
Automatic Integration of Web Search Interfaces
with WISE-Integrator
HAI HE1 , WEIYI MENG1, CLEMENT YU2, ZONGHUAN WU3

1 Department of Computer Science, SUNY at Binghamton, Binghamton, NY 13902, USA

{haihe, meng}@cs.binghamton.edu
2 Department of Computer Science, Univ. of Illinois at Chicago, Chicago, IL 60607, USA

yu@cs.uic.edu
3 Center for Adv. Compu. Studies, Univ. of Louisiana at Lafayette, Lafayette, LA 70504, USA

zwu@cacs.louisiana.edu

Abstract. An increasing number of databases are becoming Web accessible through form-based search interfaces, and

many of these sources are database-driven E-commerce sites. It is a daunting task for users to access numerous Web sites

individually to get the desired information. Hence, providing a unified access to multiple E-commerce search engines

selling similar products is of great importance in allowing users to search and compare products from multiple sites with

ease. One key task for providing such a capability is to integrate the Web search interfaces of these E-commerce search

engines so that user queries can be submitted against the integrated interface. Currently, integrating such search

interfaces is carried out either manually or semi-automatically, which is inefficient and difficult to maintain. In this

paper, we present WISE-Integrator – a tool that performs automatic integration of Web Interfaces of Search Engines.

WISE-Integrator explores a rich set of special meta-information that exists in Web search interfaces, and employs the

information to identify matching attributes from different search interfaces for integration. It also resolves domain

differences of matching attributes. In this paper, we also discuss how to automatically extract information from search

interfaces that is needed by WISE-Integrator to perform automatic interface integration. Our experimental results based

on 143 real-world search interfaces in four different domains indicate that WISE-Integrator can achieve high attribute

matching accuracy and can produce high-quality integrated search interfaces without human interactions.

Keywords: Web search interface integration, Schema integration, Attribute matching, Interface Extraction, Metasearch

1 Introduction

With the explosive growth of the Internet, an increasing number of databases are becoming Web accessible through

form-based search interfaces, and many of these sources are database-driven E-commerce sites. It is of great importance

to provide users with a unified access to multiple E-commerce search engines (ESEs) selling similar products (services

can also be treated as some kind of products) because this will allow users to search and compare products from multiple

sites with ease. In this paper, we call a system that supports the unified access to multiple ESEs as an E-commerce

metasearch engine (EMSE for short). Currently, a number of EMSEs exist on the Internet, such as www.addall.com,

www.mysimon.com, www.pricegrabber.com, and www.shopping.com. However, the techniques used to create them are

 2

not publicly reported. To the best of our knowledge, existing EMSEs are built either manually or semi-automatically.

Furthermore, as ESEs operate autonomously, changes/upgrades to them may affect the operation of an EMSE. As a

result, maintaining the operation of an EMSE is a costly long-term effort.

Our E-Metabase project aims to maximally automate the process of building large-scale EMSEs so as to significantly

reduce the cost of building and maintaining EMSEs. This project consists of a number of components. First, a special

crawler crawls the Web and identifies ESEs from the fetched Web pages. Second, an interface clustering component

clusters the found ESEs into different groups such that the ESEs in the same group sell the same type of products (i.e.,

these ESEs are in the same domain). Third, an interface integrator integrates the interfaces of the ESEs in each group into

a unified interface, which becomes the interface of the EMSE for this group. Fourth, a query mapper maps global queries

specified on the unified interface to queries specific to the underlying ESE interfaces. Fifth, for each ESE, an ESE

connector passes queries to and receives the results from the ESE. Sixth, for each ESE, a result extractor extracts the

product information from the result pages returned by the ESE. Finally, a result merger combines the extracted results

from different ESEs into a single list for presentation to the user. In this paper, we focus on the interface integration step

of the E-Metabase project.

WISE-Integrator is designed to automate the interface integration step. It concentrates on the HTML form-based Web

search interfaces like that in Figure 1. Such search interfaces have the following characteristics: (1) they are contained in

HTML pages and are often supported by back-end databases storing the product information; (2) they often reflect (a

portion of) the schema of the underlying product; (3) they allow users to specify more precise queries than using

keywords alone. For a given set of Web search interfaces of a domain, interface integration consists of the following two

major tasks: (a) identify the matching attributes across the interfaces; and (b) construct the unified interface based on

these matching attributes. To be fully automated, the information that is needed for interface integration must be

extracted from the HTML pages of the interfaces automatically. Therefore, WISE-Integrator also has an interface

extraction component. Note that WISE-Integrator is applied to each group of ESEs produced by the ESE clustering step

separately. Hence, in this paper, without loss of generality, we assume that all ESEs under consideration are in the same

domain.

This paper has the following contributions. First, we provide a comprehensive solution to the search interface

integration problem. Our solution includes Web search interface extraction, interface schema matching, global attribute

generation, unified search interface construction, and unified interface maintenance. In contrast, the related existing

works (e.g., [DDH01, DR02, HC03, MBR01]) deal with only schema matching. Second, our solution is fully automated

using only general (i.e., domain-independent) knowledge while most existing works employ manual or semi-automatic

techniques. A key issue in schema matching is to identify matching attributes from different interfaces. We explore a rich

set of meta-information contained in Web search interfaces and propose a two-step clustering method to tackle this issue.

Furthermore, this method also solves a rarely addressed issue, i.e., finding appropriate names for attributes in the unified

interface automatically. Third, we present a technique to automatically extract information, from the HTML pages of the

interfaces, that is needed to perform automatic interface integration. Our experimental results based on 143 real-world

search interfaces in four different domains indicate that WISE-Integrator can achieve high attribute matching accuracy

and can produce high-quality integrated search interfaces without human interactions.

 3

The rest of this paper is organized as follows. In Section 2, we introduce the interface representation model used by

WISE-Integrator. In Section 3, we discuss how to automatically construct the interface representation model. In Section

4, we present our method for identifying matching attributes. In Section 5, we discuss the generation of the global

attributes, including merging attribute domains. In Section 6, we discuss the unified interface construction. In Section 7,

we describe the maintenance of the unified interface. In Section 8, we report the experimental results and briefly describe

our operational prototype system WISE-Integrator. In Section 9, we review previous research works related to our work.

Finally, in Section 10, we provide some concluding remarks.

2 Interface representation

A Web search interface for e-commerce is usually presented through an HTML form in a Web page [HTL4]. It typically

contains several form control elements such as textbox (single-line text input), radio button, checkbox and selection list

(pull-down menu) that allow users to enter search queries.

Unlike traditional database systems, Web search interfaces have no explicit definitions of schema and meta-data. The

schema reflected on a search interface is embedded in an HTML page, and is composed of labels and elements that are

laid out on the interface in such a way with only human users in mind. To enable automatic interface integration, useful

information related to the schema of each search interface needs to be identified, extracted, and properly organized.

Indeed, interface schemas contain much useful meta-information that is specific to Web search interfaces. For example,

in Figure 2, attributes Publication date, Publication Year, Price Range and Author have their own special

presentation and composition. And from the name and the composition of an attribute, we may learn what semantics it

has for specifying a query condition and what type of value it may take semantically. Such special features of Web

search interfaces provide rich information in aiding attribute matching. In this section, we consider how to represent the

information on search interfaces useful for the purpose of interface integration. In Section 3, we will discuss the

automatic extraction of search interfaces based on this representation.

Fig. 1. The book search interface of amazon.com Fig. 2. Examples of element relationship type

Each ESE interface can be conceptually viewed as a partial export schema of the underlying product database. In our

interface representation, each interface consists of an ordered list of attributes and each attribute has one or more

 4

associated elements. For example, in Figure 1 the attribute Author has four associated elements including a textbox and

three radio buttons, and the attribute Publication date has two elements. Each attribute usually has a label (descriptive

text) associated with it, which becomes the attribute name. Each element has a format that is the input format of the

element. There are generally four types of formats: textbox, radio button, checkbox and selection list. Each element also

has a domain that defines the set of values that can be used to instantiate the element when forming a query. Such values

are also called attribute values. Textbox allows users to input whatever value they want while a selection list usually has

a list of values (options), and a radio button/checkbox usually has a single value (note that the text/label associated with a

radio button/checkbox is treated as the value of the radio button/checkbox in this paper). Often multiple checkboxes or

multiple radio buttons are used together to accomplish the same function as a selection list. Labels and elements of an

attribute often also indicate the domain type of the attribute. Four domain types are currently defined and they are

range, finite (with a finite number of values possible but no range semantics), infinite (with possibly unlimited number of

values, e.g., textbox, but no range semantics) and Boolean (has a single checkbox used to mark a yes/no selection). For

example, in Figure 2, Publication Year is of a range type because a range condition can be specified. Each element or a

group of elements may have its default value, which is used to help forming a query when a user does not make a

different selection. For each attribute, though its values are treated as alphabetic strings when sent to the server, the

attribute still semantically has its value type. Seven value types are currently considered in our model and they are date,

time, datetime, currency, number, char and id. The values of datetime contain both date and time. The id type indicates

that its values are used for identification purpose (e.g., product number, ISBN). Whenever possible, the unit of the

attribute values is also identified. For example, kilogram is a unit for weight while kilometer is a unit for length or

distance. Finally, each attribute has its layout position on its local interface. The position value is determined by the

layout order of the attributes on the interface. More important attributes are usually arranged ahead of less important

ones.

In addition to the label of an attribute, each element of the attribute may have its own label when the attribute

contains multiple elements. For example, in Figure 2, the attribute Publication Year has two textbox elements with their

own labels “after” and “before”, respectively. Element label helps define the semantic meaning of the element.
When an attribute has multiple associated elements, these elements are related in some way. We identify the

following four types of relationships among related elements based on our observations.

� Range type: It refers to the situation where multiple elements are used to specify the range semantics of an attribute.

For example, in Figure 2, the attribute Price Range has two related elements indicating the minimum and the

maximum values allowed.

� Part type: It refers to the part-of relationship. For example, in Figure 2, the Author has two elements “First name”

and “Last name”, and each of them is part of Author. Range type may be considered as a special case of part type.

� Group type: Multiple checkboxes/radio buttons are sometimes used together to form a single semantic concept

(attribute). In this case, the labels associated with the checkboxes/radio buttons are values of the attribute. In Figure

2, the attribute Platform has a group of checkboxes.

� Constraint type: An element can be used as a constraint for another element. For example, in Figure 2, the

checkbox Exact phrase is used to specify whether or not the input words should be treated as an exact phrase.

Without being related to the textbox the checkbox would be meaningless for the attribute. Another example is the

 5

attribute Author in Figure 1, which has three radio buttons as its constraints. In both cases, the checkbox or radio

buttons are called constraint elements while the texboxes are called domain elements.

To summarize, in our interface representation model, a Web search interface is represented as F = (S, {A1, A2 ,…,

An}), where S is the site specific information (e.g., product domain of the site, site URL, etc) and each Ai represents an

attribute. Each attribute Ai is represented as (L, P, DT, DF, VT, U, Re ,{Ej, Ej+1,…, Ek}, Ca), where L is the attribute label

(possibly empty) of Ai, P is the layout position of Ai, DT is the domain type of Ai, DF is the default value of Ai (possibly

null and there is at most one default value for each group of checkboxes and radio buttons), VT is the value type of Ai, U

is the unit of Ai (if applicable), {Ej, Ej+1,…, Ek} is a list of domain elements of Ai, Re is the relationship type of the

domain elements, and Ca identifies the list of constraint elements (possibly empty). If j=k (i.e., the attribute has only one

element), Re is null. Each element Em (m=j...k) is itself represented as (Le, N, Fe, V, DV), where Le is the element label

(possibly empty), N is the internal name (there is an internal name for each element in an HTML form source code), Fe is

the format (e.g., textbox, selection list, checkbox or radio button), V is the set of values of the element, and DV is the

default value of the element (possibly null).

Example 2.1: For the search interface in Figure 2, the attribute Price Range can be represented as (Price Range,

4, range, null, currency, USD, range, {(“Between US$”, “low”, textbox, ∅, null), (“And US$”, “high”, textbox, ∅,

null)},∅), where “low” and “high” are the internal names of the two textboxes in the HTML source code, and ∅ denotes

an empty set.

3 Search interface extraction

In order to truly automate interface integration, the information in the interface representation model described in Section

2 needs to be obtained automatically. Two relevant works [KBG00, RGM01] have been reported in the literature (See

Section 9 for more detail). In this section, we outline our technique used to implement WISE-iExtractor [HMYW03] –

the search interface extraction tool we employed to aid the experiments reported in Section 8. This tool can be either

used alone or embedded into WISE-Integrator as a sub-system. There are primarily two tasks in search interface

extraction. First, given an ESE search interface, group logically related labels and elements such that each group

represents a logical attribute of the underlying product. An attribute label should also be identified for each group.

Second, extract the meta-information of attributes needed for interface integration. The first task is the most challenging

problem in interface extraction due to the lack of fixed syntax or structure for organizing labels and elements.

3.1 Attribute extraction

We observe that labels and elements that represent the same attribute have certain layout relationships (e.g., they are

usually close to each other), and that in most cases they have some information in common. The relative layout positions

of labels and elements can be captured by an interface expression (IEXP). For a given search interface, its IEXP is a

string consisting of three types of items, namely ‘t’, ‘e’ and ‘|’, where ‘t’ denotes a label/text, ‘e’ denotes an element, and

‘|’ denotes a row delimiter (i.e., a physical row border on the search interface). IEXP provides a high-level description of

the layout of different labels and elements on the interface while ignoring the details like the values of the elements and

 6

the actual implementations of row delimiters. As an example, the search interface in Figure 1 can be represented as

“te|eee|te|eee|te|eee|te|te|t|te|te|te|te|tee|t|te”, where the first ‘t’ denotes the label “Author”, the first ‘e’ denotes the

textbox following the label “Author”, the first ‘|’ is the first row delimiter, and the following three ‘e’s denote the three

radio buttons below the textbox (Note that the text associated with a radio button/checkbox is treated as the value of the

element here; thus the text and its radio button/checkbox together are considered as a single entity).

We employ a two-step approach to automatically extract the attributes from the Web page containing a search

interface. In the first step, the IEXP of the interface is constructed. This step is outlined below. We start from the tag

“<form>” of the search engine form and continue until tag “</form>” is reached. When a label, an element or a row

delimiter is encountered, we append a ‘t’, an ‘e’ or a ‘|’ to the IEXP (it is empty initially) accordingly. The delimiter is

identified by “<p>”, “
” and “<tr>” tags in the HTML source code. In the second step, based on the IEXP, labels and

elements are grouped such that each group corresponds to an attribute. A layout-expression based extraction approach

(LEX) is developed for this task. As shown above, the IEXP of an interface organizes texts/labels and elements into

multiple rows. For each element e in a row, LEX attempts to find the text either in the same row or some rows above the

current row that is most likely to be the attribute label for e. Some special features of search interfaces are utilized in this

step to associate elements with labels. Some of these features are: (a) texts ending with a colon are likely to be attribute

labels; (b) an element and its attribute label are likely to appear in the same row, otherwise they are likely aligned

vertically, i.e., they have the same position index in their respective rows; (c) an element is likely to appear close to its

attribute label (i.e., the difference between their positions in the interface expression is small). These features are

aggregated together and the text with the highest score is selected as the associated label for e. At the end, all elements

that are associated with the same label as well as the labels of these elements form a logical attribute.

3.2 Meta-information extraction

In our interface representation model, four types of meta-information for each attribute are defined and they are domain

type, value type, default value and unit. Each type of meta-information needs to be automatically extracted. Deriving

such meta-information is relatively straightforward as described below.

1. Domain type. Four domain types are defined and they are range, finite, infinite, and Boolean. The domain type of an

attribute can be derived from its label, the associated element(s) and the relationship between the elements. If the

element(s) of the attribute have the range semantics (i.e., used to specify a range condition), the domain type of the

attribute is range. For example, keywords “less than” and pattern “(from)?[\s0-9]+(to|-)?[\s0-9]+” both have range

semantics. If an attribute has a list of pre-defined values for users to select and it involves no range semantics, the

domain of the attribute is of finite type. An attribute with just a single checkbox is considered to have a Boolean

domain type. Boolean type may be considered as a special case of the finite type because an attribute of Boolean

type takes two (finite) values conceptually. In our model, Boolean type is separated from the regular finite type as

this separation is helpful in finding matching attributes. An attribute with an infinite domain type usually consists of

textbox(es) with no range semantics.

2. Value type. Value types defined in our model include date, time, datetime, currency, id, number and char. To

identify date, time, datetime, currency and id, we provide a thesaurus for each type, which contains commonly used

 7

keywords and patterns related to the value type. If the labels (attribute label and element label) or element values

contain relevant keywords and patterns, the attribute’s value type is determined. A pattern can be defined as a

regular expression. For example, keywords “date” or regular pattern “[0-1]?[0-9]/[0-3]?[0-9]/([0-9]{2}|[0-9]{4})”

imply a date value type; keywords “morning” or pattern “[0-2]?[0-9]:[0-6]?[0-9](\s(A|P)M)?” imply a time value

type; having both date and time implies a datetime type; “$” implies a currency value type; keywords “ISBN” and

“i.d.” imply an id value type. If an attribute does not belong to one of these five value types, then we check if the

values of each of its elements are numeric. If they are, the value type is declared to be number; otherwise the value

type is char.

3. Default value. Not every attribute has a default value. If an attribute just contains textboxes, then the attribute has no

default value. The default value may occur in a selection list, a group of radio buttons or a group of checkboxes. It is

always marked as “checked” or “selected” in the HTML source code of a form. Therefore, it is easy to identify

default values.

4. Unit. To identify the unit of an attribute, we construct a unit library that contains the most popular units in e-

commerce, such as those for “currency”, “weight”, “age” and “date”. From the labels and values of an attribute, we

may get some information about its unit. Then we use the information and the library to derive the appropriate unit

for the attribute. For example, if a label contains “US$”, the implied unit is “USD”; “publication year” implies that

the unit is “year”. We may utilize other information such as the site URL to help determine the unit. For example,

for a “price” attribute, if the site URL ends with “ca” or “uk” before the first “/” (not counting http://), the unit of the

price would most likely be Canadian dollar (“CAD”) or United Kingdom pound (“GBP”).

In addition, if an attribute has multiple elements, we also identify their relationship automatically. In Section 2, we

introduced four types of relationships between elements: range type, part type, group type, and constraint type. Group

type and constraint type are easy to identify based on their definitions, and range type is already addressed in the above.

If an attribute has multiple elements but the relationship is not one of the other three types, then a part type relationship is

assumed. Furthermore, some widely used patterns, for example, a date has three parts (day, month and year) and a

person name has “first name” and “last name”, are also utilized to identify part type relationships.

4 Identifying matching attributes

To integrate multiple Web search interfaces, the first step is to identify matching attributes across these interfaces. In this

section, we present our attribute matching method based on the interface representation model described in Section 2.

4.1 Normalization

Since search interfaces are designed autonomously by independent designers, each interface has its own naming

convention for attribute names and values. Consequently, the same concept may be named differently. For example,

“Authors” and “by author” represent the same concept, but have different names; “any keywords” and “keywords” are

also matching attributes. To increase the chance of match, attribute names and element values are first normalized as

follows.

 8

� Convert each name or value string to its lower case equivalence.

� Remove all content in parentheses, including parentheses. The content within parentheses often has no real meaning

to the name or value, for example, “author name(e.g., susan)” and “title word(s)”.

� Replace any non-alphanumeric character by a space character.

� Tokenize each name/value using space, replace abbreviation and acronym (if any) [MBR01] and use WordNet to get

the base form of each token. For example, “max” is an abbreviation of “maximum” and “author” is the base form of

“authors”.

� Remove non-content words (e.g., “the” and “of”) when a name or a value consists of multiple words.

4.2 Semantic relationships

Identifying semantic relationships between concepts or objects is very important in database schema integration and Web

source integration. To facilitate attribute matching, we identify the following three types of semantic relationships

between terms (attribute names or element values): Synonymy, Hypernymy and Meronymy [Mil95, BCV01, BBB02].

� Synonymy. Two terms T1 and T2 are synonyms if they have similar meanings.

� Hypernymy. Term T1 is a hypernym of term T2 if T1 is more generic than T2. For example, tree is a hypernym of

maple.

� Meronymy. Term T1 is a meronym of term T2 if T1 is a part of T2. For example, first name is a meronym of name.

Given a term, we use WordNet [Mil95, WDNT] to get its synonyms, hypernyms and meronyms, if applicable.

However, hypernymy and meronymy terms that can be found from WordNet are very limited. In WISE-Integrator, we

also identify hypernymy and meronymy relationships of two terms using the information in the interface representations.

For example, suppose we have two interfaces, one has an attribute hardcover and the other has an attribute format that

has a value “hardcover”. From this, we can identify format as a hypernym of hardcover. Also, the part relationships of

elements may be used to discover meronyms. For example, from a search interface that contains an attribute author with

two parts, “first name” and “last name”, we establish both first name and last name as meronyms of author.

4.3 Matching attributes

The problem of attribute matching is to identify the attributes from different schemas that semantically represent the

same concept. This problem has been studied extensively for many years (e.g., [DDH01, DR02, HC03, LC00, MBR01])

but only recently has the attention been focused on the development of automated solutions. Inspired by the SEMINT

approach in [LC00], we propose an automated solution to the problem of search interface attribute matching. Our

solution explores the meta-information of attributes as described in our search interface representation model. To our

knowledge, exploring the specific meta-information from search interfaces for automatic attribute matching in the

context of search interface integration has rarely been studied.

SEMINT utilizes and extends the metadata characteristics in [LNE89] to determine matching attributes. SEMINT

introduces three levels of metadata that can be used: attribute names (the dictionary level), field specification (the

schema level, e.g., data type and primary key), and attribute values and patterns (data content level). However, SEMINT

just focuses on using the metadata at the schema level and data content level to determine attribute correspondences. It

 9

describes 20 characteristics at the two levels, such as data length, data type, nullable, primary key, default scale,

minimum, maximum, average and so on. We adopt the basic idea of the SEMINT approach for the attribute-matching

task in the sense that we also use metadata characteristics in multiple levels. Our approach differs from the SEMINT

approach in four aspects. First, the set of characteristics used is different. For example, primary key information and

maximum value are readily available in a database context but they are not available for interface integration. On the

other hand, information such as element format applies to only interface integration. Second, we utilize all three levels of

metadata instead of just two. Third, we classify matches based on different metadata into positive matches and predictive

matches (see below). Fourth, SEMINT uses neural network techniques but we don’t. Furthermore, the SEMINT

approach does not address how to determine a global name for the group of matching attributes.

As mentioned above, in our approach, we use the three levels of metadata to determine matching attributes. At the

dictionary level, we explore six types of possible matches on attribute names: exact match, approximate string match

[WM92], Cosine similarity of names [FB92] (see Section 4.3.2), synonymy match, hypernymy match and meronymy

match. At the schema level, domain type, value type, unit and default value are used. At the data content level, element

values are used.

In our approach, we classify the different matches into two types: positive matches and predictive matches. Positive

matches include exact name match, semantic (synonymy, hypernymy and meronymy) matches and value-based match.

For the value-based match, we employ exact match, approximate string match, synonymy match and hypernymy match.

When enough values from the two attributes are matched (a threshold is used), value-based match is recognized as

succeeded. When one of the positive matches occurs, the corresponding attributes are recognized as matched. Predictive

matches consist of approximate name match, Cosine similarity of names, and matches based on domain type, value type,

unit, default value, and value pattern. Predictive matches must be sufficiently strong (based on a weight threshold) for

two attributes to be recognized as matched.

These two types of matches, i.e., positive matches and predictive matches, are carried out through two clustering

steps to be presented in the next two subsections.

4.3.1 Positive match based clustering

This is to group attributes into clusters based on the positive matches between attributes. All input interfaces are

considered at the same time. There are three steps for the positive match based clustering.

� Group attributes into clusters based on the exact match of attribute names in all interfaces. After this step, all

attributes in the same cluster have the same name. For each distinct attribute name, the number of interfaces having

it is counted. Then the values of all the attributes in each cluster, if any, are unioned. Note that in general the same

name may have different meanings in different interfaces, namely, there may be homonyms. However, since we

consider only interfaces in the same domain, homonyms rarely occur.

� Merge the clusters produced in the first step into larger clusters based on the matching of attribute values and the

semantic (synonymy, hypernymy and meronymy) matches of attribute names between clusters.

� Determine the representative attribute name (RAN) for each cluster produced in the second step. This attribute

name will be a candidate of the global attribute name to which other attributes in the cluster will be mapped. To

 10

determine the RAN of a cluster, we employ a method based on the generality rule and the majority rule as described

below. First, we build hypernymy hierarchies based on the attribute names in the cluster. The roots of these

hierarchies represent the most general terms among the attribute names in the cluster. Next, we select the attribute

name among the roots that appears in most interfaces in the cluster as the RAN for the cluster. As an example,

consider a cluster containing four different attribute names: “format”, “binding type”, “hardcover” and “paperback”.

Suppose two hypernymy hierarchies are generated, one has “binding type” as the parent of “hardcover” and

“paperback”, and the other has “format” by itself. Then the RAN for this cluster will be chosen between “format”

and “binding type” based on which of them appears in more interfaces.

In our approach, the positive match based clustering step performs the preliminary attribute matching and the RAN

identification. This step just gleans the knowledge about what attributes should be matched based on the positive

information. There are several reasons to perform this clustering. First, count the number of interfaces in which each

attribute name appears; this information is important for determining the global attribute names. Second, determine the

RAN of each cluster in advance. Third, make sure that attributes that should be matched (based on positive matches) are

matched. This can simplify the comparisons in the predictive match based clustering step and reduce the possibility of

mismatches. Our experiments indicate that this two-step clustering approach, i.e., performing positive match based

clustering before predictive match based clustering (see next subsection), is effective.

Example 4.1: Consider the three interfaces, F1, F2 and F3 as shown in Table 1. After the positive match based

clustering, the following eight clusters are generated:

{Title:F1, Title:F3}, RAN = Title;

{Title word:F2}, RAN = Title word;

{Author:F1, Author:F1, Author:F3}, RAN = Author;

{Format:F1, Binding type:F2, Format:F3}, RAN = Format;

{Publication date:F1}, RAN = Publication date;

{Publication year:F2}, RAN = Publication year;

{Release date:F3}, RAN = Release date;

{ISBN:F2}, RAN = ISBN;

Note that Format and Binding type are clustered together because they have matching values.

Interface Attr. Name DT VT U DF Values
Title infinite char null null null
Author infinite char null null null
Format finite char null All formats hardcover, paperback

F1

Publication date range date year null null
Title word infinite char null null null
Author infinite char null null null
ISBN infinite id null null null
Binding type finite char null All bindings hardcover, paperback

F2

Publication year infinite date year null null
Title infinite char null null null
Author infinite char null null null
Format finite char null All formats hardcover, softback,CD

F3

 Release date infinite date year null null
Table 1. Example interfaces for macthing attributes

 11

4.3.2 Predictive match based clustering

The positive match based clustering step may fail to recognize some matching attributes. For example, attributes

Publication year and Release date cannot be matched because do not have the same name or matching values.

However, they may have similar meta-information such as similar domain type, value type and unit, which may help

matching them. The predicative match based clustering is to explore such meta-information to help the identification of

additional matching attributes.

 In our previous work [HMY03], an intermediate unified interface is generated in the matching process. Every time

when an attribute Ai from a local interface is considered, we compare it with all attributes in the intermediate unified

interface to find the best match. When the matching score of the best match is above a threshold, attribute Ai is mapped

to the corresponding global attribute, causing a possible re-generation of the global attribute. In this paper, we employ a

different approach. We first cluster all potentially matching attributes together and then generate the global attribute for

each group of matching attributes. To cluster attributes in this step, in our current implementation, we adopt and extend a

single-pass clustering approach [SM83, YM98], and reconsider all local interfaces again. Our predicative match based

clustering approach is described in detail below.

Initially, no cluster exists. When the first local interface is considered, each attribute Ai on the interface forms a

cluster Ci by itself. Meanwhile, for each Ai, look up the results of the positive match based clustering to obtain the RAN

of Ai (denoted RAN(Ai)), and add a mapping entry, i.e., RAN(Ai) → Ci, to an attribute-cluster thesaurus. The attribute-

cluster thesaurus is constructed incrementally during the matching process.

For each attribute Ai in the local interface considered next, the approach first looks up the attribute-cluster thesaurus

to see if an attribute with the same name as Ai has already been mapped to an existing cluster. If yes, Ai is placed into the

found cluster; otherwise, we look up the thesaurus to see if RAN(Ai) is mapped to an existing cluster. If a cluster is

found, Ai is mapped to the cluster, and this mapping is added to the attribute-cluster thesaurus as an entry. Performing the

above two lookups is to avoid the re-computation and to utilize past successful mappings. If both of the two lookups both

fail, we compute the matching weight between Ai and each existing cluster Ck to determine which cluster should include

Ai. The weight between Ai and Ck is the average of the weights between Ai and all the attributes in Ck, and the weight

between two attributes is the sum of the their weights based on several predictive matching metrics to be introduced

shortly.

After the weights between Ai and all clusters are computed, the cluster with the highest weight is selected (the tie is

broken using heuristics such as selecting the cluster with more attributes). If this weight is greater than a threshold w,

attribute Ai is mapped to the selected cluster; otherwise, we assume that no existing cluster is suitable for Ai and a new

cluster is created based on Ai. In both cases, two mapping entries, one is the mapping from attribute Ai to the cluster and

the other is from RAN(Ai) to the cluster, are added to the attribute-cluster thesaurus. The above process is continued until

all interfaces to be integrated are processed.

We now present the metrics used to compute the weight between two attributes.

1) Approximate string match and substring match: An approximate string match of two attribute names is to find out

if the edit-distance between the two name strings is within an allowed threshold T. We use the approximate string match

 12

algorithm in [WM92] to carry out the match. If the edit-distance is within the allowed threshold, assign a positive weight

Wam. In some cases, a single-word attribute name is a substring of some words in another attribute name and it is

difficult to find an appropriate T to recognize such matches. Therefore, if the edit-distance is not within the allowed

threshold, we also employ substring match between the two attributes. Wam is also assigned when such a match is

recognized. If none of the above two matches is recognized, Wam is 0.

2) Cosine similarity of names: The Cosine similarity is widely used in the information retrieval field to measure the

degree of similarity between two documents, or between a document and a query. Since attribute names may consist of

multiple words, we use this approach to measure the similarity of two attribute names. The approach is also used in

[Coh98]. We first tokenize each attribute name, get the term frequency of each term in each name string, and then apply

the Cosine similarity function [SM83] to compute the similarity of the two strings.

3) Domain type match: If the two attributes have the same domain type, assign a weight Wcd; otherwise Wcd is 0. In

addition, we observe that the range type is used much less often than other domain types. Thus, if both attributes have

the range domain type, we double Wcd.

4) Value type match: As mentioned in Section 2, seven value types (date, time, datetime, currency, number, char and

id) are considered in our approach. Datetime is considered to be compatible with both date and time. If the two attributes

have the same or compatible value type, assign a weight Wvtm; otherwise Wvtm is 0.

5) Unit match: If the two attributes that have the same value type also have compatible units (e.g., US$ and CAN$ are

compatible currency units because they are mutually convertible), assign a weight Wcu; otherwise, Wcu is 0.

6) Default value match: If the two attributes have matching default values or the two clusters containing the two

attributes that are obtained in the positive match based clustering have some matching default values, assign a weight

Wdv; otherwise Wdv is 0.

7) Value pattern match: For two numeric attributes, if the averages of all the values of the two attributes are close,

assign a weight Wvp; otherwise Wvp is 0.

The final weight between two attributes Ai and Aj is the sum of the weights based on the above seven matching

metrics (the optimal values of these weights are currently determined by experiments, see Section 8.2.2):

 W(Ai , Aj) = Wam + Wvss + Wcd + Wvtm + Wcu + Wdv + Wvp

Example 4.2: Continuing with Example 4.1, suppose F1 is considered first, then the clusters formed by F1 is: C1 =

{Title:F1}, C2 = {Author:F1}, C3 = {Format:F1}, C4 = {Publication date:F1}, and the attribute-cluster thesaurus =

{Title→C1, Author→C2, Format→C3 , Publication date→C4 }. When F2 is considered, Title word and Publication year

are clustered to C1 and C4, respectively, because they have the highest weights with the corresponding clusters and the

weights are above the threshold; Author is clustered to C2 because there is a corresponding entry in the attribute-cluster

thesaurus; Binding type is clustered to C3 because its RAN (i.e., Format) is in cluster C3; ISBN forms a new cluster

because its weight with any existing cluster is below the threshold. After F2 is considered the result is: C1 = {Title:F1,

Title word:F2}, C2 = {Author:F1, Author:F2}, C3 = {Format:F1, Binding type:F2}, C4 = {Publication date:F1,

Publication year:F2}, C5 = {ISBN:F2}, and the attribute-cluster thesaurus = {Title→C1, Title word→C1, Author→C2,

Format→C3, Binding type→C3, Publication date→C4, Publication year→C4, ISBN→C5}. After F3 is processed, the final

result is: C1 = {Title:F1, Title word:F2, Title:F3}, C2 = {Author:F1, Author:F2, Author:F3}, C3 = {Format:F1, Binding

 13

type:F2, Format:F3}, C4 = {Publication date:F1, Publication year:F2, Release date:F3}, C5 = {ISBN:F2}, and the

attribute-cluster thesaurus = {Title→C1, Title word→C1, Author→C2, Format→C3, Binding type→C3, Publication

date→C4, Publication year→C4, Release date→C4, ISBN→C5}.

5 Generating global attributes

After the two steps of clustering for matching attributes, each cluster semantically contains all the matching attributes

from the input local search interfaces. Thus, each cluster corresponds to a global attribute in the unified interface. To

generate the unified interface, we must first generate a global attribute for each cluster. The problem of generating a

global attribute consists of the following three sub-problems:

1. Determine the name of the global attribute: The name of the global attribute should be derived from the names of

the local attributes in the cluster to serve as their representative.

2. Determine the domain type of the global attribute: As mentioned previously, four attribute domain types are

supported in our approach and they are range, finite, infinite and Boolean. A domain type that is compatible with the

domain types of all the matching local attributes needs to be determined for the global attribute. The domain type

determines the way the elements of the global attribute are presented in the unified interface, and how query

conditions could be specified on the global attribute.

3. Determine the values of the global attribute: The values of the matching local attributes need to be merged to form

the values of the global attribute. Merged values should be semantically unique and compatible with the local

values. To facilitate this task, we consider attributes that take alphabetic values separately from those that take

semantically numeric values.

In the following subsections, we discuss our solutions to the above three sub-problems in detail.

5.1 Determining global attribute name

As mentioned in section 4.3.1, after the positive match based clustering step, every local attribute has its corresponding

RAN. A RAN is the most general term in the hypernymy hierarchy containing the term for the cluster. In our approach,

after the predicative match based clustering step, we apply the majority rule to all the RANs in each cluster, and select

the one that appears in most local interfaces as the global attribute name of the cluster. After the global attribute names

are selected, an attribute-mapping table is constructed, which records mappings from every local attribute name to its

corresponding global attribute name.

5.2 Determining global attribute domain type

It is possible for matching attributes to have different domain types. For example, in the book search interfaces used in

our experiments, some Subject attributes have finite domains (i.e., they have pre-compiled values) while other Subject

attributes have infinite domains (i.e, they allow users to enter a subject value). The domain type of the global attribute

should maximally reconcile such differences. In our solution, we introduce a hybrid domain type for global attributes.

Hybrid is the combination of finite and infinite. If an attribute has a hybrid domain type, users can either select from a list

 14

of pre-compiled values or fill in a new value. Given a number of matching local attributes, we use the following rules to

determine the domain type of the global attribute:

1) If all the matching attributes have the same domain type, then the global attribute also has this domain type.

2) If one of the matching attributes has a range type, then the domain type of the global attribute is also range.

3) If the matching attributes have mixed finite, infinite, Boolean and hybrid domain types with at least one of them

being either infinite or hybrid, then the domain type of the global attribute is hybrid.

4) If the matching attributes have mixed finite and Boolean domain types, then the domain type of the global attribute

is finite.

When the unified interface is constructed, the domain type of a global attribute is used to help determine the

presentation format of the attribute on the unified interface. For example, the format of global attributes of infinite

domain type will be implemented by textbox(es), and that of finite domain type by selection list(s).

5.3 Merging alphabetic domains

If some of the matching local attributes are of the finite domain type and have alphabetic values, we need to merge these

values and form a value set for the global attribute. In WISE-Integrator, this is carried out in two phases. The first phase

is during the positive match based clustering step discussed in Section 4.3.1. In this phase, due to the matching

techniques employed (exact match, approximate string match, synonymy match and hypernymy match), semantic

relationships between values in the same cluster are identified. In the second phase, we utilize the relationships between

the values to merge them and generate a global value set.

Phase 2 consists of the following steps. First, we organize all the values into categories based on approximate string

match, Cosine similarity match, synonymy match and hypernymy match. Thus, all values that are similar, synonymy or

hypernymy are organized into the same category. Next, we solve the following two problems: (1) Which value should be

chosen as the global value to represent similar and synonymy values in the same category? (2) How to provide global

values to users if the values in the same category have hypernymy relationships? For the first problem, we keep a counter

for each distinct local value and choose the most popular value among the similar and synonymy values as their global

value. As to the second problem, we need to make a tradeoff between choosing the most generic concepts and choosing

the most specific concepts because different choices will have different effects on query cost and interface friendliness.

The cost of evaluating a global query includes the cost of invoking local ESEs to accept sub-queries, the cost of

processing sub-queries at local ESEs, the cost of result transmission and the post-processing cost (e.g., result extraction

and merging). If we choose only the most generic concepts as the global values and do not use the more specific ones, a

query against the unified interface may need to be mapped to multiple values (corresponding to the more specific

concepts) in some local interfaces, leading to multiple invocations to the local search engines, and thereby higher query

evaluation cost. On the other hand, if we keep only the most specific concepts and ignore the more generic ones, users

who want to query more generic concepts (i.e., have broader coverage) may have to submit multiple queries using the

more specific concepts, resulting in less user-friendly interface. Our approach is to provide a hierarchy of values,

including both the generic and the specific concepts, to users. Multiple categories may be formed for the values

corresponding to each global attribute and a value hypernymy hierarchy is created for each category. Each hierarchy is

 15

limited to at most three levels to make it easier to use. This approach remedies the problems of the previous two options

and gives the users more flexibility to form their queries.

Example 5.1: Consider two Web bookstore interfaces, one has an attribute Subjects with values “Network”,

“Databases”, “Programming languages” and so on, and the other has a matching attribute Subject with values “TCP/IP”,

“Wireless network”, “Oracle”, “Sybase”, “Sql server”, “C”, “C++”, “Java”, “Pascal” and so on. After organizing the

values into categories, the semantic relationships between the values from the two interfaces are identified. There are

three possible ways to generate the global values. One is to use only the generic concept values, i.e., values from the first

interface, namely “Network”, “Databases”, “Programming languages” etc. In this case, suppose a user wants to find

information about Oracle. Since “Oracle” is not available, the user has to select “Databases” on the unified interface and

submit the query. This global query will be mapped to three sub-queries for the second interface, namely “Oracle”,

“Sybase”, and “Sql server”. Obviously, searching based on “Sybase” and “Sql server” will waste the resources at the

second site and return useless results to the user. The second option is to use only the specific concept values, i.e., the

values from the second interface. In this case, a user who wants to find information about database (not of any specific

type) needs to submit three queries using respectively “Oracle”, “Sybase” and “Sql server”. This is inconvenient to the

user. Our approach will organize related values into a hierarchy (see the box on the right in Figure 3). In this case, if the

user selects “Databases”, the metasearch engine will generate three sub-queries for the second site on behalf of the user.

On the other hand, if any of the three sub-concepts of “Databases” is selected, only that concept will be used for the

second site but “Databases” will be used for the first site. This solution remedies the problems of the first two solutions.

We should point out that the values in a category sometimes do not form a hierarchy. In this case, we just provide a

list of values without a hierarchy.

Network
Databases
Programming languages
...

TCP/IP
Wireless network
Oracle
Sybase
Sql server
C
C++
Java
Pascal
...

Network
--TCP/IP
--Wireless network
Databases
--Oracle
--Sybase
--Sql server
Programming languages
--C
--C++
--Java
--Pascal
...

Subjects

Subject

Fig. 3. An example of merging domain values

5.4 Merging numeric domains

To merge values of numeric domains, we need to perform the following tasks:

1) Resolve unit difference. In our approach, we build a unit relationship dictionary in advance for some popular units.

The system can look up the dictionary to find out how to map one unit to another compatible unit. The numeric

values in those attributes are transformed to the same global unit during value merging.

2) Understand the semantic differences involved.

 16

3) Generate a global domain with query cost taken into consideration.

Fig. 4. Examples of different range formats

We identify two types of numeric domains: range numeric domain and non-range numeric domain. If the domains of

the matching local attributes are non-range numeric, we just union all the values of these attributes for the global

attribute.

 For the rest of this subsection, we focus on attributes of range numeric domain. In Figure 4, we can see that there are

various range formats. Two aspects need to be considered in resolving range differences, one is about range modifiers

such as “from”, “to”, “less than”, “under” and so on, and the other is about range width. Figure 4 shows that different

range domains may have different range modifiers and different range width. The basic resolution of range differences is

to generate a global range domain that is compatible with the local range domains of the matching attributes.

For the range numeric domain, three types of formats can be identified as shown in Figure 4.

1) One selection list. The range type consists of only one selection list. The first four selection lists in Figure 4 are

examples of this format.

2) One selection list and one textbox. This is exemplified by Publication date in Figure 4, which has two elements: a

selection list for selecting a range modifier and a textbox for entering a numeric value.

3) Two textboxes or two selection lists. This type consists of two elements and each of them may be a textbox or a

selection list. The examples are Price Range and Publication Year in Figure 4.

 From Figure 4, we can see that ranges are often formed using numeric values and range modifiers together. To help

the system understand different ranges, we need to let the system know the meanings of the range modifiers. For this

purpose, we build a semantic dictionary that keeps commonly used range modifiers for numeric domains (see Table 2).

In addition, we also save the meanings of other terms related to numeric values. For example, in Figure 4, we can see

that “baby” and “teen” are in Reader age. We need to specify the meanings of these words for the system to understand

them, for instance, “baby” may be interpreted as “under 3 years”, “teen” as “13-18 years”, and “adult” as “over 18

years”. This semantic dictionary can be used to build a range semantics table for each range attribute based on its values.

 17

The range semantics table keeps multiple ranges corresponding to the original ranges in the element(s). As an example,

consider the element that has the “less than” range modifier in Figure 4. From this element, we can obtain the following

numeric values 5, 10, 15, 20, 25, and 50. We can also obtain phrases “all price ranges” and “less than”. With the

information and an approriate semantic dictionary for range modifiers, a range semantics table as shown in Table 3 can

be built. Here the internal values are the values in the HTML text that correspond to the values of the element.

Table 2. Range modifiers (* modifiers to be used in pairs) Table 3. A range semantics table

Under $10
From $10 to $20
From $20 to $30
From $30 to $40
From $40 to $50
Over $50

Less than $5
Less than $10
Less than $15
Less than $20
Less than $25
Less than $50

Under $5
From $5 to $10
From $10 to $15
From $15 to $20
From $20 to $25
From $25 to $30
From $30 to $40
From $40 to $50
Over $50

Local range

Local range

Global range

Fig. 5. An example of a global range domain

So far we have solved the first two problems of merging range numeric domains. The last thing we need to do is to

generate global ranges that are compatible with the local ranges of the matching attributes. In general, a global query

choosing a larger range on the unified interface will lead to more queries for some local sites and higher overall cost for

evaluating the global query. Therefore, we should avoid having large ranges on the unified interface. In our current

approach, we first obtain all the distinct values from the matching attributes, then sort them in ascending order, and

finally generate a range using every two consecutive values. For the minimum and the maximum values, “under” and

“over” range modifiers are used, respectively. A single selection list is used to implement each global range domain.

This simple approach avoids generating large ranges on the unified interface and maps each global range to at most one

local range for each local site. It, however, tends to produce too many small ranges on the unified interface when a large

number of local interfaces are integrated. This is a problem we plan to investigate further in the future.

Example 5.2: Suppose in Figure 4 the two attributes with “from” and “less than” range modifiers are matched. The

list of distinct numeric values under the two attributes is: 5, 10, 15, 20, 25, 30, 40, 50. From these values, the global

range format can be easily obtained (see Figure 5).

Range modifiers Meaning
Less than <

Over >
Under <

Greater than >
 From* >=

 To* <=
 Between* >=

And* <=
After >

Before <
… …
All All range
Any All range

Lo Hi Internal value
0 5 ‘lessthan5’
0 10 ‘lessthan10’
0 15 ‘lessthan15’
0 20 ‘lessthan20’
0 25 ‘lessthan25’
0 50 ‘lessthan50’
0 ∞ ‘allrange’

 18

6 Generating unified interface

After all the global attributes are generated, WISE-Integrator generates the unified interface in HTML format.

Constructing the unified interface needs to consider three issues: (1) the presentation style of the attributes, (2) how to

lay out the attributes on the interface (i.e,, attribute layout), and (3) which attributes to keep for the interface (i.e.,

attribute selection). The first issue has been addressed in Section 5.2. In this section, we address the remaining two

issues.

6.1 Attribute layout

Intuitively, for an interface to be user-friendly, important and frequently used attributes should be laid out near the top of

the interface. Each attribute has its layout position on its own local interface. These layout positions reflect the degrees of

importance of the attributes as perceived by the local interface designers and their users. Usually, the first few attributes

at the top of a local search interface are more frequently used than other attributes. In WISE-Integrator, for each global

attribute, we aggregate the local positions of the corresponding local attributes into a global position, and arrange the

global attributes in ascending order of their global positions. Specifically, the global layout position of a global attribute

Ai is computed as follows:

 ∑
=

=
m

j

j
ii APAP

1

)()(

where)(AP i denotes the position of the i-th global attribute Ai, m is the number of local interfaces to be integrated,)(AP j
i

is the layout position of the corresponding local attribute of Ai on the j-th local interface;)(AP j
i is assigned a value that is

the total number of global attributes when no matching local attribute of Ai exists on the j-th local interface. Clearly,

using this method, global attributes whose corresponding local attributes appear in high positions (the first position is the

highest) on many local interfaces will likely appear in high positions on the unified interface, and global attributes whose

local attributes rarely appear on local interfaces will likely be positioned near the bottom of the unified interface.

6.2 Attribute selection

When a large number of local interfaces are integrated, the unified interface may have too many attributes to be user-

friendly. While some key attributes about the underlying product appear on most or all local interfaces, some less

important attributes appear on only a small number of local interfaces. One way to address this problem is to trim some

less important attributes from the unified interface. We use the global positions of global attributes to trim off less

important attributes (those that have large global position values). A user-adjustable threshold for global position values

can be used to control this. On the other hand, attribute trimming will reduce the capability of querying the unified

interface. Therefore, we have to make a tradeoff between user-friendliness and the reduced querying capability.

 19

7 Maintenance of the unified interface

Due to the dynamic nature of Web (i.e., Web sites may change/upgrade their Web search interfaces, new Web sites may

appear, and some Web sites may be removed), it is necessary to deal with these changes in a timely manner to keep

EMSEs operating properly. Hence, after a unified interface is generated, it is likely that some new local interfaces need

to be added to or some existing local interfaces need to be removed from the unified interface from time to time. This

requires maintaining the unified interface. WISE-Integrator is also designed to support this task.

For adding new local interfaces, the positive match based clustering step will incrementally cluster the attributes of

these new local interfaces to the existing clusters that were established in the same step when building the previous

unified interface. The RANs may need to be updated based on the current and previous statistical and semantic

knowledge. Then, the predicative match based clustering is performed on these new local interfaces. Since a significant

amount of mapping knowledge has been established when building the previous unified interface, clustering the

attributes of these local interfaces will not take much additional time. When all the attributes of these local interfaces are

mapped, some global attributes on the previous unified interface may need to be regenerated. The approach mentioned in

Section 5 is still applicable for this purpose.

To remove a local interface from the unified interface, we remove the attribute names and their corresponding

values from the clusters as well as the related mapping entries from the table that maps local attribute names to global

attribute names. In addition, the entries corresponding to the affected attributes in the attribute-cluster thesaurus are also

removed.

The addition of new interfaces and the removal of existing interfaces may also impact the domain types of the

affected global attributes. The rules in Section 5.2 need to be applied again to determine the new domain type of each

affected global attribute.

8 Experiments and implementation

In this section, we report the results of some experiments we carried out to evaluate the accuracies of our search interface

extraction and interface integration techniques. We also briefly describe the implementation of WISE-Integrator.

To perform the experiments, we collected 143 real search interfaces from four domains: books (60), electronics (21),

music (32) and movies (30). In general, the search interfaces of each domain differ significantly in attribute naming and

composition. We constructed the interface representation for each search interface using the WISE-iExtractor

component. Then we feed the interface representations of these search interfaces to the interface integration component

to generate a unified search interface for each domain.

8.1 Evaluating the accuracy of interface extraction

WISE-iExtractor takes as input Web pages containing search interfaces. In some cases, search interfaces are ill-

formatted, for example, missing some end tags. Such interfaces are tidied using Jtidy (http://lempinen.net/sami/jtidy)

 20

before the extraction is performed. For each search interface, we manually identify the logical attributes on the interface,

and then compare them with the results of WISE-iExtractor.

As discussed in Section 3, an attribute in general consists of up to three aspects of information: the name/label of the

attribute, the set of the domain elements, and the set of the constraint elements (possibly empty). An attribute extracted

by WISE-iExtractor is considered to match a manually extracted attribute only if they match on all of the three aspects.

We call the match evaluation based on this requirement as an attribute-level evaluation. Our experimental results for the

attribute-level evaluation are reported in Table 4, where “#Man” denotes the number of attributes that are identified

manually, “#EXT” denotes the number of attributes that are correctly extracted by WISE-iExtractor. The overall

accuracy is 94.62%. Generally it is more difficult to achieve high accuracy at the attribute level especially when

attributes have multiple elements and when elements have their own labels. For example, suppose an attribute has three

elements, but WISE-iExtractor only identified two of them; at the attribute level, this will be considered as a complete

failure; but at the element level, the correctness rate will be 2/3 as two of the three elements are correctly identified.

Errors Domain #
Man

EXT

Accuracy Label Dom.

elems
Const.
elems

Books 370 351 94.8% 8 8 3
Electronics 146 137 93.8% 6 1 2

Movies 195 178 91.3% 11 1 5
Music 200 196 98% 2 2 0

Overall 911 862 94.62% 27 12 10
Table 4. The accuracy of attribute-level evaluation

To further evaluate the robustness of our approach, we carried out additional experiments using an independently

collected dataset. The dataset is from DeLa [WL03] that was used for evaluating the label assignment algorithm in DeLa.

This dataset has 27 search forms from three different domains (books, cars, and jobs). The overall attribute-level

accuracy of our method on this dataset is 92.73%, which is about 2% lower than the accuracy of 94.62% obtained on our

dataset. The main reason for this performance drop is that the DeLa dataset has more cases where an attribute has

multiple elements arranged in different rows. To illustrate the problem such cases may cause, let us consider the attribute

Other keywords in Figure 2: were the checkbox “Exact phase” below the textbox, it would be hard for LEX to know

whether or not the checkbox is part of the attribute.

Table 5. The accuracy of deriving attribute meta-information

WISE-iExtractor is also designed to obtain/derive meta-information, such as domain type, value type, unit, default

value and the relationships between elements, for the extracted attributes. For each attribute with multiple elements, we

also differentiate domain elements and constraint elements (this is recognized when the constraint type relationship

between elements is identified). To evaluate the accuracy of obtaining attribute meta-information, we consider only those

attributes that are correctly identified by WISE-iExtractor. Our experimental results for each domain are shown in Table

5, where “DT” denotes domain type, “VT” denotes value type, “U” denotes unit, “ER” denotes element relationship, and

 Domain #
EXT

DT VT U ER DDC

Books 351 347 349 341 347 343
Electronics 137 136 136 137 137 137

Movies 178 171 171 175 176 177
Music 196 191 194 194 192 196

 21

“DDC” denotes the differentiation of domain elements and constraint elements. For example, for the book domain, out of

the 351 attributes considered, the domain types of 347 attributes are correctly identified. The results show that nearly all

needed meta-information can be correctly identified using our proposed algorithms.

8.2 Evaluating the accuracy of interface integration

8.2.1 Evaluation criteria

Three qualitative criteria for measuring the quality of a global conceptual schema in the context of database schema

integration are proposed in [BLN86] and they are Completeness and Correctness, Minimality and Understandability. We

rephrase these criteria and propose the following criteria to guide the evaluation of search interface integration.

Correctness. Attributes that should be matched are correctly and uniquely matched, and the domains of the matching

attributes are correctly integrated. This criterion corresponds to the correctness and minimality measures in [BLN86].

Completeness. If a result can be retrieved directly via a local interface, then it can also be retrieved via the unified

interface. In other words, query capabilities on any local search interface must be preserved on the unified interface. This

criterion corresponds to the completeness measure in [BLN86].

Efficiency. The construction of a unified interface should consider query cost. While query cost is usually considered at

the query evaluation time, a bad unified interface may incur high query cost despite of good query evaluation algorithms.

For example, supporting only very wide range conditions on the unified interface may cause too many local queries to be

submitted to a local search engine and too many unwanted results to be transmitted to the metasearch engine.

Friendliness. A unified interface should be simple and easy to understand and use by users. As an example, it is better to

provide users a list of values for an attribute when these values are available for the attribute than letting users fill out the

value without any knowledge. As another example, frequently used attributes should be arranged ahead of less frequently

used ones. Although the friendliness is related to the understandability, the meanings of these two measures are not the

same.

The completeness, efficiency and friendliness of the unified interface are taken into consideration by WISE-

Integrator (see Sections 5 and 6). In the next subsection, we report our experimental results for completeness and

correctness for matching attributes.

8.2.2 Experimental results

To evaluate attribute matching, we check how well local attributes are mapped to the global attributes in the unified

interface. We consider the following three cases:

1) A local attribute is correctly mapped to a global attribute.

2) A local attribute is incorrectly mapped to a global attribute.

3) A local attribute is mapped to a global attribute A, but there is another global attribute B such that A and B are

semantically the same and B represents more local attributes. This may occur when the attribute matching algorithm

 22

described in Sectrion 4.3 fails to match the local attributes represented by A with those by B. In this case, the local

attribute is considered to be incorrectly mapped. Note that if the local attribute is mapped to B, it is considered to be

correctly mapped (i.e., this case is included in Case 1 above).

Basically, the correctness measure for attribute matching requires that local attributes that should be matched across

all the input search interfaces be matched, and that local attributes that should not be matched not be matched. Our

evaluation metric for correctness is called attribute matching accuracy (ama), which is the percentage of the correctly

matched local attributes among all the local attributes. The formula we use for computing ama is:

∑

∑

=

== n

i
i

n

i
i

a

m
ama

1

1

where n is the number of local interfaces used for integration, mi is the number of the correctly mapped attributes on the

i-th interface (case 1), and ai is the number of attributes on the i-th interface.

The completeness measure requires that all the query capabilities on each local interface be preserved on the unified

interface. Among the above three cases of attribute mapping, case 2 will reduce the completeness because attributes in

this case are incorrectly mapped to global attributes and using such global attributes may lead to incorrect results from

some local search engines. However, case 3 does not affect the retrieval of correct results because the semantics related

to these attributes are correctly preserved on the unified interface. Therefore, case 3 mappings do not reduce the

completeness. We define the attribute matching completeness (amc) measure as follows:

()

∑

∑

=

=

−
= n

i
i

n

i
ii

a

ra
amc

1

1

where ri is the number of incorrectly mapped attributes on the i-th interface (case 2).

Table 6. The attribute matching correctness and completeness

We performed 4 rounds of experiments on book interfaces. In the first round, 15 interfaces were randomly selected

and a unified interface was generated for them. In each subsequent round, 15 additional interfaces were randomly

selected and added to the previously selected interfaces. Then a unified interface was generated for all the selected

interfaces from scratch. We manually checked how well the attributes are matched. We also performed experiments

using interfaces of the other three domains in a similar manner. The experimental results are shown in Table 6. On the

average, the overall correctness and completeness of our approach for the four domains are 95.82% and 98.11%,

Domain The number of
Interfaces

Total
Attributes

Case 1 Case 2 Case 3 ama(%) amc(%)

15 (1st round) 107 107 0 0 100 100
30 (2nd round) 206 203 2 1 98.54 99.03
45 (3rd round) 279 274 2 3 98.21 99.28

Books
60 (4th round) 370 357 8 5 96.49 97.83
10 (1st round) 68 62 4 2 91.18 94.12 Electronics
21 (2nd round) 146 136 8 2 93.15 94.52
10 (1st round) 65 61 2 2 93.85 96.92
20 (2nd round) 120 109 4 7 90.8 96.67

Music

32 (3rd round) 200 186 5 9 93 97.5
10 (1st round) 69 65 0 4 94.2 100
20 (2nd round) 137 131 1 5 95.62 99.27

Movies

30 (3rd round) 193 187 1 5 96.89 99.48
Average 1960 1878 37 45 95.82 98.11

 23

respectively. Furthermore, the results are remarkably stable (with all correctness and completeness values within a

narrow range) despite the differences in the number of interfaces used and the product types. Our analysis indicates that

some failures are caused by non-product-specific attributes, such as “sorting”, “including product images” and

“including product description”, which are usually used to control how results are presented to users. If these attributes

were not considered, better results would be obtained.

We also conducted experiments to evaluate the matching effectiveness of the predictive matching metrics used in the

predictive match based clustering, and the impact of incremental integration of search interfaces.

Effectiveness of predictive matching metrics:

As discussed in Section 4.3, our approach to attribute matching across multiple interfaces first uses name matching and

some value matching techniques to build the knowledge on what attribute should be positively matched. Then we use

several meta-information based predictive matching metrics to identify additional matching attributes. Exploring and

utilizing a rich set of attribute meta-information to perform attribute matching is an important feature of our approach.

To find out the contribution of the predictive matching metrics toward the overall performance of our approach, we

analyzed the results reported in Table 6. Specifically, for each correct match (i.e., case 1 match), we check whether it is

due to name and value based matching or due to predictive matching metrics based matching. The result of our analysis

is shown in Table 7, where “#att” denotes the number of correctly matched attributes, “#pos” denotes the number of

matched attributes due to name and value based matching, and “#pred” denotes the number of matched attributes due to

predictive matching metrics based matching. Note that only the results when all the interfaces in each domain are used

are reported in Table 7. The result indicates that overall about 17% of all correct matches are due to the use of the

predictive matching metrics. In summary, the use of the predictive matching metrics in our approach contributes

significantly to the overall attribute matching correctness.

Domain # att # pos # pred

Books 357 307 50
Electronics 136 118 18

Music 186 134 52
Movies 187 161 26
Overall 866 720 146

Table 7. The effectiveness of predictive matching metrics

Effectiveness of incremental integration:

Incremental integration allows new search interfaces to be integrated into an existing unified interface without starting

the entire integration from scratch, thus allowing new unified interface to be generated faster. Supporting incremental

integration of search interfaces is another feature of WISE-Integrator. Intuitively, considering all search interfaces at the

same time is likely to lead to more accurate matching results than considering them incrementally. To see how well the

attributes are matched incrementally, we used the same dataset and performed the same rounds of experiments as we did

to obtain the results in Table 6, however, in each round here, the selected new interfaces are integrated into the unified

interface generated in the prior round instead of starting from scratch. Table 8 shows the results of the incremental

integration. Comparing to the results in Table 6, we can see that incremental integration degrades the matching accuracy

only slightly.

 24

In all experiments, the weights for the six metrics in Section 4.3.2 (the Cosine similarity match has no fixed weight)

are: Wam=0.5, Wcd=0.1, Wvtm=0.4, Wcu=0.2, Wdv=0.6 and Wvp=0.1, and the weight threshold w is 0.62. These values

are obtained from the experiments using the book interfaces and they are applied to the other interfaces without change.

As the interfaces for books are very different from those for electronics, music and movies, the experimental results

indicate that the above parameter/threshold values are robust.

Table 8. The attribute matching correctness and completeness for incremental integration

8.3 Prototype implementation

WISE-Integrator is developed using JDK1.4 and is now operational. To utilize WordNet, WordNet1.6 is embedded into

the system through APIs based on the C language. The GUIs of the system are shown in Figure 6(a) and 6(b). The

system has two components, one for search interface extraction and the other for interface integration. The search

interface extraction component is implemented by WISE-iExtractor which can be used alone or embedded into WISE-

Integrator as a sub-system.

WISE-iExtractor takes as input one or more HTML pages (or their URLs) containing search interfaces of ESEs. In

general, a Web page might contain multiple search forms for different products (e.g., books, movies and music). Our

system requires that all the search forms on a Web page be in the same product domain. After each input interface is

extracted, the extractor shows its extracted search interface. For the interface in Figure 1, the extracted interface is shown

in Figure 6(a) (only a fraction is shown). To make it easier to view the extracted logical attributes, they are separated by

horizontal lines. The text displayed in each textbox (e.g., query-0 in the textbox next to “author”) is the internal name of

the textbox. This allows users to check, based on the HTML source code of the form, if the textbox is grouped correctly

with other elements and labels of the logical attribute. WISE-iExtractor then uses the extracted information of the search

interface to construct the representation model in XML format to be used by the interface integration component.

The interface integration component of WISE-Integrator is to produce a unified search interface over the extracted

search interfaces of the same domain. The system reads the interface representation of each ESE and displays the

interface representation visually in a tree structure as shown in Figure 6(b). From the tree view, users can see all the

extracted information for each local search interface. When the integration is completed, the unified interface and the

attribute matching information are displayed. From Figure 6(b), we can see that the unified search interface (only a

fraction is shown in this Figure) over multiple book search interfaces, and that the global attributes are arranged in the

Domain The number of
Interfaces

Total
Attributes

Case 1 Case 2 Case 3 ama(%) amc(%)

15 (1st round) 107 107 0 0 100 100
30 (2nd round) 206 203 2 1 98.54 99.03
45 (3rd round) 279 274 3 2 98.21 98.92

Books
60 (4th round) 370 357 7 6 96.49 98.1
10 (1st round) 68 62 4 2 91.18 94.12 Electronics
21 (2nd round) 146 136 7 3 93.15 95.2
10 (1st round) 65 61 2 2 93.85 96.92
20 (2nd round) 120 106 8 6 88.33 93.33

Music

32 (3rd round) 200 184 8 8 92 96
10 (1st round) 69 65 0 4 94.2 100
20 (2nd round) 137 131 1 5 95.62 99.27

Movies

30 (3rd round) 193 187 1 5 96.89 99.48
Average 1960 1873 43 44 95.56 97.80

 25

order of their importance. A special feature of WISE-Integrator is that users can remove an existing interface from or add

a new interface to the existing unified interface at any time on the fly, and WISE-Integrator will generate the new unified

interface without starting from scratch (i.e., incremental maintenance is implemented). In addition, users can choose a

parameter value to trim some less important attributes from the unified interface to make it more user-friendly.

Fig. 6(a). A screen-shot of WISE-iExtractor

Fig. 6(b). A screen-shot of the interface integration component of WISE-Integrator

 26

9 Related work

In this section, we compare our techniques with existing works related to Web search interface extraction and schema

matching.

Web search interface extraction:

The works reported in [KBG00, RGM01] are closely related to search interface extraction. [KBG00] proposes a method

useful for displaying and manipulating HTML forms on small PDA screens. The method breaks the entire HTML page

into “chunks” and uses several heuristic algorithms to find a good matching label for each form element. The method

LITE in [RGM01] identifies matching labels for form elements for the purpose of crawling the hidden web, but not for

interface integration. It uses a layout engine to obtain candidate labels that are physically closest to an element in

horizontal and vertical directions. The major differences between [KBG00, RGM01] and our LEX approach are as

follows. First, the approaches in [KBG00, RGM01] are not completely attribute-oriented. In other words, they find

labels for elements but not for attributes. If an attribute has multiple elements with their own (element) labels, the

methods in [KBG00, RGM01] will probably fail to extract the attribute label. LEX aims to group all logically related

labels and elements, and identify an appropriate attribute label for each group. Second, our solution is much more

comprehensive than the solutions in [KBG00, RGM01]. We not only model the search interfaces and extract logical

attributes, but also identify and extract a rich set of meta-information for extracted attributes. As a result, our approach is

more suitable for search interface integration.

Schema matching:

A good survey of approaches for automatic schema matching can be found in [RB01]. [GKD97] predefines the mapping

rules for each attribute and assembles these rules into a knowledge base for interpretation when a query is handled.

[DEW96] predefines each domain description (including information about product attributes), and then uses some

heuristics and mapping functions for the fields of each search interface but it provides little detail about user interface.

[BBB02, BCV01] use description logics, common thesaurus and clustering techniques for semantic schema integration.

It is a semi-automatic approach as the integration process still involves human interaction. Furthermore, the approach

used for matching attributes is mainly based on name affinity and structure affinity, and only a few metadata (such as

key and foreign key) of schemas are used. [LC00] uses neural network techniques and focuses on utilizing both schema

level and data content level metadata to automatically identify matching attributes. Our approach has adopted some ideas

from [LC00] but there are significant differences between the two approaches (see Section 4.3 for more comparison with

[LC00]). [DDH01] uses and extends machine-learning techniques to semi-automatically find mappings between a source

schema and the mediated schema. This approach needs human users to manually construct the semantic mappings

between a small set of data sources and the mediated schema for training purpose. [MGR02] uses the idea of IP packet

flooding to flood the similarity of elements. It converts each schema into a directed labeled graph. On the basis of the

graph model, a part of the similarity of two elements propagates to their respective neighbors. No linguistic name

matching is done beyond utilizing a simple string matcher to compare common prefixes and suffixes of literals. This

approach is not suitable for search interfaces because name matching plays an important role in the integration of search

interfaces. [DR02] discusses combining different matching algorithms in a flexible way and supports different ways to

 27

combine match results. In [DR02], schemas are represented as rooted directed acyclic graphs. It maintains a matcher

library of simple matchers such as approximate string matcher, synonym matcher, data type matcher and hybrid matchers

(e.g., name matcher and structural matcher). It uses data type but not other schema or instance-level data to help find

matches. Cupid [MBR01] investigates algorithms for generic schema matching. It combines a number of past techniques,

such as linguistic-based matching and some metadata of schemas. It also proposes structure-matching algorithms for

hierarchy schemas (tree structures) in which a structural similarity is computed between each pair of schema elements.

However, the Cupid approach is not instance-based, i.e., attribute values are not used. Our experiences indicate that

attribute values available on search interfaces are an important source of information for identifying matching attributes

in search interface integration. The work reported in [HC03] is the most related to our work as it also focuses on Web

search interfaces. [HC03] uses a statistical approach for schema integration of search interfaces of the deep web. It

argues that as the Web sources proliferate, the aggregate schema vocabulary of the sources in the same domain tends to

stabilize at a relatively small size, and that underlying these sources, there exists a unified hidden schema model. It uses

only attribute names for statistical analysis, and it does not utilize other schema information such as domain type, value

type and attribute values, which we find based on our experiments are important for accurate interface integration.

Futhermore, [HC03] discusses only attribute matching, but not actual integration, for example, domain merging and

global attribute name generation are not considered.

The main difference between our work and existing works is that we aim to perform comprehensive interface

integration automatically, including attribute matching, value merging, format integration and the construction of an

operational unified interface, while other existing works focus mostly on attribute matching, employing mostly manual

or semi-automatic techniques. Furthermore, compared with other approaches for Web source integration, our approach

utilizes a richer set of schema and instance level information to find matching attributes.

10 Concluding remarks

Providing integrated access to multiple data sources on the Web is an important aspect of information integration. The

continued rapid increase of data sources on the Web calls for advanced tools that can automate the process of building

integrated information retrieval systems. In this paper, in the context of creating tools to automate the process of building

E-commerce metasearch engines, we presented our solution to the problem of automatically integrating the interfaces of

E-commerce search engines into a unified search interface.

 The problem of automatic search interface integration is significantly different from the schema integration problem

involving traditional (relational) databases. Here we need to deal with not only schema integration, but also attribute

value integration, format integration and layout integration. Furthermore, the schema information and important meta-

information on search interfaces are not readily available and need to be automatically extracted to enable automatic

search interface integration.

 In this paper, we described in detail our techniques used to build WISE-Integrator – an automatic search interface

integration tool. With appropriate representation of local search interfaces, WISE-Integrator automatically integrates

them into a unified interface using only domain (application) independent knowledge. One of the key problems in

automatic interface integration is to identify semantically matching attributes across multiple interfaces. We proposed a

 28

two-step clustering approach based on positive matches and predictive matches to tackle this problem. This approach

was shown to be highly effective based on our experimental results using 143 real search interfaces in four different

domains. We also provided solutions to other important but rarely addressed issues in automatic interface integration

such as attribute value integration, format integration and layout integration. In particular, our attribute value integration

technique takes into consideration both the efficiency of the metasearch engine and the friendliness of the unified

interface. During the integration, our approach considers all available input interfaces at the same time to maximally

utilize the knowledge available on all of them. In this paper, we also presented the main ideas of our approach to

automatically construct the interface representation of any E-commerce search engine from the Web page containing the

search interface. Our search interface extraction tool, WISE-iExtractor, is capable of automatically grouping elements

and labels into logical attributes and deriving a rich set of meta-information for each attribute.

 For our future work, we plan to continue our research along several directions. First, having more hypernymy

relationships can be useful for attribute matching and value merging. We plan to obtain additional hypernymy

relationships from some online concept/topic hierarchies such as the Open Directory Hierarchy (http://dmoz.org) and the

MeSH hierarchy (http://www.nlm.nih.gov/mesh/meshhome.html). Second, it is highly unlikely that an automatic,

domain-independent and perfect attribute matching solution can be developed. Therefore, to provide a complete solution

to the integration problem, it will be necessary to involve human integrators into the integration process. We plan to

study how to most effectively involve human integrators and how to incorporate the involvement into WISE-Integrator.

Third, we plan to look into how to extend our techniques for new applications. We believe that our approach, with

appropriate extensions, can be applied to other application areas such as digital libraries and general Web databases.

Acknowledgements

We thank the anonymous reviewers for their valuable comments. This work is supported in part by the following grants

from National Science Foundation: IIS-0208574 and IIS-0208434.

References

[BLN86] C. Batini, M. Lenzerini, S. Navathe (1986) A Comparative Analysis of Methodologies for Database Schema Integration.

ACM Computing Surveys 18(4):323-364

[BBB02] I. Benetti, D. Beneventano, S. Bergamaschi, F. Guerra and M. Vincini (2002) An Information Integration Framework for E-

Commerce. IEEE Intelligent Systems 17(1):18-25

[BCV01] S. Bergamaschi, S. Castano, M. Vincini, D. Beneventano (2001) Semantic Integration of Heterogeneous Information

Sources. Data and Knowledge Engineering 36(3):215-249

[Coh98] W. Cohen (1998) Integration of Heterogeneous Databases Without Common Domains Using Queries Based on Textual

Similarity. In: Proc. 17th ACM SIGMOD International Conference on Management of Data, pp 201-212

[DR02] H. Do, E. Rahm (2002) COMA- A System for Flexible Combination of Schema Matching Approaches. In: Proc. 28th

Internation Conference on Very Large Data Bases, pp 610-621

[DDH01] A. Doan, P. Domingos, A. Halevy (2001) Reconciling Schemas of Disparate Data Sources: A Machine-learning Approach.

In: Proc. 20th ACM SIGMOD International Conference on Management of Data, pp 509-520

 29

[DEW96] R. B.Doorenbos, O. Etzioni, and D. S.Weld (1996) A Scalable Comparision-Shopping Agent for the World Wide Web.

Techinical Report UW-CSE-96-01-03, University of Washington.

[FB92] W. Frakes and R. Baeza-Yates (1992) Information Retrieval: Data Structures & Algorithms. Prentice Hall, Englewood Cliffs,

New Jersey.

[GKD97] M. Genesereth, A. Keller, O. Duschka (1997) Infomaster: An Information Integration System. In: Proc. 16th ACM

SIGMOD International Conference on Management of Data, pp 539-542

[HC03] B. He, K. Chang (2003) Statistical Schema Integration across Web Query Interfaces. In: Proc. 22nd ACM SIGMOD

International Conference on Management of Data, pp 217-228

[HMY03] H. He, W. Meng, C. Yu and Z. Wu (2003) WISE-Integrator: An Automatic Integrator of Web Search Interfaces for E-

commerce. In: Proc. 29th International Conference on Very Large Data Bases, pp 357-368

[HMYW03] H. He, W. Meng, C. Yu and Z. Wu (2003) WISE-iExtractor: Extracting and Modeling Web Search Interfaces for E-

commerce Metasearch. Technical report, Computer Science, Binghamton University

[HTL4] HTML4: http://www.w3.org/TR/html4/

[KBG00] O. Kaljuvee, O. Buyukkokten, H. Garcia-Molina, and A. Paepcke (2000) Efficient Web Form Entry on PDAs. In: Proc. 10th

International World Wide Web conference, pp 663-672

[LNE89] J. Larson, S. Navathe, R. Elmasri (1989) A Theory of Attribute Equivalence in Databases with Application to Schema

Integration. IEEE Transactions on Software Engineering 15(4):449-463

[LC00] W. Li, and C. Clifton (2000) SEMINT: A Tool for Identifying Attribute Correspondences in Heterogeneous Databases Using

Neural Networks. Data and Knowledge Engineering 33(1): 49-84

[MBR01] J. Madhavan, P. Bernstein, E. Rahm (2001) Generic Schema Matching with Cupid. In: Proc. 27th International Conference

on Very Large Data Bases, pp 49-58

[MGR02] S. Melnik, H. Garcia-Molina, and E. Rahm (2002) Similarity Flooding: A Versatile Graph Matching Algorithm and its

Application to Schema Matching. In: Proc. 18th IEEE International Conference on Data Engineering, pp 117-128

[Mil95] A. Miller (1995) WordNet: A Lexical Database for English. Communications of the ACM 38(11): 39-41

[RGM01] S. Raghavan, H. Garcia-Molina (2001) Crawling the Hidden Web. In: Proc. 27th International Conference on Very Large

Data Bases, pp 129-138

[RB01] E. Rahm, P. Bernstein (2001) A Survey of Approaches to Automatic Schema Matching. The VLDB Journal 10(4):334-350

[SM83] G. Salton and M. McGill (1983). Introduction to Moden Information Retrieval. McGraw-Hill, New York

[WDNT] WordNet: http://www.cogsci.princeton.edu

[WL03] J. Wang and F.H. Lochovsky (2003) Data Extraction and Label Assignment for Web Databases. In: Proc. 12nd International

World Wide Web Conference, pp 187-196

[WM92] S. Wu and U. Manber (1992) Fast Text Searching Allowing Errors. Communications of the ACM 35(10):83-91

[YM98] C. Yu, and W. Meng (1998) Principles of Database Query Processing for Advanced Applications. Morgan Kaufmann, San

Francisco

http://www.w3.org/TR/html4/
http://www.cogsci.princeton.edu/

