. Although by using I-SUB, we can find three alignments (i.e., anchors), each one
contains the entities having the same names. The alignment between Reference and Entry and the alignment between
Inproceedings and ConferencePaper cannot be directly found, because they do not have similar names. However, a hu-
man may still recognize that they should be alignments because of the similar contexts of the ontologies. V-DOC can utilize
neighboring information, hence, regarding Reference for instance, it imports the names of hasAuthor, Book and Inpro-

ceedings. By using the neighboring information, V-DOC detects Reference and Entry should be an alignment. Next, GMO

finds that the two ontologies has similar graph structures, hence it propagates similarities in the two graphs. As a result, the
alignment between Inproceedings and ConferencePaper can be discovered.

Supposing that V-DOC can also find the three alignments containing the entities with the same names, the number of
alignments found by V-DOC is 4, and the minimum number of the entities in O;O0 is 5. Hence, the linguistic comparability
of O and O0 is 0.8. The two ontologies O;O0 share five built-in properties: rdfs:subClassOf, rdfs:domain, rdfs:range, owl:minCard-
inality and owl:onProperty. As an example, the number of rdfs:subClassOf in O;O0 is 5 and 3, respectively. The number of the
other built-in properties is 1, respectively. The cosine similarity between those built-in properties is 19=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29 � 13
p

¼ 0:98,
where 19 ¼ 5 � 3þ 1þ 1þ 1þ 1;29 ¼ 52 þ 1þ 1þ 1þ 1;13 ¼ 32 þ 1þ 1þ 1þ 1. So, the structural comparability is 0.98.
Since both the linguistic comparability and the structural comparability are in the high level, the five alignments are all com-
bined as the final result for output.
7. Evaluation

We have implemented the proposed approach in Java, called PBM Partition-based Block Matching) and integrated it into
our ontology matching system FALCON-AO [29], which participated in the last OAEI 2007 campaign [15] and was recognized
by the organizers as one of the best matching systems. In this section, we will report the results of an experimental study on
synthetic and real world data sets. The test cases and experimental results are all available at our web site.6 All the tests are
carried out on an Intel Core 2 Duo 2.13 GHz desktop machine with 2 GB DDR2 memory under Windows XP Professional oper-
ating system (SP2) and Java 1.6 compiler. Some parts of evaluation results regarding the real world data sets are quoted from
[15].
6 http://iws.seu.edu.cn/projects/matching/res/pbm_new.zip.

http://iws.seu.edu.cn/projects/matching/res/pbm_new.zip

152 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
7.1. Synthetic test

We will measure the performance of PBM on partitioning ontologies as well as on finding block mappings.

7.1.1. Data sets
In our evaluation, we choose two pairs of ontologies: Russia12 and TourismAB, which can be downloaded from the web

site.7 The reasons for selecting them as the test cases are: (1) they come from real world domains and widely used in the field of
ontology matching, (2) their sizes are moderate. If the sizes of ontologies are too small, it is unnecessary to partition them into
blocks; while if the sizes are too large, they are not appropriate for human observation; and (3) they have opened reference files
that contain alignments between entities, which are useful for evaluating block mappings. Short descriptions of the two pairs of
ontologies are given below.

� Russia12. The two ontologies are created independently by different people from the content of two travel web sites
about Russia. Russia1 contains 151 classes and 76 properties. Russia2 contains 162 classes and 81 properties. The ref-
erence alignment file contains 85 alignments.

� TourismAB. The two ontologies are created separately by different communities describing the tourism domain of Mec-
klenburg–Vorpommern (a federal state in the northeast of Germany). TourismA contains 340 classes and 97 properties.
TourismB contains 474 classes and 100 properties. The reference alignment file contains 226 alignments.

7.1.2. Experimental methodology and evaluation metrics
The ideal block mappings should provide both good partitioning quality and good mapping quality. The partitioning qual-

ity reflects the effectiveness of the partitioning algorithm, while the mapping quality indicates the possibility of discovering
alignments further. In order to measure these two kinds of quality, three experiments are designed for evaluation.

In the first experiment, three volunteers are trained to set up blocks as gold standards manually for evaluating the par-
titioning quality of ontologies. However, constructing reference blocks is not an easy job, everyone has his/her own opinion
on partitioning, so the reference blocks built here are only generally agreed by all the volunteers. We assess the partitioning
quality by comparing to the reference ones. In the experiment, the number of the reference blocks is as follows: 22 ones for
Russia1, 22 ones for Russia2, 18 ones for TourismA and 23 ones for TourismB. In order to make the number of the blocks
from any ontology constructed by PBM the same as the number of the reference ones, we temporarily change the termination
condition of our partitioning algorithm (in the real world test, we strictly obey the termination condition in Fig. 4). Techni-
cally, we set � large enough (� ¼ 1000). During partitioning, once the number of the computed blocks equals to the number
of the reference ones (it can be satisfied in the test), the partitioning algorithm stops immediately. This kind of approach is
widely adopted in data clustering [23].

We use a well-known metric entropy to compare the automatically generated blocks with the manually established ref-
erences. Before introducing the metric, we firstly describe a basic operation (prec), which measures the precision of a com-
puted block with respect to a reference one. Let B be a set of computed blocks (jBj ¼ n) and R be a set of manual ones
(jRj ¼ m). bi denotes a block in B, while rj denotes a block in R. jbij returns the number of entities in bi, and jrjj is defined anal-
ogously. bi

T
rj calculates the common entities in both bi and rj. The prec of a computed block bi referring to rj is defined as

follows:
7 http
precðbi; rjÞ ¼
jbi
T

rjj
jbij

: ð7Þ
The entropy measures the distribution (or disorder) of entities in blocks and reflects the overall partitioning quality. The
entropy of each block indicates its precision dispersal over the global partitioning. A smaller score indicates a better parti-
tioning quality. The best possible entropy score is 0, and the worst is 1. The entropy of a set of computed blocks B is defined
as follows:
entropyðBÞ ¼ 1Pn
i¼1jbij

�
Xn

i¼1

entropyðbiÞ � jbij; ð8Þ

entropyðbiÞ ¼ �
1

log m
�
Xm

j¼1

precðbi; rjÞ � logðprecðbi; rjÞÞ: ð9Þ
For the criterion function that we propose in the partitioning algorithm (see Formula (3)), there are several possible varia-
tions about the denominator. So, we also compare two other popular choices, jgij þ jgjj and logðjgij � jgjjÞ, with our cutð Þ
function.

In the second experiment, we evaluate the mapping quality of computed block mappings by measuring the correctness
with different number of those block mappings. The background idea is as follows. The higher the quality of those block
://www.aifb.uni-karlsruhe.de/WBS/meh/foam/.

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

.16.16
.21

.18
.22.20

.27.29
.37

.30
.26.28

0

0.1

0.2

0.3

0.4

0.5

Russia1 Russia2 TourismA TourismB

PBM BMO COMA

Fig. 7. Entropy of PBM, BMO and COMA.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 153
mappings is, the more potential alignments could be found in such block mappings. Furthermore, the correctness also implies
the upper bound if only matching the blocks in block mappings. Let O;O0 be two ontologies and BM be a set of computed
block mappings (jBMj ¼ l). bmk denotes a block mapping in BM. bmk:b; bmk:b

0 are two blocks in bmk from O;O0, respectively.
Let A be a set of alignments in a reference alignment file (jAj ¼ n). ai denotes an alignment in A. ai:d; ai:d

0 are two entities in ai

from O;O0, respectively. The correctness of BM is defined as follows:
8 Bec
paper. H
correctnessðBMÞ ¼ 1
n
�
Xl

k¼1

jfaijai 2 A; ai � d 2 bmk:b; ai � d0 2 bmk � b0gj: ð10Þ
The correctness is influenced by two parameters: the cutoff l of anchors and the cutoff g of block mappings. We firstly use
reference alignments as anchors to determine the best g, and then test various l to find whether PBM is stable with a variety
of cutoffs for anchors. Intuitively, the correctness of BM increases when the number of the block mappings increases, i.e.,
when the cutoff of the block mappings decreases. But, the computational cost of alignment discovery increases as well. Fur-
thermore, an optimal parameter setting obtained in one domain is often reusable for other domains [7], so we choose the
best l and g here and apply them to the real world cases further.

We choose two other block matching approaches for the above two tests. The first one is BMO [28], which uses a com-
pletely contrary process as compared to PBM. The second one is based on COMA [13], which is a level-based method.8 Please
see Section 3 for more details.

In the third experiment, we make a comparison between the alignments from PBM and the ones directly generated from
FALCON-AO without partitioning. Because the sizes of the ontologies in Russia12 and TourismAB are normal, we can execute
I-SUB, V-DOC and GMO on the whole ontologies. (Currently, it is impossible for us to do this experiment on large ontologies.)
This metric serves as the truly cost of partitioning and block matching in FALCON-AO.

Two standard information retrieval metrics (precision and recall) are applied to measure the alignments. Let A be a set of
computed alignments and A0 be a set of reference alignments, the precision and recall of A referring to A0 are defined as
follows:
precisionðA;A0Þ ¼ jA
T

A0j
jAj ; recallðA;A0Þ ¼ jA

T
A0j

jA0j
: ð11Þ
7.1.3. Experimental results
Firstly, the experimental results of the partitioning quality (entropy) of PBM, BMO and COMA are shown in Fig. 7. They indi-

cate that PBM is dominant in all the four test cases (i.e., the blocks constructed by PBM are most consistent to human under-
standing), and BMO performs better than COMA.

The entropy of PBM and two other variations to the denominator in Formula (3) is shown in Fig. 8. It indicates that our
criterion function is slightly better than the other two denominators. Actually, we find that, although the other two functions
may perform well on fully-separated clusters, in case of outliers or clusters including lots of entities that are neighbors, a
large cluster tends to swallow all the other clusters and thus, the entities from all the other clusters would be merged into
the large one. This is because a larger cluster typically might have a larger number of cross links with other clusters.

Secondly, we evaluate the mapping quality (correctness) of PBM as compared to BMO. Before making a comparison, we need
to determine two key parameters: the cutoff l of anchors and the cutoff g of block mappings. By using the reference align-
ments as anchors, with the variation of g, the correctness of PBM is shown in Fig. 9, and the number of block mappings is
shown in Fig. 10. They indicate that, in the two test cases, when g increases, the correctness of the block mappings decreases,
and the number of block mappings decreases as well. We can also see that, in most values of g, the correctness is fine. For
instance, in TourismAB, when g ¼ 0:225, the correctness is still larger than 0.70. It demonstrates that the correctness does
ause COMA does not grant users to adjust the desired number of blocks, we have to implement the partitioning algorithm by ourselves according to the
owever, it is still not clear about how it matches blocks, so we cannot compare its mapping quality with our approach.

.16.16
.21

.18
.23.21

.25
.21 .19.21.23.25

0

0.1

0.2

0.3

0.4

0.5

Russia1 Russia2 TourismA TourismB

PBM |gi|+|gj| log(|gi|*|gj|)

Fig. 8. Entropy of PBM and two other denominators.

0.5

0.625

0.75

0.875

1

0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225

Russia12
TourismAB

Fig. 9. Correctness of PBM with the variation of g.

0

10

20

30

40

50

0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225

Russia12
TourismAB

Fig. 10. Number of block mappings with the variation of g.

154 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
not decrease drastically as g increases. In the following experiments, we choose g ¼ 0:075 as the cutoff of block mappings,
because the correctness is fairly large, while the number of block mappings is fairly small.

Then, we test a number of l to see whether PBM is sensitive to various cutoffs of anchors. With the variation of l and
g ¼ 0:05;0:075;0:1, the correctness of PBM is shown in Fig. 11, and the number of block mappings is depicted in Fig. 12.
We can observe that, with l increases, i.e., the number of anchors decreases, the correctness of the block mappings keeps
high. It implies that PBM is stable with a pretty good accuracy. In the following experiments, we set l ¼ 0:85 as the cutoff
of anchors, because a higher cutoff usually yields to more accurate alignments. Besides, Fig. 11 and Fig. 12 also convince that
PBM is robust with slight changes on g (e.g., g ¼ 0:05;0:1).

By adopting l ¼ 0:85, g ¼ 0:075, we compare the correctness of PBM with that of BMO. The comparison results are exhibited
in Fig. 13. It shows that the mapping quality of the two approaches is good, and BMO is a little better than PBM. Even though
0.6

0.7

0.8

0.9

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 0.075 0.1

0.6

0.7

0.8

0.9

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 0.075 0.1

a b

Fig. 11. Correctness of PBM with the variation of l (g ¼ 0:05;0:075;0:1) (a) Russian12, and (b) tourismAB.

0
10
20
30
40
50
60

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 0.075 0.1

0
10
20
30
40
50
60

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.05 0.075 0.1

a b

Fig. 12. Number of block mappings with the variation of l (g ¼ 0:05;0:075;0:1): (a) Russian12, and (b) tourismAB.

.91
.85

.98

.84

0.6

0.7

0.8

0.9

1

1.1

Russia12 TourismAB

PBM BMO

Fig. 13. Correctness of PBM and BMO.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 155
the two parameters are not the best ones (e.g., l ¼ 0:8;0:9 and g ¼ 0:05;0:1), the correctness of PBM is still comparable (see
Fig. 11).

More specifically, PBM exploits 39 block mappings for Russia12 and 33 ones for TourismAB, while BMO constructs 25
block mappings for Russia12 and 26 ones for TourismAB. Therefore, the potential computational cost of PBM on discovering
alignments is higher than that of BMO. However, the number of block mappings is still much smaller than the product of the
number of two sets of blocks (22 � 22 ¼ 484 for Russia12 and 18 � 23 ¼ 414 for TourismAB). It demonstrates that each
block only corresponds to a small number of other ones. Besides, Fig. 13 also implies that, if we only find alignments within
block mappings, 15% alignments for Russia12 and 9% ones for TourismAB would never be found by PBM.

If we go further to observe the run time spent by PBM and BMO during partitioning ontologies and matching blocks, we
would immediately find that PBM is more efficient than BMO. Based on the current implementation, PBM takes only 5 seconds
and 8 seconds to complete the Russia12 and TourismAB cases respectively (including the parsing time), while BMO spends
nearly 15.5 min and 30 min. More importantly, BMO would suffer from the scalability problem, because it matches two full
ontologies firstly. Therefore, BMO is not feasible for large ontologies.

Thirdly, we directly apply FALCON-AO without partitioning to the whole ontologies in Russia12 and TourismAB and com-
pare the results with the alignments found by PBM. The experimental results are depicted in Fig. 14. Basically, some align-
ments would be lost because of partitioning. For example, in Russia12, FALCON-AO without partitioning outperforms 6%
in recall, which means that 6% alignments are not found by PBM. But, in TourismAB, we interestingly find that PBM discovers
more alignments than FALCON-AO without partitioning does. The reason for this situation is that more alignments found by
GMO are combined into the final alignments, since the structures of blocks tend to be more similar after partitioning. But, GMO

also involves some wrong alignments, thus the precision of PBM is always worse than that of FALCON-AO without partitioning.
However, the experimental results demonstrate that PBM does not lose too much precision or recall.
.90

.65

.96
.86

0
0.2
0.4
0.6
0.8

1
1.2

Russia12 TourismAB

PBM Falcon-AO w/o partition

.85

.59
.79

.65

0
0.2
0.4
0.6
0.8

1
1.2

Russia12 TourismAB

PBM Falcon-AO w/o partition

a b

Fig. 14. Precision and recall of PBM and FALCON-AO without partitioning: (a) precision, and (b) recall.

.83
.96

.49

.21
.38

.62 .71.59
.54

.93

0
0.2
0.4
0.6
0.8

1
1.2

Anatomy Food

PBM DSSim RiMOM Prior+ COMA AOAS

.90

.59
.37

.19

.66 .70
.59 .64

.33

.80

0
0.2
0.4
0.6
0.8

1
1.2

Anatomy Food

PBM DSSim RiMOM Prior+ COMA AOAS

a b

Fig. 15. Precision and recall of PBM, DSSIM, RIMOM, PRIOR+, COMA and AOAS: (a) precision, and (b) recall.

156 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
Based on the experimental results above, we conclude that PBM is efficient to achieve both good partitioning quality and
good mapping quality.

7.2. Real world test

We will report the results of PBM on discovering alignments in two large real world ontology matching tasks: Anatomy
and Food. It is also worthy of noting that our approach has been used and tested in several real-life applications, such as
book integration [61] and query rewriting for art thesauri [26].

7.2.1. Data sets
In OAEI 2007, the organizers provided three large ontology matching tracks: Anatomy, Food and Library.9 All of them

are blind tests, i.e., participants do not know the references beforehand, and organizers help evaluate the results. Since the
ontologies in the Library task are written in Dutch, most ontology matching tools cannot handle this language and do not
present any results on this test, we ignore it here. Short descriptions of the Anatomy and Food tasks are given below.

� Anatomy. The ontologies of the Anatomy track are the NCI Thesaurus describing the human anatomy (denoted by Human),
published by the National Cancer Institute (NCI), and the Adult Mouse Anatomical Dictionary (denoted by Mouse), which
is developed as part of the Mouse Gene Expression Database project. Human contains 3304 entities, while Mouse contains
2743 entities. The two ontologies are represented as complex graphs.

� Food. The test case is a taxonomy task in which the hierarchies come from thesauri, and it has a lot of multi-lingual texts.
It includes two ontologies: AGROVOC, which is developed by Agriculture Organization (FAO), and NALT, which is developed
by United Nations Food Organization. AGROVOC contains 28,439 entities, while NALT contains 42,326 entities. The two
ontologies are represented as simple tree structures.

7.2.2. Experimental methodology and evaluation metrics
We compare the alignments generated by PBM to the ones found by the other three ontology matching tools, DSSIM [43],

RIMOM [58] and PRIOR+ [39], which also participated in OAEI 2007. Besides, COMA [13] attended the Food task in OAEI 2006,
which is exactly the same as the one in OAEI 2007, and AOAS [63] is a domain-specific tool, which typically aims at matching
life-science ontologies and achieved the best performance in the Anatomy track in OAEI 2007. Hence, we also compare COMA

and AOAS with PBM. For more details, please see Section 3.
In OAEI 2007, the organizers also provided several matching tasks with small ontologies, such as Benchmarks and

Directory, and many ontology matching tools participated in these tracks. Although our tool, FALCON-AO, is one of the best
matching tools, there exist several tools that performed slightly better than ours in these tracks. For instance, OLA2 [33] and
PRIOR+ outperformed FALCON-AO in the Directory track, which involves about 4500 cases, each containing two small ontol-
ogies. Because we focus on making a comparison on matching large ontologies rather than matching a large amount of ontol-
ogies, we do not present the results of these tracks in this paper. For more details, we refer the reader to the OAEI 2007 report
[15].

The performance of PBM, DSSIM, RIMOM, PRIOR+, COMA and AOAS are measured based on precision and recall. Also, the execu-
tion time is evaluated.

In this experiment, the parameters of PBM are configured as follows: (1) � ¼ 500, i.e., the number of entities in any block is
less than 500. This value is set based on the memory requirements of V-DOC and GMO; and (2) l ¼ 0:85 and g ¼ 0:075, which
are gained from the synthetic test.
9 http://oaei.ontologymatching.org/2007/.

http://oaei.ontologymatching.org/2007/

Table 1
Execution time of PBM, DSSIM, RIMOM, PRIOR+ and AOAS

PBM DSSIM RIMOM PRIOR+ AOAS

Anatomy 12 min 4 h 75 min 23 min 2 h
Food 6 h 1 week 4 h 1.5 h –

GMO 0%

V-Doc 3.9%All 11.0%

V-Doc & GMO
0.9%

GMO & I-Sub
14.6%

I-Sub 22.3%
V-Doc & I-Sub

47.3%

All 19.4%

I-Sub 12.8%

V-Doc & I-Sub
27.1%

GMO & I-Sub
39.9%

V-Doc & GMO
0.3%

V-Doc 0.4%

GMO 0.1%

a b

Fig. 16. Percentages of the alignments found by I-SUB, V-DOC and GMO.

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 157
7.2.3. Experimental results
The comparison results of the precision and recall of PBM, DSSIM, RIMOM, PRIOR+, COMA and AOAS are illustrated in Fig. 15. The

figure indicates that AOAS performs best in the Anatomy track as compared to the other five tools, which demonstrates the
effectiveness of using domain knowledge in ontology matching. In fact, AOAS is the best tool in the Anatomy track in OAEI
2007. PBM outperforms the other four generic tools, DSSIM, RIMOM, PRIOR+ and COMA, in average precision and recall and is only
slightly behind AOAS, which means that our divide-and-conquer approach can solve the large ontology matching problem. It
also proves that, even without using domain knowledge, PBM can generate accurate alignments and guarantee a good
coverage.

The execution time of PBM, DSSIM, RIMOM, PRIOR+ and AOAS is shown in Table 1. (COMA does not provide its complete exe-
cution time yet.) It shows that PBM is the most efficient one. Please note that, in the Food track, RIMOM and PRIOR+ do not exe-
cute all the matching strategies, but only use the edit-distance based strategies as alternatives, and the run time of PRIOR+

excludes the preprocessing stage. DSSIM manually partitions the ontologies into several small pieces. Besides, it also shows
that, because of using domain knowledge, AOAS takes more time to achieve better precision and recall.

Based upon the experimental results, we conclude that PBM achieves good precision and recall with significant reduction
of run time.

It is also interesting to analyze the portions of the alignments found by each matcher (i.e., I-SUB, V-DOC and GMO) within
the final alignments. We collect the alignments generated by each matcher and examine how many alignments are discov-
ered by exactly one, two or three matchers as compared to the final alignments. The analysis is illustrated in Fig. 16. It shows
that every matcher contributes quite a large number of alignments to the final results, so it proves that each matcher takes
effect in matching large ontologies. Many alignments are combined from more than one matchers, so the accuracy is well
guaranteed. Besides, we could also observe that more alignments come from I-SUB and V-DOC than GMO, which demonstrates
that matching large ontologies from the linguistic perspective is more reliable than matching from the structural perspec-
tive, because large ontologies tend to contain well annotated linguistic descriptions. Furthermore, the portion of the align-
ments discovered by V-DOC and GMO reflects the additional computation due to the overlapping between blocks, while the
portion of the alignments only generated by I-SUB indicates the number of alignments PBM would omit if we only find align-
ments within block mappings, so using I-SUB to generate anchors over two full ontologies compensates for the possibility of
missing alignments due to block matching.
8. Conclusion

In summary, the main contributions of this paper are listed as follows:

� We have introduced a divide-and-conquer approach to matching large ontologies. Not only does it solve the scalability
problem, but it also achieves good precision and recall with significant reduction of execution time.

158 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
� We have designed a structure-oriented partitioning algorithm to partition the entities of each RDFS or OWL ontology into
a set of small clusters and use RDF Sentences as basic units to construct blocks from the clusters. It both controls the sizes
of blocks and guarantees the completeness of blank nodes. Furthermore, it is practical for current ontology matching
technology.

� We have proposed a heuristic strategy to block matching in terms of the distribution of anchors, which avoids matching
each pair of blocks. Furthermore, the anchors can be combined into the final alignments as an important compensation for
block matching.

� We have integrated two powerful matchers, V-DOC and GMO, to discover alignments in each block mapping. These two
matchers discover alignments from different perspectives, and our combination strategy is flexible.

� We have implemented our prototype in Java and experimentally evaluated our approach on both synthetic and real world
data sets. In the synthetic test, we define the partitioning quality and the mapping quality to measure our approach on
partitioning ontologies and finding block mappings. In the real world test, the results from OAEI 2007 demonstrate that
our approach can achieve good precision and recall in short time.

In the future work, we look forward to implementing a public Web interface to make the technology widely accessible
and effectively interacted with users. We hope to consider certain random picking or sorting techniques to improve our ap-
proach further, especially to decrease the run time of finding anchors. We also want to apply some ontology summarization
approaches to blocks so that block mappings can be discovered quickly only based on the summaries. Finally, we would like
to go beyond matching large ontologies and cope with large database schemas and XML schemas in order to support data
integration between different data models.
Acknowledgements

This work is funded in part by the NSFC under Grant 60573083 and also in part by the 973 Program of China under Grant
2003CB317004. We appreciate Christian Meilicke and Willem van Hage for providing the Anatomy and Food data sets,
respectively. We also thank Miklos Nagy, Jie Tang and Ming Mao for useful discussion on DSSIM, RIMOM and PRIOR+, respec-
tively. Finally, we are very grateful to Christophe Guéret, Zhisheng Huang, Shenghui Wang and anonymous reviewers for
their valuable comments.
References

[1] B. Alexe, L. Chiticariu, R.J. Miller, W. Tan, Muse: mapping understanding and design by example, in: Proceedings of the 24th International Conference
on Data Engineering, 2008, pp. 10–19.

[2] D. Aumueller, H.-H. Do, S. Massmann, E. Rahm, Schema and ontology matching with COMA++, in: Proceedings of the 24th ACM International
Conference on Management of Data, ACM Press, 2005, pp. 906–908.

[3] F. Bobillo, M. Delgado, J. Gómez-Romero, An ontology design pattern for representing relevance in OWL, in: Proceedings of the 6th International
Semantic Web Conference, LNCS, vol. 4825, Springer, 2007, pp. 72–85.

[4] N. Bozovic, V. Vassalos, Two-phase schema matching in real world relational databases, in: Proceedings of the ICDE Workshop on Information
Integration Methods, Architectures, and Systems, 2008, pp. 290–296.

[5] D. Brickley, R.V. Guha (Eds.), RDF vocabulary description language 1.0: RDF schema, W3C Recommendation, 10 February 2004, <http://www.w3.org/
TR/rdf-schema/>.

[6] S. Castano, V. De Antonellis, S. De Capitani di Vimercati, Global viewing of heterogeneous data sources, IEEE Transactions on Knowledge and Data
Engineering 13 (2) (2001) 277–297.

[7] K.C.-C. Chang, B. He, C. Li, M. Patel, Z. Zhang, Structured databases on the web: observations and implications, SIGMOD Record 33 (3) (2004) 61–
70.

[8] G. Cheng, W. Ge, H. Wu, Y. Qu, Searching semantic web objects based on class hierarchies, in: Proceedings of the WWW Workshop on Linked Data on
the Web, 2008.

[9] I.F. Cruz, W. Sunna, N. Makar, S. Bathala, A visual tool for ontology alignment to enable geospatial interoperability, Journal of Visual Languages and
Computing 18 (3) (2007) 230–254.

[10] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, P. Domingos, iMAP: discovering complex semantic matches between database schemas, in: Proceedings of
the 23th ACM International Conference on Management of Data, ACM Press, 2004, pp. 383–394.

[11] C.H.Q. Ding, X. He, H. Zha, M. Gu, H.D. Simon, A min–max cut algorithm for graph partitioning and data clustering, in: Proceedings of the IEEE
International Conference on Data Mining, 2001, pp. 107–114.

[12] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, P. Kolari, Finding and ranking knowledge on the semantic web, in: Proceedings of the 4th International
Semantic Web Conference, LNCS, vol. 3729, Springer, 2005, pp. 156–170.

[13] H.-H. Do, E. Rahm, Matching large schemas: approaches and evaluation, Information Systems 32 (6) (2007) 857–885.
[14] A. Doan, A. Halevy, Semantic integration research in the database community: a brief survey, AI Magazine 26 (1) (2005) 83–94.
[15] J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O. S�váb, V. Svátek, W.R. van Hage, M. Yatskevich, Results of the ontology alignment

evaluation initiative 2007, in: Proceedings of the ISWC + ASWC Workshop on Ontology Matching, 2007, pp. 96–132.
[16] J. Euzenat, P. Shvaiko, Ontology Matching, Springer, 2007.
[17] S.M. Falconer, M. Storey, A cognitive support framework for ontology mapping, in: Proceedings of the 6th International Semantic Web Conference,

LNCS, vol. 4825, Springer, 2007, pp. 114–127.
[18] A. Gal, Managing uncertainty in schema matching with top-k schema mappings, in: Journal on Data Semantics VI, LNCS, vol. 4090, Springer, 2006, pp.

90–114.
[19] A. Gal, G. Modica, H. Jamil, A. Eyal, Automatic ontology matching using application semantics, AI Magazine 26 (1) (2005) 21–31.
[20] B.C. Grau, I. Horrocks, Y. Kazakov, U. Sattler, Just the right amount: extracting modules from ontologies, in: Proceedings of the 16th International World

Wide Web Conference, ACM Press, 2007, pp. 717–726.
[21] T.R. Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition 5 (2) (1993) 199–220.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/

W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160 159
[22] S. Guha, R. Rastogi, K. Shim, ROCK: a robust clustering algorithm for categorical attributes, in: Proceedings of the 15th International Conference on Data
Engineering, 1999, pp. 512–521.

[23] J. Han, M. Kamber, Data Mining: Concepts and Techniques, second ed., Morgan Kaufman Publishers, 2006.
[24] J. Hayes, C. Gutiérrez, Bipartite graphs as intermediate model for RDF, in: Proceedings of the 3rd International Semantic Web Conference, LNCS, vol.

3298, Springer, 2004, pp. 47–61.
[25] B. He, K.C.-C. Chang, Automatic complex schema matching across web query interfaces: a correlation mining approach, ACM Transactions on Database

Systems 31 (1) (2006) 346–395.
[26] L. Hollink, M. van Assem, S. Wang, A. Isaac, G. Schreiber, Two variations on ontology alignment evaluation: methodological issues, in: Proceedings of

the 5th European Semantic Web Conference, LNCS, vol. 5021, Springer, 2008, pp. 388–401.
[27] W. Hu, N. Jian, Y. Qu, Y. Wang, GMO: a graph matching for ontologies, in: Proceedings of the K-CAP Workshop on Integrating Ontologies, 2005, pp. 41–

48.
[28] W. Hu, Y. Qu, Block matching for ontologies, in: Proceedings of the 5th International Semantic Web Conference, LNCS, vol. 4273, Springer, 2006, pp.

300–313.
[29] W. Hu, Y. Qu, Falcon-AO: a practical ontology matching system, Journal of Web Semantics (system paper), 2008.
[30] W. Hu, Y. Zhao, Y. Qu, Partition-based block matching of large class hierarchies, in: Proceedings of the 1st Asian Semantic Web Conference, LNCS, vol.

4185, Springer, 2006, pp. 72–83.
[31] Y. Kalfoglou, M. Schorlemmer, Ontology mapping: the state of the art, The Knowledge Engineering Review 18 (1) (2003) 1–31.
[32] R. Kannan, S. Vempala, A. Vetta, On clustering: good bad and spectral, Journal of the ACM 51 (3) (2004) 497–515.
[33] J.F.D. Kengue, J. Euzenat, P. Valtchev, OLA in the OAEI 2007 evaluation contest, in: Proceedings of ISWC + ASWC Workshop on Ontology Matching, 2007,

pp. 188–195.
[34] T. Kirsten, A. Thor, E. Rahm, Instance-based matching of large life science ontologies, in: Proceedings of the 4th International Workshop on Data

Integration in the Life Sciences, LNCS, vol. 4544, Springer, 2007, pp. 172–187.
[35] G. Klyne, J. Carroll, Resource description framework (RDF): concepts and abstract syntax, W3C Recommendation, 10 February 2004. <http://

www.w3.org/TR/rdf-concepts/>.
[36] J. Lacasta, J. Nogueras-Iso, R. Béjar, P.R. Muro-Medrano, F.J. Zarazaga-Soria, A web ontology service to facilitate interoperability within a spatial data

infrastructure: applicability to discovery, Data and Knowledge Engineering 63 (3) (2007) 947–971.
[37] I.V. Levenshtein, Binary codes capable of correcting deletions insertions and reversals, Soviet Physics – Doklady 10 (8) (1966) 707–710.
[38] J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, 1967, pp. 281–297.
[39] M. Mao, Y. Peng, The Prior+: results for OAEI campaign 2007, in: Proceedings of ISWC + ASWC Workshop on Ontology Matching, 2007, pp. 219–

226.
[40] R. McCann, W. Shen, A. Doan, Matching schemas in online communities: a web 2.0 approach, in: Proceedings of the 24th International Conference on

Data Engineering, 2008, pp. 110–119.
[41] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its application to schema matching, in: Proceedings

of the 18th International Conference on Data Engineering, 2002, pp. 117–128.
[42] P. Mork, P. Bernstein, Adapting a generic match algorithm to align ontologies of human anatomy, in: Proceedings of the 20th International Conference

on Data Engineering, 2004, pp. 787–790.
[43] M. Nagy, M. Vargas-Vera, E. Motta, DSSim – managing uncertainty on the semantic web, in: Proceedings of ISWC + ASWC Workshop on Ontology

Matching, 2007, pp. 160–169.
[44] N.F. Noy, Semantic integration – a survey of ontology-based approaches, SIGMOD Record 33 (4) (2004) 65–70.
[45] P.F. Patel-Schneider, P. Hayes, I. Horrocks (Eds.), OWL web ontology language semantics and abstract syntax, W3C Recommendation, 10 February

2004. <http://www.w3.org/TR/owl-semantics/>.
[46] Y. Qu, W. Hu, G. Cheng, Constructing virtual documents for ontology matching, in: Proceedings of the 15th International World Wide Web Conference,

ACM Press, 2006, pp. 23–31.
[47] V.V. Raghavan, S.K.M. Wong, A critical analysis of vector space model for information retrieval, Journal of the American Society for Information Science

37 (5) (1986) 279–287.
[48] E. Rahm, P. Bernstein, A survey of approaches to automatic schema matching, VLDB Journal 10 (4) (2001) 334–350.
[49] E. Rahm, H.-H. Do, S. Massmann, Matching large xml schemas, SIGMOD Record 33 (4) (2004) 26–31.
[50] C. Rosse, J.L.V. Mejino, A reference ontology for biomedical informatics: the foundational model of anatomy, Journal of Biomedical Informatics 36 (6)

(2003) 478–500.
[51] P. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics

20 (1) (1987) 53–65.
[52] J. Seidenberg, A. Rector, Web ontology segmentation: analysis classification and use, in: Proceedings of the 15th International World Wide Web

Conference, ACM Press, 2006, pp. 13–22.
[53] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 888–

905.
[54] P. Shvaiko, J. Euzenat, A survey of schema-based matching approaches, in: Journal on Data Semantics IV, LNCS, vol. 3730, Springer, 2005, pp. 146–

171.
[55] G. Stoilos, G. Stamou, S. Kollias, A string metric for ontology alignment, in: Proceedings of the 4th International Semantic Web Conference, LNCS, vol.

3729, Springer, 2005, pp. 624–637.
[56] H. Stuckenschmidt, M. Klein, Reasoning and change management in modular ontologies, Data and Knowledge Engineering 63 (2) (2007) 200–

223.
[57] X. Su, J.A. Gulla, An information retrieval approach to ontology mapping, Data and Knowledge Engineering 58 (1) (2006) 47–69.
[58] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, K. Wang, Using Bayesian decision for ontology mapping, Journal of Web Semantics 4 (4) (2006) 243–262.
[59] K. Tu, M. Xiong, L. Zhang, H. Zhu, J. Zhang, Y. Yu, Towards imaging large-scale ontologies for quick understanding and analysis, in: Proceedings of the

4th International Semantic Web Conference, LNCS, vol. 3729, Springer, 2005, pp. 702–715.
[60] G. Tummarello, C. Morbidoni, R. Bachmann-Gmür, O. Erling, RDFSync: efficient remote synchronization of RDF models, in: Proceedings of the 6th

International Semantic Web Conference, LNCS, vol. 4825, Springer, 2007, pp. 537–551.
[61] M. van Gendt, A. Isaac, L. van der Meij, S. Schlobach, Semantic web techniques for multiple views on heterogeneous collections: a case study, in:

Proceedings of the 18th Belgium–Netherlands Conference on Artificial Intelligence, LNCS, vol. 4172, Springer, 2006, pp. 426–437.
[62] W. Winkler, The state record linkage and current research problems, Technical Report, Statistics of Income Division, Internal Revenue Service

Publication, 1999.
[63] S. Zhang, O. Bodenreider, Hybrid alignment strategy for anatomical ontologies: results of the 2007 ontology alignment contest, in: Proceedings of the

ISWC + ASWC Workshop on Ontology Matching, 2007, pp. 139–149.
[64] X. Zhang, G. Cheng, Y. Qu, Ontology summarization based on RDF sentence graph, in: Proceedings of the 16th International World Wide Web

Conference, ACM Press, 2007, pp. 707–715.
[65] A.V. Zhdanova, P. Shvaiko, Community-driven ontology matching, in: Proceedings of the 3rd European Semantic Web Conference, LNCS, vol. 4011,

Springer, 2006, pp. 34–49.

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl-semantics/

160 W. Hu et al. / Data & Knowledge Engineering 67 (2008) 140–160
Wei Hu received his B.Sc. degree in Computer Science and Technology from the Southeast University, China, in 2005. He is
currently a Ph.D. student at the School of Computer Science and Engineering, Southeast University, China. From November 2007
to April 2008, he was a guest researcher in the Knowledge Representation and Reasoning Group, Vrije Universiteit Amsterdam,
the Netherlands. His research interests include ontology matching, data integration and Semantic Web.
Yuzhong Qu is a full professor at the School of Computer Science and Engineering, Southeast University, China. He is currently
leading the Institute of Web Science at the Southeast University, China. He received his B.Sc. and M.Sc. degrees in Mathematics
from the Fudan University, China, in 1985 and 1988, respectively. He received his Ph.D. degree in Computer Software from the
Nanjing University, China, in 1995. His research interests include Software Engineering, Semantic Web and Web Science.
Gong Cheng received his B.Sc. degree in Computer Science and Technology from the Southeast University, China, in 2006. He is
currently a Ph.D. student at the School of Computer Science and Engineering, Southeast University, China. His research interests
include semantic search, data management and Semantic Web.

	Matching large ontologies: A divide-and-conquer approach
	Introduction
	Problem formulation
	Related work
	Large ontology matching
	Ontology partitioning
	Block matching

	Partitioning ontologies
	Computing structural proximities
	Partitioning
	Constructing blocks

	Matching blocks
	Finding anchors
	Generating block mappings

	Discovering alignments
	Linguistic matching
	Structural matching
	Similarity combination strategy

	Evaluation
	Synthetic test
	Data sets
	Experimental methodology and evaluation metrics
	Experimental results

	Real world test
	Data sets
	Experimental methodology and evaluation metrics
	Experimental results

	Conclusion
	AcknowledgementAcknowledgements
	References

