
Automated Data Mapping Specification via Schema Heuristics and User
Interaction

Sebastian Bossung1, Hermann Stoeckle2, John Grundy2, 3, Robert Amor2 and John Hosking2

1Software Systems Group, Technical University

of Hamburg, Harburger Schloßstr. 20,
D-21071 Hamburg, Germany

bossung@gmx.de

2Department of Computer Science and 3Department
of Electrical and Computer Engineering,

University of Auckland, Private Bag 92019,
Auckland, New Zealand

{herm, john-g, trebor, john}@cs.auckland.ac.nz

Abstract
Data transformation problems are very common but they
are challenging to implement for large, complex datasets.
We describe a new approach for specifying data mapping
transformations between XML schema using a combination
of automated schema analysis agents and selective user
interaction. A graphical tool visualises parts of the two
schemas to be mapped and a variety of agents analyse all or
parts of the schema, voting on the likelihood of matching
subsets. The user can confirm or reject suggestions, or even
allow schema matches to be automatically determined,
incrementally building up a fully-mapped schema. An
implementation of the mapping specification can then be
generated from the various inter-schema matches.

1. Introduction
Data transformation is one of the most common

problems facing systems integrators as source data is often
in an inconsistent format or structure for systems wanting to
use that data. This requires integrators to implement code
for the mapping operations required to convert the data
from one form to another e.g. from one XML document
format to another. The code to do this is often tedious to
write, consisting typically of pages of C++, Java, or XSLT
code, and, as a result, tends to be error prone.

In earlier work we have developed a range of domain
specific tools to assist in this task, with the intention of
reducing the amount of coding required, and, by choosing
appropriate metaphors for expressing mappings, to make
mapping specification more accessible to a wider group of
developers. Domains we have developed such tools for
include B2B systems for business data exchange [7] [12],
health systems for patient data exchange [10], building and
construction for design tool integration [3], and software
development environments for software model data and
view exchange [9] [17]. While the tools we have developed
have generally proved to be very useful, all of them require
element-by-element specification of correspondences
between one or more elements in a source schema and one
or more in a target schema. For large problems this becomes
extremely tedious and the tools struggle to scale when

visualising and managing the data mapping process. One
observation resulting from our work across these domains is
that many elements of a mapping specification for a
particular schema pair are “obvious” in the sense that a
perusal of the schemas along with example data quickly
suggests many obvious correspondences. These may be due
to elements having the same names, same types, their
example data values being the same, or complex type
structures may be semantically the same even though
element names differ. These heuristics guide us as
developers when developing mapping implementations.

Our motivation in this work was to make use of such
properties in our data mapping specification and code
generation tools. This paper presents a new data mapping
specification tool, VisAXSM (Visual Automatic XML
Schema Mapper), to assist in automatically determining
correspondences between source and target XML schema
elements. This tool is the visual front-end for AXSM, which
provides an extensible set of schema analysis agents that
suggest inter-element mappings using several heuristics.
These suggestions are pruned, by user interaction and/or a
multiple agent voting strategy, to identify the desired inter-
schema mapping specification. The resulting XML-based
mapping specifications can be used to generate XSLT, Java
or other data mapper implementation code. These generated
data mappers take an XML data file in the source Schema
format and produce a new XML data file in the target
Schema format. While developed as a standalone proof of
concept system here, a combination of this tool with other
mapping tools is an obvious extension of this work.

We begin by motivating the research and describing
related work. We then outline our approach to automated
mapping determination and illustrate the use of our
prototype tool with a detailed example. The architecture of
AXSM/VisAXSM is then described and an evaluation of its
utility presented. We conclude with a discussion of the
implications of our work, together with some possible
future research directions.

2. Background and related work
Figure 1 shows parts of two XML schema representing

information about lists of people, illustrating the basic

Figure 1: Example schema mapping problem and some correspondences between source and target elements.

issues of the schema mapping problem. Superimposed are
some mappings between the two schemas which are
“obvious” to a human reader. We should emphasise that
these are very small schema fragments, and the difficulty in
developing a mapping is typically due to the sizes of the
schema involved. In some of the domains we’ve worked in,
these can run to several hundred elements or more.
Nevertheless, even in this simple an example, considerable
difficulties are evident, including:
• Complex types can be named and declared globally (as

in schema 1) or can be declared locally and
anonymously inside the declaration of the element that
is of the type. The same applies to elements: they can
be declared globally and referenced (not used in the
example here) or locally inside a complex type.

• There can be multiple elements of the same name in
different locations. Schema 1 has two elements named
"firstname" and in this case it is quite obvious which of
them maps to the "firstname" element in schema 2.
However, the relationship is not always this obvious.

• Some non-obvious mappings become evident when
example XML data is available e.g. a source “ID”
element and target “UniqueValue” for a person always
holding the same value in example data files.

• Types may need conversion e.g. “shoesize” may
actually be represented as different values and require
formulaic conversion. Similarly, names, addresses,
descriptions and so on may need reformatting.

• Some elements have no correspondence in the other
schema e.g. when the source to target translation is
“lossy” or the target format does not have
corresponding data in the source.

Programming such mappings by hand is an arduous

task. Even with tool support, specifying mappings between
large schemas can be extremely time consuming due to the
sizes of the schema and the number of element mappings
involved. Tools supporting this process require facilities for
elision, zooming, etc to manage this complexity.

As mapping data between different representations is a
common task, much work has been done on the subject,
differing mainly in the targeted user base (ranging from
expert-programmers to complete non-programmers) and the
degree of automation desired. Most EDI and many XML-
based messaging technologies have function libraries that
programmers use to encode and decode messages [13] [20].
Programmers thus implement message mappings manually
using these function libraries, which is time consuming,
error-prone and difficult to maintain [10]. Some message
mapping systems have been developed [1], but these
typically use a low-level representation of mappings
incapable of handling complex transformations. Message-
Oriented Middleware systems, such as MQ Integrator™
[11], provide message integration tools. These have limited
abstract message translation facilities, thus requiring low-
level programming. XML-based message encoding and
message translators include XSLT, Seeburger’s data format
and business logic converter [16], eBizExchange [14] and
Mapforce [2]. Based on XSLT, these systems lack
expressive power and modularity (especially for complex
hierarchical mappings) and tools only partially support
visual mapping and XSLT script generation. Some
Enterprise Application Integration products, such as Vitria
BusinessWare™, [19] BizTalk™ [6] and the Universal
Translation Suite [5] support message translation for
database, message and XML-encoded data. However these
solutions are limited to simple record structures and are

difficult to use. In our own work, we have experimented
with several visual approaches to mapping specification,
using a variety of visual metaphors. These include the View
Mapping Language, which uses a UML like icon and
connector approach, the Rimu Visual Mapper, which uses
drag and drop links between hierarchical tree structures, and
the Form Based Mapper, which uses drag and drop links
between business forms [8].

Rahm and Bernstein [15] overview a variety of
approaches to schema mapping, and, in particular,
algorithms for generating automatic mappings. They
introduce notions of composite and hybrid mapper
architectures, which we have adopted in VisAXSM,
together with the use of both schema level and instance
level mapping approaches. Su et al’s Xtra system [18]
attempts to automatically determine mappings between two
DTDs. This is similar to our work, but basing the mapping
on DTDs rather than XML Schema, limits significantly the
amount of information available for matching. Mapforce,
discussed earlier, also includes facilities for automatic
discovery of matches, but this is very limited, requiring
exact name matching and for elements to be direct sub-
elements of known matched elements. It also has significant
limitation in handling types associated with the matches.

Examining the deficiencies in this prior work suggested
the following requirements for our prototype tool:
• The tool should automatically traverse the two schema

to be matched and suggest correspondences;
• A user interface to the tool must allow the user to focus

on parts of the schema mapping at hand and be used to
constrain the automatic traversal and suggestions;

• Users should be able to accept or reject suggested
correspondences and have the tool provide an updated
list of suggestions, providing a interactive environment
in which the overall solution space of suggestions is
pruned into a usable mapping. Users may even accept
suggestions automatically if their probability of
correctness is above some user-defined threshold;

• Ideally the tool framework should be flexible enough to
incorporate an extensible set of matching algorithms
using a wide variety of different heuristics, to be
incorporated as “plug ins”;

• The ability to generate mapping implementations e.g. in
XSLT or Java from a refined mapping specification

3. Our Approach
In our new approach to supporting complex schema data

mapping determination and data mapper code generation,
source and target XML Schema data files are repeatedly
analysed by a set of “analysis agents”, each of which
applies different heuristics to elements in the schema, to
determine if one or more element in each schema are likely
to correspond. Data elements “correspond” when, if
translating data represented by the source schema to the
format described by the target, the source element(s) can be

converted into the target elements by either direct copy or a
function over their value(s). The analysis agents can be
targeted to only analyse small subsets of the two schema to
manage complexity. The architecture permits agents to be
added or removed in a “plug and play” fashion. As it is
impossible to fully automate a mapping correspondence
determination process [15], users interactively accept, reject
or defer suggested correspondences. This re-focuses the
agents on different parts of the schema where
correspondences are not yet determined. Eventually all
elements will have a correspondence, or the user will have
specified that none exists, and a data mapper can be
generated from the correspondences. The data mapper will
take XML data files in the source schema format and
produce XML data files in the target schema format.

Source and
Target
XML Schema

VisAXSM 1. User chooses
and imports into
VisAXSM

[Optional] XML
data files using
Schema

5. VisAXSM
Visualises Schema

+ mappings

XML Schema
and Data

Analysis Agents

2. VisAXSM Represents
Schema/Data in XML

DOMs
3. Analysis

agents
traverse

schema/data
DOMs

4. Agents build
up candidate

mapping
correspondences

6. User accepts/rejects
suggestions; agents run again

using user feedback to focus on
sub-parts of schema

Mappings
in XML

XSLT, Java,
Rimu, … code 7. Mappings saved to XML format;

data mapping implementation code
generated from this XML

AXSM

Figure 2: TheVisAXSM mapping process.

re 2
The way our VisAXSM automated data mapping tool is

used is illustrated in Figu . The user first selects a source
and target XML Schema (1). We could also use DTDs or
other specifications of data formats e.g. RDBMS schema,
but XML Schema definitions provide a good range of
information on the structure of their XML data files. The
user may also optionally specify one or more example data
files that are based on the definition in each source and
target schema. VisAXSM parses the schema and data files
and loads them into an extended form of XML Domain
Object Models (DOMs) where they can be traversed by the
analysis agents (2). The analysis agents examine the schema
using the root nodes as their initial context and generate
suggestions of candidate mappings (3). These candidates are
also represented using an XML DOM-based structure in the
tool (4). The VisAXSM user interface displays the schema
and mappings, using the current context to elide (often
large) parts of the schema not currently of interest (5). Users

indicate mappings they accept, reject or haven’t decided on
yet, and may refocus the agents on different parts of the
schema manually. This causes the re-execution of the agents
(6) and subsequent update of the schema mapping
correspondences. This process (3-6) continues until the user
is satisfied and saves the mappings to an XML file (7). This
file can be reloaded to continue the mapping refinement
process or used as input to code generators which generate
data mapper implementations. These generated data
mappers take XML data files in the source schema format
and generate XML data files in the target schema format.

4. Mapping Agent Heuristics
The core of VisAXSM is a set of mapping agents that

traverse the source and target schema and determine
possible element correspondences. Because of the
complexity of the data mapping problem, these agents can
very seldom fully automatically determine correct
mappings. Similarly, because of the size of some schema to
be mapped, the heuristics used by agents to determine
possible mappings need to be restricted to a (often very
small) subset of the overall schema structures.

We have identified a wide range of heuristics that can be
applied to XML Schema or example XML data files based
on those schema, to identify likely element matches. Our
approach incorporates these heuristics into “agents”, each of
which in our VisAXSM tool applies a single heuristic to its
input and suggests possible element mappings with
differing levels of probability.

VisAXSM combines the suggested mappings from all
available agents when comparing two schema portions,
giving each distinct mapping a “probability ranking”.
Combination is done using a voting and ballot system with
each agent suggesting a weighted vote for candidate
matches. Highly likely mappings are highlighted and
displayed first or more prominently, and the user can
request that rankings above a high threshold be
automatically accepted by the tool without showing the
user. Similarly, very low ranking mappings e.g. suggested
by a single agent which uses a heuristic of low quality, can
be automatically rejected and not shown.

Some of the agents are listed below with a brief
description of their input, their heuristic technique, i.e.
things they look for in schema or data XML structures, and
the “quality” of resultant mapping correspondence
suggestions.

Exact Name Matcher. This agent compares element
names in one schema to those in another, suggesting
mappings when two have the same tag name. This works
well when tag names are the same and unique across each
document e.g. PrimaryPatientID in both schema. It produces
many false matches when the same tag name occurs many
times e.g. DateValue, although if focused on a small subset
of each schema again can work reasonably well.

Partial Name Matcher. This looks for a substring that

matches in each name, e.g. PatientName to
PrimaryPatientName. Often element tag names for
corresponding elements are similar in two documents but
not always the same. This agent can use upper/lower case
delineation to recognise similar-named items, but if it looks
for too small a sized substring many false matches occur
e.g. DoctorName and PatientName match on “Name” but
are highly unlikely to correspond. Likelihood of
correspondence is thus less for this agent, but again focused
comparison can reduce false matches.

Levenshtein Name Matcher. This computes a function
that works out the “Levenshtein distance” between two
names, which is the number of edit operations needed to
convert one name into another: the smaller the distance, the
closer the match [15]. Again, focusing the agent on
subschema produces better likelihood of matches.

Element Type Matcher. This compares data type names
of elements e.g. PatientID:Integer and UniqueIdentifier:
Integer, or PatientRecord:TPatient and ThePatient:TPatient.
Like the Partial Name Matcher, it needs to be focused on a
small subset in each schema to avoid large numbers of false
positive matches. The Element Type Matcher ignores the
name of elements but if results are combined with those of
the Partial Name Matcher good suggestions will result.

Record Type Matcher. This compares record types (sets
of elements) rather than leaf element types (single types).
For example, Patient:TPatient and ThePatient:PatientRecord
may correspond if the complex (multi-valued record types)
TPatient and PatiendRecord are the same or can be
converted. The agent compares the sub-types of the record
type to determine if a match is likely. Because records can
contain a large number of elements, some of them also other
record types, this matching agent produces lower quality
suggestions the more complex the record type.

Synonym Matcher. This can be applied to element tag
names or element type names. The Synonym Matcher
compares names, or parts of names, to see if they are
synonyms of each other e.g. DOB and DateOfBirth are
likely to correspond in some way. Similarly, Address and
StreetName correspond but the latter target element is part
of the source element data, needing a formula to parse and
extract the street from the address value in the final mapper.

Domain-specific Matchers are similar to the Synonym
Matcher but each uses a set of specific domain knowledge
e.g. accounting, finance, motor trade, health etc to identify
names or types with similar meaning. For example,
identifying that TreatmentProvider and Hospital are likely
to be the same. Their accuracy can be high depending on the
commonality of the corresponding names in the domain.

Exact Data Value Matcher. This looks at XML data
records rather than schema and identifies a correspondence
between a single source and target element if their values
are the same. This can be generalised to applying simple
formulae to the source or target e.g. applying different
number or date formatting functions to find a match. Like

all data matchers, this must be constrained heavily as XML
data files can have hundreds or thousands of records using
even very restricted schema. Simple number values can
throw false positives but this agent is usually very accurate.

Partial Data Value Matcher. This looks at XML data
values from one or multiple elements and computes a
likelihood match, similar to the Name Closeness Matcher
for element and type names. It must be heavily constrained
to a very small subset of source and target elements and the
example XML data used must also have a very small
number of records to apply to, otherwise it quickly becomes
computationally infeasible to use.

When a mapping suggestion from agents is identified by
the user as “correct”, the matched elements may require
data conversion in the generated data mapper. Some agents
associate a conversion function suggestion with their
mapping suggestions. The user can also specify a
conversion function name which is used by the data mapper
code generator to implement the type conversion.

5. An Example
In this section we illustrate how VisAXSM is used on an

example data mapping problem. Two fairly simple XML
schemas are used but they illustrate many of the
complexities that occur when trying to map data from one
format to another. shows two different notations

for stored information about auctions. We use these to show
VisAXSM specifying a mapping between the schemas [4].

Firstly a user selects the source and target XML schema
to map. These are then parsed and a visual representation
displayed. This representation is simple and easily
understood even by non-technical professionals. Currently it
uses a tree-based representation for XML schema but could
be adapted to use other visualization techniques (e.g. form-
based). Each notation element of the XML schema is
presented as an element in the source or target schema tree
as appropriate. Each also has a pop up menu facility (a),
providing user access to all mapping and display
manipulation actions and information for the element.

Figure 3

Figure 3

Figure 3: Two sample schemas for an auction system.

To distinguish between external (b) and internal (c) data
types VisAXSM uses different colours. Because every
schema element in VisAXSM has its own tree node
renderer, it is straightforward to develop different kinds of
visual appearances for elements. For example (d) represents
a reference element using a more graphical form instead of
textual. As every element visualisation has its own menu,
this allows navigation between different views by selecting
hypertext links.

Our example in demonstrates an unfiltered
view of both auction system schemas. However in general
showing all information can quickly result in information

(d)

(c)
(b)

(a)

overload. To prevent this, VisAXSM has several options
controlled by context sensitive menus. illustrates
several of these. Some are actions across the entire
VisAXSM environment. Those in (a) are actions for
opening schemas, showing a high-level mapping overview,
display preferences e.g. arrows to indicate schema element
correspondence, and changing other AXSM options e.g.
which mapping agents to enable/disable. Example
operations at the schema level are shown in (b). The
VisAXSM environment provides a view to show all
elements of a schema, which can be useful if the developer
is familiar with the schema or is looking for a specific
element to manually map. Another view of the schema only
shows elements for which AXSM mapping agents can
provide mapping suggestions using the current mapping
context. The opposite view showing which elements in the
focus sub-schema AXSM so far have no suggestions
available is also useful. Other views can show only
elements which are resolved by the developer in this
schema or only those not resolved.

Figure 4

Figure 4: Context sensitive menus and information
provided by VisAXSM.

Element-level pop-up menus display focused
information to a developer. In example (c), the developer
has selected a schema element. VisAXSM displays for each
possible corresponding element detailed information about
which matcher agent voted for this element and the
likelihood of the correspondence. In this example the match
is voted extremely likely (vote 1.0) by the three matchers
shown (Same name, Partial name and Levenshtein) giving a
total vote of 3.0.

Elements can be hidden from the current view to provide
better focus for the user. Elements can later be revisualised
by the redisplay all hidden elements functionality at a
schema level or as required as the user re-focuses on
different schema elements after accepting or rejecting
suggestions. In our experience the ability to selectively
hide/show multiple elements and sub-elements is more
helpful than in many other tree-based representations. It is
common to still show collapsed place-holders in these
approaches, but we found such approaches still disturb the
user’s view of relevant information. Hidden elements are
not considered by AXSM matching agents when searching
for mapping suggestions. This technique focuses the tool on
displayed elements, producing “sub-schema” for the agents
to narrow their search on. As previously discussed, this can
greatly improve the performance of many matching agents
and prevent AXSM from giving suggestions for elements
which are known by the developer not to be relevant.
Typically already mapped elements, whether displayed or
not, are not given to matching agents for further suggestions
(though this behaviour can be over-ridden by the user if
desired). If a target element has more than one source
elements the developer can indicate this to VisAXSM by
enabling multiple sources. As long as this option is enabled,
VisAXSM/AXSM will not remove this element
correspondence from its internal search and will use its

agents to find more correspondence candidates for this
target element. The same functionality is available on the
source element to indicate multiple target elements in the
target schema.

(c)

(a)

(b)

Figure 5 illustrates the process of defining element
matches between two schemas with VisAXSM. First the
developer has to select a source element. Then VisAXSM
runs its mapping agents over the target schema elements in
the current mapping context (the displayed elements) to
produce a set of element mapping suggestions. VisAXSM
highlights the correspondence candidates according to their
probability (by colour ranging from red for low probability
to green for high probability). Additionally, the developer
can switch on drawing of arrows to highlight possible
correspondences, however this can be confusing if a large
number of possible correspondences are detected. In the
example shown, the developer has selected the source
schema ‘title’ element and the matching agents have
identified several possible target schema correspondences.
In this example, possible mappings include the elements
‘title’, ‘description’, ‘shdescription’ under ‘auctionType’
record, and other items under other target schema elements.

The developer can now request information from one or
more of the correspondence candidates by selecting their
menu (a). VisAXSM displays available matcher agent
information and possible actions. In this example the user
has selected the target schema ‘auctionType.title’ element.
AXSM reports that the matchers Levenshtein, Partial Name,
Same Type have voted strongly for this element as a
correspondence. The developer can indicate the correctness
of this mapping or notify AXSM that the mapping is wrong.
In the former case, the source and target elements are
specified as “mapped”, changing the next mapping context
for the matching agents. If the user rejects the suggestion,
AXSM records this information and uses it to refine its
other suggestions. In our example the developer decides this
is the correct mapping and uses the menu entry correct rule
(b), if wrong rule is selected for any of the matchers,
AXSM uses this information to refine its suggestions
further.

(d)

(b)

(c)

(a)

Figure 5: Assigning elements in VisAXSM.

VisAXSM visualizes this unidirectional mapping by
drawing both elements in the same colour and an arrow is
drawn from source to target. AXSM automatically removes
the selected correspondence from its list of possible
correspondences for other elements. The developer may
also specify a formula to apply to convert the source value
to the target value if required. The developer may also
specify a mapping is “bi-directional” i.e. source may be
mapped to and from target. This is shown in example (c).

Several source elements may map to a single target
element and a single source element to multiple target
elements respectively. The user can specify multiple source
or target mappings by saying an accepted suggestion is not
the only source or target element for the mapping (multiple

sources/targets). The matching agents are then re-run and
the user may accept another target element for an already-
mapped source, or may specify for a different source
element the same target element as already mapped to
another source element. The multiple source mapping is
used in our example for ‘auctionType.shdescription’ which
contains in the target schema merged information from
‘location’, ‘shipment’ and ‘payment’.

The final result of this mapping process is shown in (d),
which shows all resolved elements in both of the XML
schemas. These mappings can now be stored in AXSMs’
XML-based format and then be used by external tools to
generate automatic mappers between the two schemas.

6. Architecture and Implementation
A high-level illustration of VisAXSM’s architecture is

shown in F . XML Schema and data files are parsed
and stored within the environment in an extended DOM
data structure. Similarly, a data structure holds mapping
correspondences i.e. what elements in the source schema
correspond to those in the target. This data structure also
provides the context for the analysis agents i.e. what parts of
the source or target schema they should focus on. Each
mapping item in this data structure records not only which
source and target schema elements are related but also: the
probability of the mapping (via votes from multiple agents);
whether the user has accepted or rejected the suggested
mapping; and display information (shown, hidden,
hide/show if another element is hidden/shown etc).

igure 6

VisAXSM

XML Schema
Parser

XML Data
Parser

Source Schema
DOM

Target Schema
DOM

Source and Target
XML Data DOMs

Mapping
Correspondences

DOM

Plug-in automated XML
Schema and data
analysis agents

Visualisation of Schema
and Mappings

Mapping XML
Generator

Data mapper code
generators

Mappings in XML

XSLT, Java,
Rimu, … code

Mapping Co-
ordinator

Source and Target
XML Schema

[Optional] XML
data files using
Schema

Figure 6: High-level VisAXSM architecture.

The plug-in analysis agents take schema and/or data
information as input, along with the current schema
mapping information, and update the schema mapping data
structure with their suggested new mappings as necessary.
They associate a “probability” against each suggestion they
add, along with, where possible, the formula they think may
be needed to convert the source to target value. A mapping
co-ordinator determines the order in which to invoke the
agents, the parts of the source and target schema to offer the
agents, and aggregates the results produced by all agents to
form an overall “vote” for each suggested mapping
correspondence.

The co-ordinator requests the schema visualisation
component to display the current focus sub-schema and
associated mapping correspondences to the user after all
agents have processed this “mapping context”. User
interaction updates the mapping context e.g. accepting or
rejecting suggestions, changing the elements to focus on etc

and the co-ordinator re-runs the agents to update the
mapping correspondences again.

We used Java to implement the VisAXSM environment.
The Java XML parser and XML Domain Object Model
APIs were used to manage XML-based import, export and
data management within the tool. We implemented a
wrapper around the standard DOM management functions
to provide a range of additional searching and information
access functions in order to simplify the implementation of
the matching agents. We designed an API for matching
agents and also for the extended DOM management
functions to make implementing and adding new agents as
easy as we could. Agents are each given the same current
mapping context as DOMs which hold source and target
subset schema subsets. However, data value matching
agents must query the example source and target XML data
files loaded by VisAXSM as they need, as pre-computing
the parts they want to search is too expensive and varies
between different data value-using agents.

The GUI is implemented using Swing components with
overlay lines drawn to represent the mapping
correspondences. We also developed a prototype HTML-
based user interface using Java Server Pages, to experiment
with delivering the mapper functionality via a web browser
rather than as a desktop application. The mapping
specification XML file format produced by VisAXSM is
currently a non-standard representation we developed for
this purpose, as we could not find an existing XML standard
in which to represent all the mapping information we need.
We have experimented with data mapper code generation
by using XSLT transformation scripts to convert the saved
schema mapping correspondences to data mapping code.
This code implements a data mapper program, which takes
an XML data file in the source schema format and converts
it to an XML data file in the target schema format. We used
Java as the target data mapper programming language, but
could use XSLT itself or a third-party data mapping engine
like the Rhapsody Message Mapper [10].

7. Evaluation
We have applied our VisAXSM prototype to several

data mapping problems, using XML Schema with both
small (a couple of dozen) and larger (well over one
hundred) elements. We have also applied the tool both to
XML Schema that are very similar i.e. many close
correspondences, and to those that are quite different i.e.
with elements that are more difficult to determine matches
between and with many items that do not map between
source and target data formats.

Specifying mappings between schemas with many close
correspondences can be done surprisingly quickly, even if
the schemas are very large. A business example with over
one hundred elements in each source and target schema is
able to be completely mapped within minutes using
VisAXSM. If agents that can determine matches with high

probability repeatedly find good matches, the user can
reduce the search space rapidly. This is because most of the
agents work best when they are restricted to small subsets of
each schema, and typically after only a few high-level
record matches are successfully made, the remaining large
number of matches can be very accurately found.

Our experiments with VisAXSM have shown that the
user can allow the tool to automatically accept suggested
matches from agents when even a moderately high
correlation is reached between the agents. The user can
always review some or even all of the mappings using the
visual display at any time. They can reject any they find that
have been inadvertently marked “correct” when in fact the
user knows they are not, and this forces VisAXSM to re-run
agents on the new subsets of unmapped elements. We found
the approach of having plug-in agents worked well, and we
were able to add new agents from time to time to the tool
with no impact on the tool or other agent implementations.
The approach appears very promising for data mapping
problems where there is reasonable closeness between the
schema being mapped i.e. most elements in each schema
map to the other and names, types and record structures are
substantially similar or the same. However we found
VisAXSM still provides a useful mapping specification tool
even when considerable variation exists between schemas.

Our approach encounters problems in expected
circumstances – when most schema names, types and record
structures are very different. We found that the agents either
couldn’t make any suggestions or their correlation was very
low, particularly when generated and non-generated schema
were compared e.g. mapping element “Field027” and
“PatientName” fails for all agents except the data matchers,
and they can not be suitably constrained to subset schema
elements. We argue that mapping generated schema that
contains generated names is beyond the scope of our
approach anyway. Other problems were encountered with
schema with huge variations in naming conventions and
record organisational structure. However, it is important to
realise that our tool can still be successfully used to
selectively visualise parts of the schema and to specify
accurate mapping correspondences. We found the agents
provide little useful suggestions in these circumstances and
the user ends up manually specifying a large number of the
correspondences. This was of course one of the main
problems we were trying to overcome with our approach so
it could be considered unsuccessful in such circumstances.

Despite the proof-of-concept prototype nature of
VisAXSM, trial users have found the tool reasonably
effective and straightforward to use. The ability to
selectively hide and show different parts of source and
target schema to manage complexity is useful whether or
not the mapping agents are used. Both a Swing-based GUI
interface and JSP-based web interface were prototyped. The
former has proved to be more effective for larger schema, as
it provides much better control of schema elision and

provides a higher-level visualisation of mapping
correspondences between schema elements. Further
refinement of the user interface will look to provide more
automated display and hiding of schema items and
mappings, as what is shown and hidden are predominantly
under user control at present. We would also like to
experiment with a plug-in infrastructure providing different
kinds of visualisation support.

We chose a plug-in approach to extending the available
matching agents and this proved to be successful. However,
the agent co-ordinator used currently has little knowledge of
the different characteristics of the available agents and
ordering of agent invocation could be enhanced. This would
have the advantage that if an agent determines candidate
mappings of reasonable likelihood, agents executing after
this can use these to inform and constrain their own
processing, improving the quality of their own suggestions.

Our current XML representation of mapping
correspondences produced by VisAXSM is non-standard.
We developed a new representational format as we could
not find any current standard XML representation that
captures the range of information about mappings that we
need i.e. source/target elements, formulae to convert source
value(s) to target value(s), whether the mapping is accepted
or rejected by the user, and the probability of its likelihood.
We have only experimented with fairly basic data mapper
code generation from these mapping specifications to date,
using XSLT transformation scripts. This needs further
investigation to demonstrate that very complex data
mapping implementations can be successfully generated
from the specifications produced by VisAXSM.

The current version of VisAXSM does not directly
support more complex mappings or operations, i.e. merging
of strings and converting numbers to strings cannot be
easily expressed or represented. Instead, the user must
provide a formula which will carry out the required data
conversion but the mapping correspondence looks the same
as any other. As these kinds of mapping operations are
common, ideally the tool should provide some higher-level
representations of such field-level transformations. In
addition, such formulaic correspondences could be used by
new plug-in agents to suggest mappings. We also want to
develop a concept of schema element “rendering plug-ins”,
similar to matcher agent plug-ins but providing new visual
element representational and manipulation support. The
idea is to allow these rendering plug-ins to be placed on the
screen and be used to represent complex mapping
operations, different kinds of schema elements, provide
context-sensitive tailored interaction and so on. The major
difference to existing mapping environments is that we plan
to couple the appearance of these rendering units with their
connected element(s), i.e. when one element is selected,
only the functional rendering units related to this element
will be displayed. We believe that this could make it much
easier for developers to focus on the current task instead of

getting confused by too much (and currently not relevant)
information on the screen. The benefit of using plug-in
rendering units is both improved direct visual feedback to
the user and support for extensible schema element
presentation and manipulation within VisAXSM. An
example of using this approach would be in developing
matching agents with real-time simulation, where
developers can create mappings, add complex maping
functions and see the results of their mapping
correspondences live on the screen with example data. We
also plan to extend the filtered views of VisAXSM, for
example to allow selecting of an element and showing
suggested correspondence candidates only in the target
schema.

8. Summary
Identifying data mapping correspondences between two

complex schemas and implementing a data mapping system
to convert between them is very challenging. We have
developed a proof-of-concept prototype, VisAXSM, which
uses a combination of automated schema analysis agents
and user interaction to address some of the problems in this
domain. XML Schema are inspected by a number of agents,
each incorporating a different heuristic and producing a set
of candidate mapping correspondences from elements in the
source schema to elements in the target. The user reviews
these suggestions, presented in a high-level graphical form,
accepting or rejecting them as necessary. These user
interactions constrain the remaining search space and focus
the agents on unmapped subsets of the schema for further
analysis. Once this process is complete, data mapper
implementation program code can be generated from the
final mapping specifications. These programs convert XML
data in the source schema format to the target schema
format. Applying our prototype to several example data
mapping problems has proved it to be a promising approach
to data mapping specification.

References
[1] Aditel Corp. ETS for Windows™, www.aditel.be, viewed

June 2001.
[2] Altova, http://www.altova.com/products_mapforce.html
[3] Amor, R.W., and Hosking, J.G. 'Mappings: the glue in an

integrated system'. In Scherer, R.J. (ed) Product and process
modelling in the building industry, Rotterdam, The
Netherlands, A.A. Balkema Publishers, 117-123, 1995

[4] Bossung, S., Semi-automatic discovery of mapping rules to
match XML Schemas, Department of Computer Science, The
University of Auckland, 71pp

[5] Data Junction Corp, Universal Translation Suite™ General
Information, www.datajunction.com, viewed May 2001.

[6] Goulde, M.A. Microsoft's BizTalk Framework adds
messaging to XML. E-Business Strategies & Solutions, Sept.
1999, pp.10-14

[7] Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and Amor,
R. An Architecture for Efficient, Flexible Enterprise System
Integration, Proc 2003 Intnl Conf on Internet Computing, Las
Vegas, June 23-26 2003, CSREA Press, pp. 350-356.

[8] Grundy, J.C., Hosking, J.G., Amor, R.W., Mugridge, W.B.,
and Li Y., Domain-Specific Visual Languages for Specifying
and Generating Data Mapping Systems, JVLC, in press.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
Inconsistency Management for Multiple-View Software
Development Environments, IEEE Transactions on Software
Engineering, 24(11), November 1998, 960-981.

[10] Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall, P.,
Generating EDI Message Translations from Visual
Specifications, Proc 2001 IEEE ASE Conf, San Diego, CA,
26-28 Nov 2001, IEEE CS Press.

[11] IBM Corp, MQ Series Integrator, www.ibm.com, viewed
May 2001.

[12] Li, Y., Grundy, J.C., Amor, R.A., and Hosking, J.G., A data
mapping specification environment using a concrete business
form-based metaphor, Proc IEEE HCC’02, Arlington, USA,
3-6 September, 2002, IEEE CS Press,158-167

[13] Lincoln, T., Spinosa, J., Boyer, S., Alschuler, L., HL7-XML
progress report. In Proceedings of XML Europe '99,
Alexandria, VA, USA, 1999, pp.733-736.

[14] OnDisplay Corp, CenterStage eBizXchange,
www.ondisplay.com, viewed May 2001.

[15] Rahm, E., Bernstein, P.A., A survey of approaches to
automatic schema mapping, The VLDB Journal 10: 334-350
(2001), Springer Verlag

[16] Seeburger Corp, SEEBURGER data format and business
logic converter, www.seeburger.de/xml/, viewed May 2001

[17] Stoeckle, H. , Grundy, J.C. and Hosking, J.G., Approaches to
Supporting Software Visual Notation Exchange, Proc 2003
IEEE HCC, Auckland, New Zealand, Oct 2003, IEEE, 59-66.

[18] Su, H., Kuno, H., Rudensteinern, E.A., Automating the
Transformation of XML Documents, Proc Workshop on Web
Information and Data Management, 2001.

[19] Vitria Technolgy Inc, Vitria BusinessWare White Paper,
www.vitria.com, viewed May 2001.

[20] Wallin, G., A new look at EDI healthcare. Health
Management Technology, vol.20, no.5, June 1999.

	Introduction
	Background and related work
	Our Approach
	Mapping Agent Heuristics
	An Example
	Architecture and Implementation
	Evaluation
	Summary

