
Finding the Most Similar Concepts in two Different
Ontologies

Adolfo Guzman-Arenas, Jesus M. Olivares-Ceja

Centro de Investigación en Computación, Instituto Politécnico Nacional
07738 Mexico City, MEXICO

{a.guzman,jesuso}@acm.org

Abstract. A concise manner to send information from agent A to B is to use
phrases constructed with the concepts of A: to use the concepts as the atomic
tokens to be transmitted. Unfortunately, tokens from A are not understood by
(they do not map into) the ontology of B, since in general each ontology has its
own address space. Instead, A and B need to use a common communication
language, such as English: the transmission tokens are English words.

An algorithm is presented that finds the concept cB in OB (the ontology of
B) most closely resembling a given concept cA. That is, given a concept from
ontology OA, a method is provided to find the most similar concept in OB, as
well as the similarity sim between both concepts. Examples are given.

1 Introduction and objectives

How can we communicate our concepts¸ what we really mean? Two persons (or
agents) A and B can communicate through previously agreed stereotypes, such as the
calling sequence between a caller program and a called subroutine. This requires
previous agreement between A and B. This paper deals with communication with
little previous consensus: A and B agree only to share a given communication
language. The purpose of the communication is for A and for B to fulfill its
objectives or goals. That is, we shall define a successful communication if A and B
are closer to their goals as the result of such communication.

What can an agent do to meaningfully communicate with other agents (or
persons), even when they had not made any very specific comitment to share a private
ontology and communication protocol? Concept communication can not be fulfilled
through direct exchange of concepts belonging to an ontology, since they do not share
the same ontology. Instead, communication should be sought through a common
language. Lucky agents can agree on a language whose words have a unique meaning.
Others need to use an ambiguous language (such as a natural language) to share
knowledge. This gives rise to imperfect understanding and confusion. This is the trust
of this paper.

The objective of this work is to find the most similar (in meaning) object in B’s
ontology corresponding to a given object in A’s ontology, and to measure their

similarity. Example: Assume A wants to transmit its concept grapefruit1 to B.
To this end, A translates it into word grapefruit, which is then transmitted to B. But B
has no such word in its ontology. Thus, B asks A “what is a grapefruit?” A answers
“it is a citric” (by seeing that citric is the father of grapefruit in OA).
Unfortunately, B has no concept to map word “citric”. So B asks A “what is a citric?”
A answers “it is a fruit”. Now, OB has concept fruit denoted by word fruit. But
fruitB (the subindex B means “in OB”) has several children: B knows several fruits.
Now B has to determine wich of the children of fruitB most resembles
grapefruitA. It may do so by seeing which child of fruitB has children quite
similar to those children of grapefruitA. Or by seeing which fruits in OB have
skin, bone, weight... similar to those of grapefruitA. Unfortunately, the problem is
recursive: what is skin for B is epidermis for A, and peel for C. weightA is in
kilograms, whereas weightB is in pounds. So the comparison has to continue
recursively. §2 gives a precise description of the algorithm.

Figure 1. An ontology consists of a tree of concepts (nodes) under the subset relation (solid
arrows), with other relations such as eats (dotted arrows), and with words associated to each

concept (in parenthesis after each concept; some are omitted). Nodes also have (property,
value) pairs, not shown in the figure

1.1 Ontologies

Knowledge is the concrete internalization of facts, attributes and relations among real-
world entities ♦ It is stored as concepts; it is measured in “number of concepts.”

Concept. An object, relation, property, action, idea, entity or thing that is well known
to many people, so that it has a name: a word(s) in a natural language. ♦
Examples: cat-chien, to_fly_in_air, angry_mad. So, concepts have
names: those words used to denote them. A concept is unambiguous, by definition.
Unfortunately, the names given by different people to a concept differ and, more
unfortunately, the same word is given to two concepts (examples: words mole;

1 In this paper, concepts appear in Courier font.

eatable_plant
 (…)

ornate_plant
 (ornate plant)

living_thing
(creature, organism, live being)

plant_living
 (plant, vegetal)

animal_living
(animal)

farm_animal
(…)

savage_animal
(wild animal, beast)

chicken
(chicken, hen, cock)

vegetable
 (…)

fruit
(…)

zebra
(zebra)

lion
 (lion)

star; can). Thus, words are ambiguous, 2 while concepts are not. A person or agent,
when receiving words from some speaker, has to solve their ambiguity in order to
understand the speaker, by mapping the words to the “right” concept in his/her/its
own ontology. The mapping of words to concepts is called disambiguation.
 If two agents do not share a concept, at least partially, they can not
communicate it or about it. A concept has (property, value) pairs associated with it.

Ontology. It is a formal explicit specification of a shared conceptualization [5].♦ It is
a hierarchy or taxonomy of the concepts we know.3 We represent an ontology as a
tree, where each node is a concept with directed arcs (representing the relation
subset and, at the leaves, perhaps the relation member_of instead of subset)
to other concepts. Other relations (such as part_of, eats-ingests, li-
ves_in, ...) can be drawn, with arcs of different types (figure 1). In general,
these relations are also nodes in another part of the ontology.

Associated words. To each concept (node) there are several English words4
associated: those who denote it or have such concept as its meaning. Example:
concept mad_angry has associated (is denoted by) words angry, crossed, pissed-
of, mad, irritated, incensed. Example: Word mole denotes a small_rodent, a
spy_infiltrator and also a blemish_in_skin.

1.2 Related work

[12] represents concepts in a simpler format, called a hierarchy. Most works (for
instance [11]) on ontologies involve the construction of a single ontology, even those
that do collaborative design [8]. Often, ontologies are built for man-machine inter-
action [10] and not for machine-machine interaction. [1] tries to identify conceptually
similar documents, but uses a single ontology. [3, 4] do the same using a topic
hierarchy: a kind of ontology. [9] seeks to communicate several agents sharing a
single ontology. The authors have been motivated [6, 7] by the need of agents to
communicate with unknown agents, so that not much a priori agreement between
them is possible. With respect to concept comparison, an ancestor of our COM (§2,
appears first in [13]) matching mechanism is [2], based on the theory of analogy.

2 Most similar concepts in two different ontologies

The most similar concept cB in OB to concept cA in OA is found by the COM
algorithm using the function sim(cA) (called “hallar (cA)” in [13]) as described in the
four cases below. It considers a concept, its parents and sons. In this section, for each
case, a tree structure shows the situation and a snapshot of a screen presents an
example. Assume that agent A emits (sends) to B words5 corresponding to cA, and

2 Some symbols or words are unambiguous: 3, Abraham Lincoln, π, (30oN, 15oW).
3 Each concept that I know and has a name is shared, since it was named by somebody else.
4 Or word phrases, such as “domestic animal”.
5 Remember, an agent can not send a node to another agent, just words denoting it.

also sends words corresponding to the father of cA, denoted by pA. COM finds cB =
sim(cA), the concept in OB most similar to cA. sim also returns a similarity value sv, a
number between 0 and 1 denoting how similar such returned concept cB was to cA.

Case a) We look in OB for two nodes pB and cB, such that: (1) the words associated to
cB coincide with most of the words (received by B from A)6 of cA; and (2) the
words associated to pB coincide with most of the words6 corresponding to pA; and
(3) pB is the father, grandfather or great-grandfather7 of cB.

If such pB and cB are found, then cB is the nearest concept to cA; the answer is cB and
the algorithm finishes returning sv = 1. Figure 2 represents this situation. Figure 4
shows the screenshot of COM when seeking in B the concept most similar to
appleA. The answer is concept appleB in B with sv = 1.

Figure 4. Case (a). Screen with the execution of COM for the case shown in Fig. 2

6 We have found useful the threshold 0.5: more than half of the compared entities must

coincide.
7 If pB is found more than three levels up, the “semantic distance” is too high and sim says “no

match.”

A B

p

c

p

c

Figure 2. Case (a). Words from cA and
pA match words from cB and pB

A

p

B
P

c

?

Figure 3. Case (b). Words from pA
match words from pB but cA has no
equivalence

Case b) This case occurs when (2) of case (a) holds, but (1) and (3) do not. pB is
found in OB but cB is not. See Figure 3. In this case, sim (which Olivares calls ha-
llar) is called recursively, and we try to compute pB' = sim(pA) to confirm that pB is
the ancestor of concept of interest (cA).

(1) If the pB' found is thing, the root of OB, the algorithm returns not_found
and concludes; sv = 0;

(2) Otherwise, a special child of pB, to be called cB', is searched in OB, such that:
A. Most6 of the pairs (property, value) of cB' coincide with the corres-

ponding pairs of cA. Children of pB with just a few matching properties6

or values are rejected. If the candidate cB' analyzed has children, they
are checked (using sim recursively) for a reasonable match6 with the
children of cA. If a cB' is found with the desired properties, the
algorithm reports success returning cB' as the concept in OB most
similar to cA. sv = the fraction of pairs of cB' coinciding with
corresponding pairs of cA.

B. Otherwise cB' is sought among the sons of the father (in B) of pB; that
is, among the brothers of pB; if necessary, among the sons of the sons of
pB; that is, among the grandsons of pB. If found, the answer is cB'. sv =
the sv returned by cB' multiplied by 0.8 if cB' was found among the sons
of pB,8 or by 0.82 = 0.64 if found among the grandsons of pB.

C. If such cB' is not found, then the node nearest to cA is some son of pB,
therefore sim returns the remark (son_of pB) and the algorithm
concludes. sv = 0.5 (an arbitrary but reasonable value). For example, if
A sends words that correspond to the pair (cA = kiwi, pA = fruit),
and B has the concept fruit but doesn't have the concept kiwi nor
any similar fruit, in this case, the concept kiwi (of A) is translated
by B into (son_of fruit), which means “some fruit I don't
know” or “some fruit I do not have in my ontology.”

Figure 5 shows the execution of COM for case (b)2(A). In this case concept kiwiA
has no equivalent in B. Here rare_fruitB is chosen from B as the most similar
concept because parents coincide and properties of kiwiA and rare_fruitB are
similar (that was calculated using COM recursively for each property-value). sv = 0.8
because the exact equivalent concept in B was not found.

Case c) This case occurs when (1) of case (a) holds but (2) and (3) do not. See figure

6. cB is found but pB is not. We try to ascertain whether the grandfather (in OB) of
cB has words that match6 those of pA (corresponding words that are equal exceed
50%), or if the great-grandfather of cB in OB has such matching6 words.

(1) If that is the case, the concept in OB more similar to pA is the grandfather (or
the great-grandfather) of cB, and the algorithm finishes returning cB. sv = 0.8
for the grandfather case, and 0.82 for the great-grandfather case.

8 We have found that 0.8 allows for a fast decay as one moves up from father to grandfather

and up.

(2) Otherwise (parents do not match), we verify two conditions:
A. Most6 of the properties (and their corresponding values) of cB should

coincide (using sim) with those of cA ; and
B. Most of the children of cA should coincide (using sim) with most6 of the

children of cB.
If the properties in (A) and the children in (B) coincide, the algorithm
concludes with response cB, although it did not find in OB the pB that
corresponds to the concept pA in OA. sv = the fraction of properties and
children of cB matching with corresponding entities of cA.

(3) If even fewer properties and children are similar then response is (pro-
bably cB) and the algorithm finishes. sv is computed like in (2)B.

(4) If neither properties nor children are similar, response is not_found and
the algorithm finishes. sv = 0.

Figure 5. Case (b). Screen with the execution of COM corresponding to Figure 3

Figure 8 shows an example of case (c)(2). In this case we use COM to seek in B the
most similar concept to appleA. Here concepts match but parents do not (fruitA,
foodB) (words are different for each parent), therefore similarity of the properties are
used (calling recursively to COM). sv = 0.8 because parents do not coincide.

A B

p

c

c

Figure 6. Case (c). Words from cA match
with words of cB but there is no equi-
valence for words of pA. See Figure 8

A

p

B

c

?

Figure 7. Case (d). There are no words
from cA nor pA that match with words of B

??

Figure 8. Case (c). Screen with the execution of COM corresponding to figure 6

Case d) If neither cB nor pB are found, the algorithm concludes returning the response
not_found. sv = 0. cA could not find a similar node in OB. The agents may have
different ontologies (they know about different subjects) or they do not share a
common communication language. See figures 7 and 9.

Figure 9. Case (d). Screen with the execution of COM for case (d). Ontologies refer mostly to

different areas. COM returns not_found with sv = 0

 Figure 9 shows the execution of case (d). Observe that ontology OA is mainly
about fruits while OB is mainly about Computer Science. There are some concepts in
common, but not the involved concepts. sv = 0.
 sim is not symmetric. If cB is the concept most similar to cA, it is not necessarily
true that cA is the concept most similar to cB. Example: OA knows ten kinds of

hammerA, while OB only knows hammerB (a general hammer). Then, COM maps
each of the ten hammerA into hammerB, while hammerB best maps into, say,
hammer_for_carpenterA [12].

The function sim is only defined between a concept cA in OA and the most similar
concept cB in OB.

Ontology A

thing:.
 living_creature:.
 animal:.
 plant_living:color-green_color,produce-
oxigen.
 melon:.
 bean:.
 tool:.
 screwdriver:.
 key_tool:.
 data:.
 field:.
 integer_field:.
 real_field:.
 double_field:.
 float_field:.
 key_data:.
 foreign_key:.
 Primary_key:.

Figure 10. Ontology A. Used to compute similarity to concepts in ontology B

2.1 Examples of similarity

 Now we give examples for sim, the similarity between two concepts, each from
one ontology. Here we assume that properties like relations and colors are part of both
ontologies. For simplicity properties are shown only where needed. Properties appear
after the colon as relation-value pairs. For ontologies A and B (Figures 10 and 11):
 sim(fieldA) = fieldB with sv = 1 because words of concepts and parents
coincide. This is an example of case (a).
 sim(key_toolA) = key_toolB with sv = 1. This is an example of case(a), where
words of the parent and concept in A match words of corresponding nodes in B.
Although word ‘key’ denotes (belongs to the associated words of) both concepts
key_dataB and key_toolB, the words of toolA only map into those of toolB
and key_toolB is selected without ambiguity.
 sim(screwdriverA) = (son_of toolB) with sv = 0.5. This is case (b):
parents coincide, but in ontology B there is no concept similar to screwdriverA,
therefore the algorithm detects that agent A is referring to a son of concept toolB.

 sim(plant_livingA) = vegetableB with sv = 0.8. This an example of case
(b) when parents coincide but the concepts do not. In this case properties of concepts
are used to establish the similarity among concepts. The similarity of the properties is
calculated using the COM recursively for each property and value.
 sim(double_fieldA) = not_found and sv = 0. This is an example of case (d)
when no concept nor parent are found in B. The ontology A has sent B a concept of
which B has no idea.
 sim(melonA) = not_found and sv = 0. This is other example of case (d) where
words sent to B from A do not match a pair parent-concept in B.

Ontology B
thing:.
 living_creature:.
 animal:.
 vegetable:color-green_color,produce-oxigen.
 apple:.
 bean:.
 tool:.
 hammer:.
 key_tool:.
 data:.
 field:.
 key_data:.

Figure 11. Ontology B. Used to compute similarity to concepts in ontology A

2.2 Conclusions

 Methods embodied in a computer program are given to allow concept exchange
and understanding between agents with different ontologies, so that there is no need
to agree first on a standard set of concept definitions. Given a concept, a procedure for
finding the most similar concept in another ontology is shown. The procedure also
finds a measure of the similarity sv between concepts cA and cB. Our methods need
further testing against large, vastly different, or practical ontologies.

 In contrast, most efforts to communicate two agents take one of these approaches:
1. The same person or programmer writes (generates) both agents, so that pre-

established ad hoc communicating sequences (“calling sequences,” with
predefined order of arguments and their meaning) are possible. This approach, of
course, will fail if an agent is trying to communicate with agents built by
somebody else.

2. Agents use a common or “standard” ontology to exchange information. This is the
approach taken by CYC [11]. Standard ontologies are difficult and slow to build
(they have to be designed by committee, most likely). Another deficiency: since
new concepts appear each day, they slowly trickle to the standard ontology, so that
it always stays behind current knowledge.

Even for approach (2), a language to convey other entities built out of concepts:
complex objects (which do not have a name), actions, desires, plans, algorithms…
(not just concepts) is needed. Such language is beyond this paper; hints of it at [13].

Our approach allows communication in spite of different ontologies, and needs
neither (1) nor (2).

Acknowledgments. Work herein reported was partially supported by NSF-
CONACYT Grant 32973-A and Project CGPI-IPN 18.07 (20010778). Olivares
received a PIFI research assistantship from CGPI-IPN. Guzman-Arenas has a SNI
National Scientist Award from SNI-CONACYT.

References

1. John Everett, D Bobrow, R Stolle, R Crouch, V de Paiva, C Condoravdi, M van den Berg,
and L Polyani. (2002) Making ontologies work for resolving redundancies across
documents. Communication of the ACM 45, 2, 55-60. February.

2. K. Forbus, B. Falkenhainer, D. Gentner. (1989) The structure mapping engine: algorithms
and examples. Artificial Intelligence 41, 1, 1-63.

3. A. Gelbukh, G. Sidorov, and A. Guzman-Arenas. (1999) Use of a weighted document topic
hierarchy for document classification. Text, Speech, Dialogue, 133-138. Pilsen, Chech
Republic, September 13-17.

4. A. Gelbukh, G. Sidorov, and A. Guzman-Arenas. (1999) Document comparison with a
weighted topic hierarchy. DEXA-99, 10th International Conference on Database and Expert
System applications, Workshop on Document Analysis and Understanding for Document
Databases, 566-570. Florence, Italy, August 30 to September 3.

5. Thomas R. Gruber (1993) Toward Principles for the Design of Ontologies Used for
Knowledge Sharing, in Formal Ontology in Conceptual Analysis and Knowledge
Representation, Nicola Guarino and Roberto Poli (eds.), Kluwer Academic Publishers.

6. A. Guzman, Jesus Olivares, Araceli Demetrio and Carmen Dominguez, (2000) Interaction of
purposeful agents that use different ontologies. Lecture Notes in Artificial Intelligence
(LNAI) 1793, 557-573. Osvaldo Cairo, Enrique Sucar, F. J. Cantu (eds). Springer Verlag.

7. A. Guzman, C. Dominguez, and J. Olivares. (2002) Reacting to unexpected events and
communicating in spite of mixed ontologies In LNAI 2313, 377-386.

8. Cloyde W. Holsapple and K. D. Joshi. (2002) A collaborative approach to ontology design.
Comm. ACM 45, 2, 42-47. February.

9. M. N. Huhns; M. P. Singh. and T. Ksiezyk (1997) Global Information Management Via
Local Autonomous Agents. In Readings in Agents, M. N. Huhns, Munindar P. Singh,
(eds.). Morgan Kauffmann Publishers, Inc. San Francisco, CA

10. Henry Kim. (2002) Predicting how ontologies for the semantic web will evolve. Comm.
ACM 45, 2, 48-54. February.

11. Douglas B. Lenat, R. V. Guha, Karen Pittman, Dexter Pratt and Mary Shepherd (1990)
Cyc: Toward Programs with Common Sense, Comm. ACM 33, 9, 30 – 49.

12. Serguei Levachkine, A. Guzman-Arenas (2002) Hierarchy as a new data type for qualitative
variables. Submitted to Data and Knowledge Engineering.

13. Jesus Olivares (2002) An Interaction Model among Purposeful Agents, Mixed Ontologies
and Unexpected Events. Ph. D. Thesis, CIC-IPN. In Spanish. Available on line at http://
www.jesusolivares.com/interaction/publica

