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Abstract 
 

The difficulty inherent in schema matching has led 
to the development of several generic match algo-
rithms.  This paper describes how we adapted general 
approaches to the specific task of aligning two ontolo-
gies of human anatomy, the Foundational Model of 
Anatomy and the GALEN Common Reference Model.  
Our approach consists of three phases: lexical, struc-
tural and hierarchical, which leverage different as-
pects of the ontologies as they are represented in a 
generic meta-model.  Lexical matching identifies con-
cepts with similar names.  Structural matching identi-
fies concepts whose neighbors are similar.  Finally, 
hierarchical matching identifies concepts with similar 
descendants.  We conclude by reporting on the lessons 
we learned. 
 
 

1. Introduction 
 

Schema matching is central to many database prob-
lems, such as data integration, data warehouse loading, 
and XML message mapping.  Its difficulty has moti-
vated the development of many algorithms for identify-
ing correspondences between schemata [1]. Most of 
these schema matching algorithms are intended to be 
generic, to apply across a variety of domains.   

This paper reports on our experiences adapting ge-
neric match algorithms to two ontologies of human 
anatomy: the Foundational Model of Anatomy [2], or 
FMA, and the GALEN Common Reference Model [3], 
or CRM. Our goal was to identify corresponding ele-
ments between these models.  These correspondences 
can then be used to help identify differences or merge 
the models [4]. 

Using schema matching algorithms “off-the-shelf”  
was not possible for two reasons.  The modeling lan-
guages used by FMA and CRM are more expressive 

than ones used by most existing algorithms.  And these 
algorithms expect relatively small schemas with at most 
hundreds of classes, not tens of thousands. We modi-
fied existing strategies to accommodate these issues of 
expressiveness and scale. Ultimately we found several 
thousand correspondences between these ontologies. 

In the next section we provide background on our 
modeling framework and the input ontologies.  In sec-
tions 3–5 we present our three phase match algorithm.  
Section 6 concludes by discussing lessons learned. 

We also reported on this project in [5], which dis-
cusses where simple correspondences fail to capture 
the subtle differences between the ontologies. 
 

2. Background 
 

Central to the practice of medicine and biological 
research is the field of anatomy, which describes the 
structural relationships present in living organisms.  
Once the basic structures have been identified and de-
fined, it becomes possible to describe function (physi-
ology), disease (pathology), clinical intervention, etc. 

The FMA [2] is being developed at the University 
of Washington under the guidance of Dr. Cornelius 
Rosse using the Protégé-2000 frame system [6].  The 
FMA attempts to encode all of human anatomy ranging 
from the macroscopic to macromolecular.  The model 
is intended to support the development of knowledge-
base applications and serves as a reference ontology in 
bioinformatics [2].  The copy of the FMA we used con-
sists of ~59,000 concepts organized in four hierarchies.  
The model contains more than 100 types of relation-
ships and ~1.6 million instantiated relationships. 

The CRM was developed at the University of Man-
chester by Dr. Alan Rector, et al [3].  It is part of a lar-
ger project, GALEN, intended to facilitate knowledge 
reuse in clinical applications (e.g., an expert system).  
The CRM has ~24,000 concepts, automatically organ-
ized using a description logic frame system [7].  The 
core concepts are connected by ~913,000 relationships. 



These ontologies were authored using different 
modeling languages, but most generic match algorithms 
require the input models to be expressed in the same 
language or meta-model.  We used an extension of Va-
nilla [4], which represents models graphically.  Nodes 
in the graph correspond to concepts, and edges to rela-
tionships.  Core Vanilla supports four types of relation-
ships: is-a (i.e. generalization), contains (i.e. nesting), 
has (i.e. aggregation) and related-to (note that we use 
sans serif to indicate concept names or edge labels).  
These relationships are sufficient to express SQL or 
XML schemas, but they do not capture the distinction 
between template and own relationships in frame sys-
tems.  We therefore extended Vanilla with type-of (to 
represent instances of a concept), and can-contain and 
can-have (to express templates). For example, an au-
thor can-have a first name. This paper’s first author 
has the name Peter. 

Representing the FMA and CRM in Vanilla was 
relatively straightforward, since as noted in [8], a frame 
system can be interpreted as a semantic network or 
edge-labeled graph.  The only complication is that Va-
nilla’s relationship types (i.e. edge labels) do not cap-
ture all of those used in the FMA and CRM, and it has 
no mechanism to extend that set of relationship types.  
To address this mismatch, we reified FMA- and CRM-
relationships: Whenever concept A references concept 
C using label B, we create a new anonymous node X. 
Concept A contains node X, the type-of X is B, and X is 
related-to C. The only relationship we do not reify is is-
a, since it has the same meaning in Vanilla as in the 
FMA and CRM. Reification allows us to encode the 
FMA and CRM in Vanilla, but introduces a new prob-
lem: we added many anonymous nodes, but lexical 
matching strategies can only find correspondences be-
tween named nodes. 

 

3. Lexical Match 
 

An obvious way to identify correspondences is to 
compare concept names.  One might expect simple 
string matching to suffice, especially in anatomy; eve-
rybody uses the term heart to describe that organ.  But 
even after removing CaMeL case (e.g., converting 
ValveInHeart to Valve In Heart), there are only 1834 
string matches (ignoring case). 

As an ongoing example, consider the concepts 
ValveInHeart from the CRM and Cardiac valve from 
the FMA.  To match these concepts, we needed lexical 
tools.  Starting with the basic terms, we employed three 
transformations: 1) Using the SPECIALIST lexicon [9] 
we normalized each term and  2) converted it to a set of 
word/usage pairs.  3) To address synonymy, we used 

the UMLS Metathesaurus [10] to convert words into 
concept identifiers.  After these transformations, every 
term is a set of concept/usage pairs, which are used to 
calculate lexical similarity. 

The first transformation uses the SPECIALIST lexi-
con to remove genitives, punctuation, capitalization, 
stop words (of, and, with, for, to, in, by, on, the), and 
inflection (plurals and verb conjugations).  For exam-
ple, Valve In Heart becomes valve heart.  The lexicon 
can also indicate the part of speech for each word.  
This helps us distinguish between adjectives and nouns, 
information used by Cupid [11] to calculate similarity. 

Normalization is a precondition to using the UMLS 
Metathesaurus.  UMLS relates similar words or terms 
to unique concept identifiers (CUIs).  For example, 
cardiac valve and heart valve are closely related in the 
Metathesaurus; cardiac valve is more general, since it 
is related to 3 CUIs as opposed to 2 for heart valve. 

Each set of CUI/usage pairs is partitioned into a 
‘ root’  component and a ‘support’  component.  The root 
contains nouns, verbs and terms not found in the 
Metathesaurus.  The support contains everything else.  
We will denote the root of term T as TR and its support 
as TS.  Given terms F (from the FMA) and G (from 
GALEN), the root similarity (SR) and support similarity 
(SS) between F and G are: 
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These scores are combined to produce a combined 
similarity score (S): If both supports are empty, S=SR.  
Otherwise, S=SR×SS.  Based on this calculation, the 
similarity between cardiac valve and heart valve is 0.8.  
Our choice of multiplication is somewhat arbitrary; it 
suffices that S is large (close to 1) only when SR and SS 
are both large. 

Lexical matching works well to match concepts 
found in both models. But it does not identify many 
matches between relationship types found in both mod-
els (e.g., HasDivision and generic part), which are 
matched by detecting similarities in how they are used. 
 

4. Structural Match 
 

To exploit structure, we calculate a new value for 
the similarity of two nodes based on the old similarity 
score and the similarities of neighbors. Such neighbor-
hood-based back-propagation of similarity is found in a 
number of generic match algorithms [1].  In the worst 
case, given models of size M and N, this strategy can 
produce M×N similarity values.  If this process is iter-
ated I times (as in similarity flooding [12]), the worst-
case time complexity becomes M×I×N. 



This approach is feasible for small schemas, but it 
does not scale to models with tens of thousands of con-
cepts.  Scalability is exacerbated by reification, since 
each instantiated relationship produces a new node.  As 
a result, the FMA contains millions of nodes.  We do 
not want to ignore these nodes.  If one model asserts a 
given relationship between two concepts, we want to 
know if that relationship is asserted in the other model. 

Since we could not compute the entire similarity 
matrix, we focused our efforts on matching reified 
nodes, for two reasons: First, these nodes are anony-
mous and hence cannot be matched using lexical tech-
niques.  Second, the similarity of reified nodes can be 
back-propagated to the relationship types, which were 
not properly matched in the previous phase. 

Even though there are millions of reified nodes, we 
can compute their similarities overnight by ignoring 
any pair of reified nodes for which no similar neighbors 
were identified, since they surely do not match.  (Recall 
that a reified node X is created when edge B connects 
node A to node C, so X’s neighbors are A, B and C.)  

Let X (Aà Bà C) denote a reified relationship from 
the FMA and let Y (Dà Eà F) denote a reified rela-
tionship from the CRM.  Given similarity scores for 
AD, BE and CF, the similarity score for XY is the aver-
age of these three values. In practice, lexical match 
produced many high AD and CF scores, but few non-
zero BE scores.   

To detect similarities in the usage of relationship 
types, we back-propagated similarity from XY to its 
neighbors. We iterate over the non-zero XY similarity 
scores and update the similarity score for AD to: 
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The similarity scores for BE and CF are updated us-
ing the same formula, which has several interesting 
properties.  The new similarity score cannot be greater 
than one, nor can it be lower than the previous similar-
ity score.  A single XY match has little effect, but five 
or more such matches begin to have a noticeable effect.  
(The constant 0.2 was chosen arbitrarily.) 

Back-propagation improved the similarity between 
cardiac valve and heart valve from 0.8 to 0.92.  The 
effect was more pronounced for relationship types.  
The similarity between is branch of and branch of in-
creased from 0.286 to 0.98 (‘ is’  is related to five CUIs 
and ‘of’  is a stop-word). 

The branch example illustrates an interesting trade-
off.  In retrospect, we could have added ‘ is’  to SPE-
CIALIST as a stop-word.  This would help match a 
handful of relationship types (but may have introduced 
additional spurious matches).  It is unlikely, though, 
that a single approach will work perfectly, so it is im-
portant to incorporate multiple strategies. 

5. Hierarchical Match 
 

It is tempting to use back-propagation in the inheri-
tance hierarchy, as we did for structure matching. That 
is, if two concepts have similar specializations, the 
concepts are probably related.  Some kind of inheri-
tance-based matching is needed, since more-general 
concepts were not aligned using lexical match due to 
lack of agreement in the correct names for these ab-
stractions.  We will therefore leveraged consensus con-
cerning the names of leaf concepts (like heart and lung) 
and iteratively derived new correspondences higher in 
the inheritance hierarchy. 

Given two concepts, we estimate their similarity by 
comparing the similarities of their descendants.  Before 
we present our algorithm three observations are rele-
vant.  First, since the FMA is much larger than the 
CRM, we would expect that many FMA-concepts will 
not match any CRM-concepts. Thus two concepts are 
similar if every child of the CRM-concept matches an 
FMA-concept, or more generally, if all children of the 
concept with fewer specializations have matches. Sec-
ond, the models are too large to consider all descen-
dants.  Third, we must consider more than just children.   

To see why children are not enough, consider the 
example in figure 1.  The solid arrows indicate known 
correspondences (e.g., F3–G3); the triangular arrows 
indicate is-a relationships.  We would like to conclude 
(as indicated with a dotted line) that F1 and G1 also 
match.  But there is an intermediary generalization be-
tween F1 and, for example, F4. So if we consider only 
direct children, the best match will be F2–G1. 

We struck a balance by considering each concept’s 
children and grandchildren (denoted CCh).  Given F and 
G (from the FMA and GALEN, respectively), we itera-
tively evaluate their similarity: 
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In the previous example, F1 now matches G1.  The 
cross-similarity (numerator) of F1Ch and G1Ch is 3 
(based on the leaf matches).  G1 has fewer children, so 

 
Figure 1: Example of intermediate concept 



|G1Ch| becomes the denominator.  This ratio is exactly 
one, a perfect match. 

As we reported in [5], this final match phase pro-
duced a disappointing number of results.  We expected 
that anatomists would agree on key generalizations, but 
this was not the case.  In retrospect, this is perhaps not 
surprising given the differences in context (structural 
vs. clinical).  The impact of context was one of the les-
sons learned. 
 

6. Lessons Learned 
 

Initially, we had hoped to apply an off-the-shelf ge-
neric schema matching algorithm. In the end, we used 
many ideas from such algorithms, but we needed to do 
a lot of customization to get a satisfactory result. The 
lexical and structural steps were tailored to our prob-
lem and the hierarchical step is new, as far as we know. 
Although our matching problem is an extreme case in 
terms of size and complexity, we still suspect that this 
kind of customization is a necessary ingredient for fu-
ture robust, generic schema matching systems. 

We naïvely expected medical terminology would be 
more uniform than it turned out to be. Moreover, the 
authors responsible for constructing the FMA and 
CRM made very different choices concerning how to 
represent phenomena, which led to more differences 
than we expected.  Some of these choices were induced 
by their choice of modeling language; Protégé-2000 
and GRAIL differ slightly in their basic constructs.  
Other differences were caused by differences in phi-
losophy and context. Examples appear in [5]. 

Reification was an important tool for addressing 
these differences.  Because the relationship types and 
instances were first-class objects in Vanilla, we could 
identify more subtle correspondences or differences.  
For example, the lung appears in both models, but the 
information about the lung differs between the models.  
This was easy to see because the reified relationships 
relevant to the lung were not matched. 

A more practical lesson is that size matters.  Most 
generic match algorithms expect relatively small inputs.  
We quickly realized that the size of the FMA and CRM 
would be a problem, if we wanted the match algorithm 
to run in less than a day.  So many of our design 
choices were based on time and space-complexity con-
sideration. One might think the FMA and CRM are an 
extreme case. However, as systems become more com-
plex (e.g., an integrated data network with hundreds of 
sources), the schemas involved can become quite large 
and complex.  For example, large ERP applications 
have thousands of table definitions.  Our work is a re-
minder that time- and space-complexity are important. 

Much of our work was done using a relational data-
base.  In general, we were quite satisfied with this 
choice. For example, in many cases, we need to find all 
non-zero similarity scores between every possible pair 
of nodes.  The fact that we can ignore similarity scores 
of zero meant we could, in most cases, leverage rela-
tional JOINs. 

Our anatomist colleagues are satisfied with this first-
cut match. Moreover, we are encouraged by the fact 
that the number of matches we found is similar to that 
of an independent study [13]. But its true quality can 
only be determined by a time-consuming element-at-a-
time analysis of the correspondences by anatomists; 
work that we hope will be done at least for parts of the 
match result. 
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