
WebScripter: Grass-roots Ontology Alignment
via End-User Report Creation

Baoshi Yan, Martin Frank, Pedro Szekely, Robert Neches, and Juan Lopez

Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey, California 90292

{baoshi,frank,szekely,rneches,juan}@isi.edu

Abstract. Ontologies define hierarchies of classes and attributes; they
are meta-data: data about data. In the “traditional approach” to on-
tology engineering, experts add new data by carefully analyzing others’
ontologies and fitting their new concepts into the existing hierarchy. In
the emerging “Semantic Web approach”, ordinary users may not look
at anyone’s ontology before creating theirs - instead, they may simply
define a new local schema from scratch that addresses their immediate
needs, without worrying if and how their data may some day integrate
with others’ data. This paper describes WebScripter, a tool for trans-
lating between the countless mini-ontologies that the “Semantic Web
approach” yields. In our approach, ordinary users graphically align data
from multiple sources in a simple spreadsheet-like view without having to
know anything about ontologies. The resulting web of equivalency state-
ments is then mined by WebScripter to help users find related ontologies
and data, and to automatically align the related data with their own.

1 WebScripter Overview

WebScripter is a tool that enables ordinary users to easily and quickly assemble
reports extracting and fusing information from multiple, heterogeneous Semantic
Web sources in RDF Schema (RDFS) format1. Different Semantic Web sources
may use different ontologies. WebScripter addresses this problem by (a) making
it easy for individual users to graphically align the attributes of two separate
externally defined concepts, and (b) making it easy to reuse others’ alignment
work. At a high level, the WebScripter concept is that users extract content from
heterogeneous sources and paste that content into what looks like an ordinary
spreadsheet. What users implicitly do in WebScripter (without expending extra
effort) is to build up an articulation ontology containing equivalency statements.
We believe that in the long run, this articulation ontology will be more valuable
than the data the users obtained when they constructed the original report. The
equivalency information reduces the amount of work future WebScripter users
have to perform. Thus, in some sense, you do not just use the Semantic Web
when you use WebScripter, you help build it as you go along.
1 We will use RDFS for brevity in the remainder of the paperal though our tool and

discussions equally apply to DAML(+OIL) and OWL.



2 System Description

This section describes the current implementation of WebScripter by walking
through a step-by-step example. In order to use WebScripter, users do not need
to have knowledge of ontological languages. In this section we will describe how
WebScripter help ordinary users locate RDFS sources, build a report and cus-
tomize the representation of a report. We then show how the resulting ontology
alignment data benefits other users in constructing similar reports by identifying
related sources and aligning data.

2.1 Constructing a first report from scratch

Step 1: Load RDFS Data In this example our job is to maintain a list of re-
searchers working on the Semantic Web. The first task is to find the URLs where
the researchers put their data (which we presume to be in some RDF-based for-
mat for this example). Although locating RDFS sources is not WebScripter’s
focus, WebScripter provides some support for it by wrapping Teknowledge’s Se-
mantic Search Engine [1]. This search engine accepts queries in the format of
triple patterns, and returns matches from the BBN’s crawled ontology library
[2]. Our wrapper helps users by transforming their keyword-based queries into
triple patterns, submitting them to Teknowledge’s Semantic Search Engine and
extracting source URL’s from the results. Later on we will discuss how Web-
Scripter can help identify related RDFS sources in a collaborative filtering fash-
ion. In this example, we will use two RDFS data sources, ISWC’2002 annotated
author data [3] and ISI’s Distributed Scalable Systems Division personnel data
[4].

Step 2: Create a Report Figure 1 shows WebScripter just after loading the
ISWC’2002 data. On the left side is a class hierarchy pane. Users can select a
class to view its content in the lower right pane. The upper right pane is the
report-authoring area. WebScripter offers three options for users to add a column
to a report. (1) In the simplest case, users can select a column from a class and
add it to the report, as shown in Figure 1. (2) Users can also type example data
in the report-authoring area; WebScripter will then try to guess which column in
which class the user is referring to. This is useful when users are lost in the class
hierarchy. (3) In the most complicated case, users want to include information
from different classes into a single report. We do not want to require users to
understand the domain ontology in order to do that. For example, suppose users
have already specified “name” and “email” for the instances of class “Person” in
a report, and now they want to add information about the project a person works
on, which is in the “Project” class. Instead of requiring users to specify how to
go from the “Person” class to the “Project” class step by step, WebScripter will
try to infer the ontological paths between these two classes, rank the paths first
based on path length (shortest first) then by number of instance matches (more
first), and lets users select (Figure 2). In our experience, the first entry listed



Fig. 1. WebScripter GUI: The left pane shows the class hierarchy of ISWC’2002 data;
the lower right pane shows all the instance data for the selected class. Users can add
columns from this pane to their report in the upper right pane.

(the one with the shortest ontological path and which fills the most blanks in
the report) is virtually always the desired choice.

Fig. 2. Ontological Path Inference: When users add a column to the report that rep-
resents a new class, WebScripter detects the possible paths between these two classes
and lets the user choose.



Step 3: Align data from multiple sources In our running example, the user
is now done with adding ISWC’2002 author information to the report. Assume
they happen to find ISI’s researcher information via Teknowledge’s Semantic
Search Engine and want to include that in the report also. They basically repeat
the previous steps of adding columns but this time they add the columns from
ISI “Div2Member” class to the corresponding columns of the ISWC data (rather
than adding it as new columns). Figure 3 shows the combined data from the two
groups.

Fig. 3. Aligning Data: In the upper right pane, the shaded data is from ISI, the light
data from ISWC.

When users compose a report by putting together information from hetero-
geneous sources, there is some implicit and valuable information that can be
inferred. First, by composing a report, users imply a (weak) association between
sources, i.e., “one user who use this source also used that one”, somewhat analo-
gous to Amazon’s book recommendations (“customers who bought this book also
bought that one”). This association can help future users locate relevant RDFS
sources. Second and more interestingly, by putting heterogeneous information
together, users also imply a (similarly weak) equivalency between concepts from
different ontologies. For example, from the report in Figure 3 WebScripter could
infer that ISI’s “Div2Member” class is equivalent to ISWC’s “Person” class,
ISI’s “fullname” property is equivalent to ISWC’s “name” property, and so on.



Table 1 shows the equivalency information inferred from the report in DAML
format.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:wseq="http://www.isi.edu/WebScripter/2002/06/equivalencies#"

>
<rdfs:Class rdf:about="http://annotation.semanticweb.org/iswc/iswc.daml#Person">

<daml:sameClassAs rdf:resource=
"http://www.isi.edu/webscripter/div2-org.o.daml#Div2Member"/>

</rdfs:Class>
<rdfs:Property rdf:about="http://annotation.semanticweb.org/iswc/iswc.daml#name">

<daml:samePropertyAs rdf:resource=
"http://www.isi.edu/webscripter/div2-org.o.daml#fullname"/>

</rdfs:Property>
<rdfs:Property rdf:about="http://annotation.semanticweb.org/iswc/iswc.daml#email">

<daml:samePropertyAs rdf:resource=
"http://www.isi.edu/webscripter/div2-org.o.daml#emailprefix"/>

</rdfs:Property>
<rdfs:Property rdf:about="http://annotation.semanticweb.org/iswc/iswc.daml#homepage">

<daml:samePropertyAs rdf:resource=
"http://www.isi.edu/webscripter/div2-org.o.daml#homepage"/>

</rdfs:Property>
<rdfs:Property rdf:about=

"http://annotation.semanticweb.org/iswc/iswc.daml#involved_in_project">
<daml:samePropertyAs rdf:resource=

"http://www.isi.edu/webscripter/div2-org.o.daml#workson"/>
</rdfs:Property>
<rdfs:Property rdf:about="http://annotation.semanticweb.org/iswc/iswc.daml#project_title">

<daml:samePropertyAs rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#label"/>

</rdfs:Property>
</rdf:RDF>

Table 1. Resulting alignment axioms.

The alignment axioms shown above are the simplest ones, a direct alignment
between two named classes or properties. Since WebScripter also supports joins
(between two classes) and filtering (of instances), the alignment axioms can
also be more complex. For example, if users want to build a report of just the
ISI students, users need to add “Div2Member” instances to the report, do a
join to their roles (“Div2Role”) and filter the roles by “Student”. The resulting
equivalency is visualized as in Figure 4.

Fig. 4. Constructed-Class Alignment: An equivalency between a named class and a
class defined by a join and subsequent fiter operation.



Figure 5 shows an axiom that defines the equivalency between two property
sequences. This type of axiom can be captured with WebScripter (but we do not
yet make use of it for our own alignment suggestions). To obtain the project name
for a person, in the first case users simply follow the link “foo:projectName”; in
the second case users need to follow the link “ISWC:involved in project”, then
the link “ISWC:project title”. Such “role chaining” is not expressible in current
DAML or OWL. We are looking at RuleML [5] as an alternative.

Fig. 5. Constructed-Property Alignment: An equivalency between two property se-
quences.

Current semi-automatic ontology mapping tools (see [26] for a good survey)
are good at one-to-one element mapping and tend to deal less with alignment
axioms as complex as shown in Figures 4 and 5, which WebScripter in some
sense captures “for free” by providing an easy way for users to perform join and
filtering during report authoring.

2.2 Constructing a report with automatic alignment support

The alignment axioms can be automatically published on a Web site and reg-
istered as a new DAML content root in BBN’s DAML content library. Conse-
quently, it can be used by Teknowledge’s DAML search engine to extend user
queries, and we expect it would benefit other applications as well. We also use
the WebScripter-generated alignment axioms in WebScripter itself. WebScripter
reads its default alignment axioms from a fixed location on our Web site to which
anyone can contribute via WebScripter’s “Easy Publish” menu. In this section
we will quickly walk through an example of how the alignment axioms help users
in report authoring.

In a nutshell, if users add any class or attribute to their report for which there
are known equivalencies, WebScripter will mark them with a red “light bulb”. If
users click on the light bulb they can choose to import equivalencies. Accepting
equivalencies can also automatically load known sources of the data, and then
automatically aligns the attributes of the discovered classes. In this example, a
user has constructed a new report which contains Stanford personnel data (the
light area of the upper-right pane in Figure 6). She has just now manually aligned
the Stanford and ISI names in the same column, and WebScripter responded by
putting a lightbulb next to the the column name. This is an indication that
WebScripter has equivalency information about the data she just added.



Fig. 6. Light bulbs tell the user that WebScripter can auto-align data for them.

When the user clicks on the light bulb, WebScripter lists the equivalence or
equivalencies and asks the user to accept or reject them (upper window of Fig-
ure 7). In this example, WebScripter knows where ISWC people data is located,
and also knows how the ISWC aligns with the ISI data; it knows that because
they were aligned by someone else before (in Figure 3) and because that user
chose to share the alignment information.

If the user accepts an equivalency, WebScripter displays a further dialog
box that lets users decide which of the known source files of the equivalent
classes/properties they could add to their report (lower window Figure 7). None,
some, or all of the rows can be selected with the mouse, clicking the Load File
button then adds the selected URLs to the data sources that are imported by the
WebScripter report. In this example, if the user accepts the ISI/ISWC equiva-
lencies and completes the Standord/ISI equivalencies and published those, Web-
Scripter can now translate between all three ontologies.

2.3 Customizing WebScripter reports

WebScripter reports can be published in various formats including HTML and
plain text. WebScripter first generates an XML representation of the report.
Various XSL stylesheets are part of the WebScripter distribution, and you can
define your own variation to customize the presentation. We are also currently
working on a new version that will allow accessing WebScripter reports on mobile
devices such as PDAs by intelligently reformatting the HTML to smaller screen
sizes [20].



Fig. 7. The upper window lets users accept or reject an equivalency per se. The lower
window lets users decide if they also want to add data sources to their reports that
contain aligned data.

3 Applications

WebScripter has turned out to be a valuable practical tool for the simple single-
ontology case where there is only one schema but the instance data is distributed
over many Web pages. For example, the Distributed Scalable Systems Division at
ISI automatically pulls together its people page from many different DAMLized
Web pages: some information is maintained by individuals themselves (such as
their research interests), other information is maintained by the division director
(such as project assignments), and some information is maintained at the insti-
tute level (such as office assignments); this relieved the division’s administrative
assistant from manually maintaining everyone’s interests [4]. WebScripter has
also been used externally, for example to maintain a Semantic Web tools list [6],
and a DAML publications list [7]. WebScripter can be downloaded from [8].

As of the time of writing, one issue we encountered is that there is not really
that much interesting, continuously updated RDF Schema, much less DAML
or OWL, available on the Web today.2 What made the original Web take off
was that there was an immediate incentive for producers to use the technology
because it was an easy way to publish information. We currently see little mo-
tivation for Web page authors to put work into producing RDF in addition to

2 One notable exception are RSS 1.0 [9] headline exchange files such as slash-
dot.org/slashdot.rdf.



their regular HTML pages (as others have noted also, maybe most eloquently
in [17]). In this section, we will describe a novel WebScripter application, which
not only makes use of WebScripter but also incentivizes web authors to produce
RDF contents.

3.1 Using WebScripter for Collaborative Semantic Weblogs

We’re now in the process of applying WebScripter technology to weblogs. Such
a “blog” is a “frequent, chronological publication of personal thoughts and Web
links” [10]. It is an easy way to publish a piece of information with a single click.
It is estimated that there were already from 500,000 to 1 million web bloggers
since 1999 and that the number of bloggers is still expanding rapidly [12].

Weblogs, though very popular nowadays, have no semantic structure, which
brings about several shortcomings. A weblog is a collection of posts. Each post
is a segment of natural language text in HTML format. There is no metadata
describing individual posts. The lack of semantic structure makes it difficult to
organize weblogs. For example, suppose you have two weblogs, one is about the
Semantic Web, the other about Java programming. Hence, you would want to
add a discussion of Jena [22] to both weblogs. However, currently you have to
either only add it to one weblog, or copy the same content over to the other
blog, neither of which is satisfactory. The lack of semantics also rules out queries
like “what are posts about Java programming for the Semantic Web”. Weblogs
quickly become clumsy for information retrieval as the volume of data increases
because their only native indexing is by reverse chronological order.

WebScripter, coupled with an easy-to-use metadata publishing tool, could
greatly enhance the functionality of weblogs. A weblog with no data other than
the text and the entry date of a post can be viewed as a two-column WebScripter
report. Additional columns can then be used for additional semantic mark-up
about the posts. WebScripter by itself supports RDFS report authoring not
original RDFS data entry. Thus, we also developed ISI Annotator, which provides
an easy-to-use way to produce metadata. Annotator lets users define their own
classes and properties for describing their posts.3 The posts users publish are
in RDFS format and can thus be post-processed by WebScripter (or any other
RDFS tool, of course).

Figure 8 shows the chain of producing RDFS content in Annotator, post-
processing it as a WebScripter report, and finally presenting it as a Web page
with (invisible) RDFS mark-up via a stylesheet. Note that it is perfectly possible
to define multiple WebScripter reports of that data, say one that only picks up
posts marked as Java-related or as personal.

One common phenomenon in weblogs is cross-referencing between web blog-
gers with similar interests, which form a community where they read each other’s
blog, comment and share blogs. When a user builds a new report by aligning
someone else’s semantic weblog with her own, the immediate result is that she

3 Annotator also allows users to annotate existing Web pages with RDFS, hence its
name, but that is not further discussed in this paper.



(a)

(b)

Fig. 8. Semantic Weblogs: (a) ISI’s Annotator Tool can produce RDFS that is then
run through a WebScripter report and produces the final Web page that contains both
human and machine-readable mark-up. (b) ISI’s Annotator(on the left) and the web
page of a semantic weblog

now will have other’s semantic weblog content in her semantic weblog, but there
are other important implications. First, the implicit alignment axioms inferred
from her alignment would benefit other bloggers in doing the same work. Second,
by adding aother’s semantic weblog to hers, the user implies that there are shared
interests. Such information could in turn facilitate the discovery of bloggers with
similar interests, thus expediting the forming of a blogger community.



4 Related Work

WebScripter’s approach to ontology alignment is extreme: terms from different
ontologies are always assumed to mean different things by default, and all on-
tology mapping is done by humans (implicitly, by putting them into the same
column of a report) – in that sense, there is no automated inference.

This is similar in spirit to Gio Wiederhold’s mediation approach to ontology
interoperation [27], which also assumes that terms from different ontologies never
mean the same thing unless committees of integration experts say they are. Web-
Scripter pushes that concept to the brink by replacing the experts with ordinary
users that may not even be aware of their implicit ontology alignment contri-
butions. (Note, however, that we cannot yet proof that this collective alignment
data is indeed a useful source for automatic ontology alignment on an Internet
scale – we lack sufficient data from distributed WebScripter use to make that
claim.)

Most schema matching techniques (see [26] for a survey) take a semi-auto-
mated approach to ontology interoperation: the system guesses likely matches
between terms of two separately conceived ontologies, a human expert knowl-
edgeable about the semantics of both ontologies then verifies the inferences,
possibly using a graphical user interface. Such guesses can be based on name
and structure similarity in schemas (ONION [24] , PROMPT [25]), plus data
instances (LSD [14] GLUE [15]), or integrated use of different techniques (CU-
PID [21], COMA [13]). In WebScripter human users rely purely on the data
instances to decide what collates and what does not (because they are just not
expert enough to analyze the abstractions). That being said, incorporating the
above techniques into WebScripter would clearly be beneficial if the rate of cor-
rect guesses is sufficiently high. Unlike other schema matching techniques, Web-
Scripter is not suitable for alignment tasks where the only information available
are the two schemas to be matched (without any instance data for the schemas).
Rather, it relies on shared reuse and reasoning with other users’ implicit and
often imprecise ontology alignments.

OBSERVER [23], SIMS [11], TSIMMIS [16] and the Information Manifold
[19] are all systems for querying multiple data sources of different schemata in a
uniform way; however, they all rely on human experts to devise the ontological
mappings between the sources to our knowledge. This is because they mediate
between structured dynamic data sources (such as SQL/ODBC sources) without
run-time human involvement where a higher level of precision is required to make
the interoperation work. In contrast, WebScripter is targeted towards mediating
between different ontologies in RDF-based Web pages with run-time human
involvement, where the need for precision in the translation is naturally lower.

Another difference between WebScripter and the above systems is its philo-
sophy of creating the Semantic Web while using it. Our vision and hope is that
semantics can emerge from large-scale collaborative use of numerous, previously
isolated ontologies.



5 Discussion

More appropriate Semantics for Alignment Axioms Strictly speaking,
the alignment axioms inferred from WebScripter should not be DAML or OWL
equivalence statements, which are very strong claims: “x equivalent to y” means
everything that applies to x also applies to y and vice versa. The WebScripter
alignment axioms should really just imply equivalence within some context –
two concepts are equivalent for the purposes of the report that some individual
created. Thus on the one hand, we need more work on judging the likelihood
of two contexts being compatible, possibly according to report contents, user
profile, or user report-authoring history. On the other hand, we need to evaluate
how generic an alignment axiom is. We would propose a more grass-roots, some-
what Darwinian theory. The theory is that relatively small groups will use these
axioms to align their semantics and eventually you will get alignment among
groups of groups, and for a few things this will lead to alignment among really
big groups. Nevertheless, we believe approximate alignment axioms in the spirit
of Hovy’s “generally accoiated with” links [18] will be a common phenomenon
in the Semantic Web as it is unlikely that concepts casually developed by end
users would meet as strong requirements as implied by the DAML or OWL
equivalency statements.

Will WebScripter scale? The current implementation of WebScripter does
not scale well because (a) all alignment axioms are stored in and retrieved from a
single central server, and because (b) all processing occurs in the main memory of
the user’s machine. (Essentially, we chose not to worry about scalability until we
got to a compelling application and a substantial number of users.) We believe
that scalability for the former could be achieved with a server-farm approach
as demonstrated by e.g. Google and Yahoo, or with a peer-2-peer approach to
distribute equivalency data across the users’ machines. The latter is already
being addressed by RDF toolkits that can connect to back-end databases, such
as Jena [22].

End-User Control over Auto-Alignment Our current end-user interface
for alignment (see Section 2.2) is unlikely to scale well for large numbers of
alignment axioms. We see the following solutions to this problem (which are
not mutually exclusive). Social Filtering. One approach would be to keep track
of the authors of alignment axioms as well as the users of alignment axioms;
this would enable users to say “I want to use the same equivalency data that
Jim and Chris are using”, a nicely implicit way to limit equivalencies to e.g. the
accounting context if they are co-workers in accounting, without having to more
formally define the context, which is a more abstract and difficult task. This
would also allow cautious users to express “I am willing to use equivalency data
that at least ten others are using” (which addresses the erroneous-alignment
problem but not the context-mismatch problem). Finer-Grained Control in the
User Interface. It would be nice to have a display (see Table 2) of the available
equivalency information that presents more than just the equivalent URIs as we
currently do (lower window of Figure 7). A related question is how users can lock
out ill-intentioned sources of alignment axioms, addressing the general question



of trust management on the Semantic Web. In a future stage of WebScripter,
a Google-like social filtering mechanism and a Spam-blocking-like collaborative
blacklist could help.

Class Hops Origin Author Rows Date Users

Person 1 stanford.e... Smith 235 10/6/02 12
Employee 1 stanford.e... Smith 57 10/6/02 6
Staff 1 stanford.e... Smith 697 10/6/02 0
Member 2 www.isi.e... Chen 15 3/4/01 17
Person 2 cmu.edu/... Miller 973 12/7/01 4
Member 2 cmu.edu/... Miller 107 12/7/01 9

Table 2. Sketch of a graphical user interface for better end-user control over alignment.

6 Conclusion

As an easy-to-use report authoring tool, WebScripter has proven its usefulness
in several applications. As far as we know, WebScripter is currently the only
interactive report generator for RDFS content. The most exciting application of
WebScripter, as a collaborative ontology translation tool, has yet to prove its ef-
fectiveness due to the small number of casual Semantic Web users. Nevertheless,
we are excited about this new approach to ontology alignment sharing. The key
difference we see between “traditional” ontology translation and our approach
is that non-experts perform all of the translation - but potentially on a global
scale, leveraging each other’s work.

7 Acknowledgments

We gratefully acknowledge DARPA DAML program funding for WebScripter
under contract number F30602-00-2-0576. We thank Bob MacGregor and Stefan
Decker for helpful discussions.

References

1. http://reliant.teknowledge.com/DAML.
2. http://www.daml.org/crawler.
3. http://annotation.semanticweb.org/iswc/ documents.html.
4. http://www.isi.edu/divisions/div2/. Click on People.
5. http://www.dfki.uni-kl.de/ruleml.
6. http://tools.semanticweb.org.
7. http://www.daml.org/publications/cite.html.
8. http://www.isi.edu/webscripter.



9. http://web.resource.org/rss/1.0.
10. http://www.marketingterms.com/dictionary/blog/.
11. Y. Arens, C. Knoblock, and W.-M. Shen. Query reformulation for dynamic infor-

mation integration. Intelligent Information Systems, 6(2-3):99–130, 1996.
12. W. W. Conhaim. Blogging – what is it?, May 2002.

http://www.infotoday.com/LU/may02/conhaim.htm.
13. H. Do and E. Rahm. Coma - a system for flexible combination of schema matching

approaches. In VLDB, 2002.
14. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data

sources: A machine-learning approach. In SIGMOD Conference, 2001.
15. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map ontologies

on the semantic web. In The Eleventh International World Wide Web Conference,
2002.

16. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, V. Vassalos, and J. Widom. The TSIMMIS approach to mediation: data
models and languages. Intelligent Information Systems, 8(2):117–32, 1997.

17. S. Haustein and J. Pleumann. Easing participation in the semantic web. In WWW-
2002 Semantic Web Workshop, Honolulu, Hawaii, May 7 2002.

18. E. Hovy. Using an ontology to simplify data access. Communications of the ACM,
46(1):47–49, 2003.

19. A. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global
information systems. Intelligent Information Systems, 5(2):121–43, 1995.

20. J. Lopez and P. Szekely. Web page adaptation for universal access. In UAHCI-2001
Conference on Universal Access in Human Computer Interaction, pages 690–694,
New Orleans, 2001. Lawrence Erlbaum Associates, Mahwah, NJ.

21. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In The VLDB Journal, pages 49–58, 2001.

22. B. McBride. Jena: Implementing the rdf model and syntax spec-
ification. Technical report, Hewlett-Packard, 2000. http://www-
uk.hpl.hp.com/people/bwm/papers/20001221-paper/.

23. E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: an approach
for query processing in global information systems based on interoperation across
pre-existing ontologies. Distributed and Parallel Databases, 8(2):223–71, 2000.

24. P. Mitra and G. Wiederhold. An algebra for semantic interoperability of infor-
mation sources. In 2nd Annual IEEE International Symposium on Bioinformatics
and Bioengineering, pages 174–82, Bethesda, MD, USA, November 4-6 2001.

25. N. F. Noy and M. A. Musen. PROMPT: Algorithm and tool for automated ontol-
ogy merging and alignment. In 17th National Conference on AI, 2000.

26. E. Rahm and P. Bernstein. On matching schemas automatically. Technical report,
Microsoft Research, Redmon, WA, 2001. MSR-TR-2001-17.

27. G. Wiederhold. Interoperation, mediation, and ontologies. In International Sympo-
sium on Fifth Generation Computer Systems, Workshop on Heterogeneous Cooper-
ative Knowledge-Bases, volume W3, pages 33–48. ICOT, Tokyo, Japan, December
1994.


