
A Guided Tour to Approximate String Matching

Gonzalo Navarro �

Dept� of Computer Science� University of Chile

Blanco Encalada ���� � Santiago � Chile

gnavarro�dcc�uchile�cl� http���www�dcc�uchile�cl��gnavarro

Abstract

We survey the current techniques to cope with the problem of string matching allowing
errors� This is becoming a more and more relevant issue for many fast growing areas such
as information retrieval and computational biology� We focus on online searching and mostly
on edit distance� explaining the problem and its relevance� its statistical behavior� its history
and current developments� and the central ideas of the algorithms and their complexities� We
present a number of experiments to compare the performance of the di�erent algorithms and
show which are the best choices according to each case� We conclude with some future work
directions and open problems�

� Introduction

This work focuses on the problem of string matching allowing errors� also called approximate string
matching� The general goal is to perform string matching of a pattern in a text where one or
both of them have su�ered some kind of �undesirable� corruption� Some examples are recovering
the original signals after their transmission over noisy channels� �nding DNA subsequences after
possible mutations� and text searching under the presence of typing or spelling errors�

The problem� in its most general form� is to �nd the positions of a text where a given pattern
occurs� allowing a limited number of �errors	 in the matches� Each application uses a di�erent error
model� which de�nes how di�erent two strings are� The idea for this �distance	 between strings is
to make it small when one of the strings is likely to be an erroneous variant of the other under the
error model in use�

The goal of this survey is to present an overview of the state of the art in approximate string
matching� We focus on online searching �that is� when the text cannot be preprocessed to build an
index on it�� explaining the problem and its relevance� its statistical behavior� its history and current
developments� and the central ideas of the algorithms and their complexities� We also consider some
variants of the problem which are of interest� We present a number of experiments to compare the
performance of the di�erent algorithms and show which are the best choices according to each case�
We conclude with some future work directions and open problems�

Unfortunately� the algorithmic nature of the problem strongly depends on the type of �errors	
considered� and the solutions range from linear time to NP
complete� The scope of our subject is
so broad that we are forced to specialize our focus on a subset of the possible error models� We
consider only those de�ned in terms of replacing some substrings by others at varying costs� Under

�Partially supported by Fondecyt grant ��������	

�

this light� the problem becomes minimizing the total cost to transform the pattern and its text
occurrence to make them equal� and reporting the text positions where this cost is low enough�

One of the best studied particular cases of this error model is the so
called edit distance� which
allows to delete� insert and replace simple characters �by a di�erent one� in both strings� If the
di�erent operations have di�erent costs or the costs depend on the characters involved� we speak
of general edit distance� Otherwise� if all the operations cost �� we speak of simple edit distance
or just edit distance �ed�� In this last case we simply seek for the minimum number of insertions�
deletions and replacement to make both strings equal� For instance ed��survey���surgery�� �
�
The edit distance has received a lot of attention because its generalized version is powerful enough
for a wide range of applications� Despite that most existing algorithms concentrate on the simple
edit distance� many of them can be easily adapted to the generalized edit distance� and we pay
attention to this issue throughout this work� Moreover� the few algorithms that exist for the general
error model we consider are generalizations of edit distance algorithms�

On the other hand� most of the algorithms designed for the edit distance are easily specialized
to other cases of interest� For instance� by allowing only insertions and deletions at cost � we can
compute the longest common subsequence �LCS� between two strings� Another simpli�cation that
has received a lot of attention is the variant that allows only replacements �Hamming distance��

An extension of the edit distance enrichs it with transpositions �i�e� a replacement of the form
ab� ba at cost ��� Transpositions are very important in text searching applications because they
are typical typing errors� but few algorithms exist to handle them� However� many algorithms for
edit distance can be easily extended to include transpositions� and we keep track of this fact in this
work�

Since the edit distance is by far the best studied case� this survey focuses basically on the simple
edit distance� However� we also pay attention to extensions such as generalized edit distance�
transpositions and general substring replacement� as well as to simpli�cations such as LCS and
Hamming distance� In addition� we also pay attention to some extensions of the type of pattern to
search� when the algorithms allow it� we mention the possibility to search some extended patterns
and regular expression allowing errors� We point out now what are we not covering in this work�

� First� we do not cover other distance functions that do not �t in the model of substring
replacement� This is because they are too di�erent from our focus and the paper would
loose cohesion� Some of these are� Hamming distance �short survey in �Nav����� reversals
�KS��� �which allows reversing substrings�� block distance �Tic��� EH��� Ukk�
� LT��� �which
allows rearranging and permuting the substrings�� q
gram distance �Ukk�
� �based in �nding
common substrings of �xed length q�� allowing swaps �AAL���� LKPC���� etc� Hamming
distance� despite being a simpli�cation of the edit distance� is not covered because specialized
algorithms exist for it that go beyond the simpli�cation of an existing algorithm for edit
distance�

� Second� we consider pattern matching over sequences of symbols� and at most generalize
the pattern to a regular expression� Extensions such as approximate searching in multi

dimensional texts �short survey in �NBY��a��� in graphs �ALL��� Nav��� or multipattern
approximate searching �MM��� BYN��b� Nav��a� BYN��� are not considered� None of these
areas are very developed and the algorithms should be easy to grasp once approximate pattern

matching under the simple model is well understood� Many existing algorithms for these
problems borrow from those we present here�

� Third� we leave aside non
standard algorithms� such as approximate�� probabilistic or parallel
algorithms �TU��� Kar��� AJS��� AGM���� LL��� LV����

� Finally� an important area that we leave aside in this survey is indexed searching� i�e� the
process of building a persistent data structure �an index� on the text to speed up the search
later� Typical reasons that prevent keeping indices on the text are� extra space requirements
�as the indices for approximate searching tend to take many times the text size�� volatility of
the text �as building the indices is quite costly and needs be amortized over many searches�
and simply inadequacy �as the �eld of indexed approximate string matching is quite immature
and the speedup that the indices provide is not always satisfactory��

Indexed approximate searching is a di�cult problem� and the area is quite new and active
�JU��� Gon�
� Ukk��� Mye��a� HS��� MW��� Cob��� ST��� BYN��a� ANZ��� NBY��b�
NBY��b� NMN����� The problem is very important because the texts to handle are so large
in some applications that no online algorithm can provide adequate performance� However�
virtually all the indexed algorithms are strongly based on online algorithms� and therefore un

derstanding and improving the current online solutions is of interest for indexed approximate
searching as well�

These issues have been left aside to keep a reasonable scope in the present work� They certainly
deserve separate surveys� Our goal in this survey is to explain the basic tools of approximate string
matching� as many of the extensions we are leaving aside are built on the basic algorithms designed
for online approximate string matching�

This work is organized as follows� In Section
 we present in detail some of the most important
application areas for approximate string matching� In Section � we formally introduce the problem
and the basic concepts necessary to follow the rest of the paper� In Section � we show some
analytical and empirical results about the statistical behavior of the problem�

Sections � to � cover all the work of interest we could trace on approximate string matching
under the edit distance� We divided it in four sections that correspond to di�erent approaches
to the problem� dynamic programming� automata� bit
parallelism and �ltering algorithms� Each
section is presented as a historical tour� so that we do not only explain the work done but also show
how it was developed�

Section � presents experimental results comparing the most e�cient algorithms presented� Fi

nally� we give our conclusions and discuss open questions and future work directions in Section
���

There exist other surveys on approximate string matching� which are however too old for this
fast moving area �HD��� SK��� AG��� GG��� JTU��� �the last one was in its de�nitive form in
������ So all previous surveys lack coverage of the latest developments� Our aim is to provide a

�Please do not confuse an approximate algorithm
which delivers a suboptimal solution with some suboptimality
guarantee� with an algorithm for approximate string matching	 Indeed approximate string matching algorithms can
be regarded as approximation algorithms for exact string matching
where the maximum distance gives the guarantee
of optimality�� but in this case it is harder to
nd the approximate matches� and of course the motivation is di�erent	

�

long awaited update� This work is partially based in �Nav���� but the coverage of previous work is
much more detailed here� The subject is also covered� albeit with less depth� in some textbooks on
algorithms �CR��� BYRN����

� Main Application Areas

The �rst references to this problem we could trace are from the sixties and seventies� where the
problem appeared in a number of di�erent �elds� In those times� the main motivation for this
kind of search came from computational biology� signal processing� and text retrieval� These are
still the largest application areas� and we cover each one here� See also �SK���� which has a lot of
information on the birth of this subject�

��� Computational Biology

DNA and protein sequences can be seen as long texts over speci�c alphabets �e�g� fA�C�G�Tg in
DNA�� Those sequences represent the genetic code of living beings� Searching speci�c sequences
over those texts appeared as a fundamental operation for problems such as assembling the DNA
chain from the pieces obtained by the experiments� looking for given features in DNA chains� or
determining how di�erent two genetic sequences were� This was modeled as searching for given
�patterns	 in a �text	� However� exact searching was of little use for this application� since the
patterns rarely matched the text exactly� the experimental measures have errors of di�erent kinds
and even the correct chains may have small di�erences� some of them signi�cant due to mutations
and evolutionary alterations and others unimportant� Finding DNA chains very similar to those
sought represent signi�cant results as well� Moreover� establishing how di�erent two sequences
are is important to reconstruct the tree of the evolution �phylogenetic trees�� All these problems
required a concept of �similarity	� as well as an algorithm to compute it�

This gave a motivation to �search allowing errors	� The errors were those operations that
biologists knew were common to occur in genetic sequences� The �distance	 between two sequences
was de�ned as the minimum �i�e� more likely� sequence of operations to transform one into the
other� With regard to likelihood� the operations were assigned a �cost	� such that the more likely
operations were cheaper� The goal was then to minimize the total cost�

Computational biology has since then evolved and developed a lot� with a special push in
recent years due to the �genome	 projects that aim at the complete decoding of the DNA and
its potential applications� There are other� more exotic problems� such as structure matching or
searching for unknown patterns� Even the simple problem where the pattern is known is believed
to be NP
complete under some distance functions �e�g� reversals��

Some good references for the applications of approximate pattern matching to computational
biology are �Sel��� NW��� SK��� AGM���� Mye��� Mye��b� Wat��� YFM��� Gus����

��� Signal Processing

Another early motivation came from signal processing� One of the largest areas deals with speech
recognition� where the general problem is to determine� given an audio signal� a textual message
which is being transmitted� Even simpli�ed problems such as discerning a word from a small set

�

of alternatives is complex� since parts of the the signal may be compressed in time� parts of the
speech may not be pronounced� etc� A perfect match is practically impossible�

Another problem of this �eld is error correction� The physical transmission of signals is error

prone� To ensure correct transmission over a physical channel� it is necessary to be able to recover
the correct message after a possible modi�cation �error� introduced during the transmission� The
probability of such errors is obtained from the signal processing theory and used to assign a cost to
them� In this case we may even not know what we are searching for� we just want a text which is
correct �according to the error correcting code used� and closest to the received message� Although
this area has not developed too much with respect to approximate searching� it has generated the
most important measure of similarity� known as the Levenshtein distance �Lev��� Lev��� �also called
�edit distance	��

Signal processing is a very active area today� The rapidly evolving �eld of multimedia databases
demands the ability to search by content in image� audio and video data� which are potential
applications for approximate string matching� We expect in the next years a lot of pressure on non

written human
machine communication� which involves speech recognition� Strong error correcting
codes are also sought given the current interest in wireless networks� as the air is a low quality
transmission medium�

Good references for the relations of approximate pattern matching with signal processing are
�Lev��� Vin��� DM����

��� Text Retrieval

The problem of correctingmisspelled words in written text is rather old� perhaps the oldest potential
application for approximate string matching� We could �nd references from the twenties �Mas
���
and perhaps there are older ones� Since the sixties� approximate string matching is one of the most
popular tools to deal with this problem� For instance� ��� of these errors are corrected allowing
just one insertion� deletion� replacement or transposition �Dam����

There are many areas where this problem appears� and Information Retrieval �IR� is one of the
most demanding� IR is about �nding the relevant information in a large text collection� and string
matching is one of its basic tools�

However� classical string matching is normally not enough� because the text collections are
becoming larger �e�g� the Web text has surpassed � terabytes �LG����� more heterogeneous �di�erent
languages� for instance� and more error prone� Many are so large and grow so fast that it is
impossible to control their quality �e�g� in the Web�� A word which is entered incorrectly in the
database cannot be retrieved anymore� Moreover� the pattern itself may have errors� for instance in
cross
lingual scenarios where a foreign name sought is incorrectly spelled� or in ancient texts that
use outdated versions of the language�

For instance� text collections digitalized via optical character recognition �OCR� contain a non

negligible percentage of errors ��� to ����� The same happens with typing ��� to ��
�� and
spelling ����� to
���� errors� Experiments for typing Dutch surname �by Dutchs� reached ���
of spelling errors� All these percentages were obtained from �Kuk�
�� Our own experiments with
the name �Levenshtein	 in Altavista gave more than ��� of errors allowing just one deletion or
transposition�

Nowadays� there is virtually no text retrieval product that does not allow some extended search

�

facility to recover from errors in the text of pattern� Other text processing applications are spelling
checkers� natural language interfaces� command language interfaces� computer aided tutoring and
language learning� to name a few�

A very recent extension which became possible thanks to word
oriented text compression meth

ods is the possibility to perform approximate string matching at the word level �NMN����� That
is� the user supplies a phrase to search and the system searches the text positions where the phrase
appears with a limited number of word insertions� deletions and replacements� It is also possible
to disregard the order of the words in the phrases� This allows the query to survive from di�erent
wordings of the same idea� which extends the applications of approximate pattern matching well
beyond the recovery of syntactic mistakes�

Good references about the relation of approximate string matching and information retrieval
are �WF��� LW��� Nes��� OM��� Kuk�
� ZD��� FPS��� BYRN����

��� Other Areas

The number of applications for approximate string matching grows every day� We have found
solutions to the most diverse problems based on approximate string matching� for instance hand

writing recognition �LT���� virus and intrusion detection �KS���� image compression �LS���� data
mining �DFG����� pattern recognition �GT���� optical character recognition �EL���� �le comparison
�Hec��� and screen updating �Gos���� to name a few� Many more applications are mentioned in
�SK��� Kuk�
��

� Basic Concepts

We present in this section the important concepts needed to understand all the development that
follows� Basic knowledge is assumed on design and analysis of algorithms and data structures� basic
text algorithms� and formal languages� If this is not the case we refer the reader to good books in
these subjects� such as �AHU��� CLR��� Knu��� �for algorithms�� �GBY��� CR��� AG��� �for text
algorithms� and �HU��� �for formal languages��

We start with some formal de�nitions related to the problem� Then we cover some data struc

tures not widely known which are relevant for this survey �they are also explained in �GBY���
CR����� Finally� we make some comments about the tour itself�

��� Approximate String Matching

In the discussion that follows� we use s� x� y� z� v�w to represent arbitrary strings� and a� b� c��� to
represent letters� Writing a sequence of strings and�or letters represents their concatenation� We
assume that concepts such as pre�x� su�x and substring are known� For any string s � �� we
denote its length as jsj� We also denote si the i
th character of s� for an integer i � f���jsjg� We
denote si��j � sisi�����sj �which is the empty string if i � j�� The empty string is denoted as ��

In the Introduction we have de�ned the problem of approximate string matching as that of
�nding the text positions that match a pattern with up to k errors� We give now a more formal
de�nition�

�

Let � be a �nite� alphabet of size j�j � ��

Let T � �� be a text of length n � jT j�
Let P � �� be a pattern of length m � jP j�
Let k � R be the maximum error allowed�

Let d � �� � �� � R be a distance function�

The problem is� given T � P � k and d��� return the set of all the text positions j such
that there exists i such that d�P� Ti��j� � k�

Note that endpoints of occurrences are reported to ensure that the output is of linear size� By
reversing all strings we can obtain start points�

In this work we restrict our attention to a subset of the possible distance functions� We consider
only those de�ned in the following form�

The distance d�x� y� between two strings x and y is the minimal cost of a sequence
of operations that transform x into y �and � if no such sequence exists�� The cost
of a sequence of operations is the sum of the costs of the individual operations� The
operations are a �nite set of rules of the form ��z� w� � t� where z and w are di�erent
strings and t is a nonnegative real number� Once the operation has converted a substring
z into w� no further operations can be done on w�

Note especially the restriction that forbids acting many times over the same string� Freeing the
de�nition from this condition would allow any rewriting system to be represented� and therefore
determining the distance between two strings would not be computable in general�

If for each operation of the form ��z� w� there exists the respective operation ��w� z� at the
same cost� then the distance is symmetric �i�e� d�x� y� � d�y� x��� Note also that d�x� y� � � for all
strings x and y� that d�x� x� � �� and that it always holds d�x� z� � d�x� y� � d�y� z�� Hence� if the
distance is symmetric� the space of strings forms a metric space�

General substring replacement has been used to correct phonetic errors �ZD���� In most appli

cations� however� the set of possible operations is restricted to�

� Insertion� ���� a�� i�e� inserting the letter a�
� Deletion� ��a� ��� i�e� deleting the letter a�
� Replacement or Substitution� ��a� b� for a 	� b� i�e� replacing a by b�
� Transposition� ��ab� ba� for a 	� b� i�e� swap the adjacent letters a and b�

We are now in position to de�ne the most commonly used distance functions �although there
are many others��

� Levenshtein or Edit distance �Lev���� allows insertions� deletions and replacements�
In the simpli�ed de�nition� all the operations cost �� This can be rephrased as �the

�However� many algorithms can be adapted to in
nite alphabets with an extra O
logm� factor in their cost	 This
is because the pattern can have at most m di�erent letters and all the rest can be considered equal for our purposes	
A table of size � could be replaced by a search structure over at most m� � di�erent letters	

�

minimal number of insertions� deletions and replacements to make two strings equal	�
In the literature the search problem is in many cases called �string matching with k
di�erences	� The distance is symmetric� and it holds � � d�x� y� � max�jxj� jyj��
� Hamming distance �SK���� allows only replacements� which cost � in the simpli�ed
de�nition� In the literature the search problem is in many cases called �string matching
with k mismatches	� The distance is symmetric� and it is �nite whenever jxj � jyj� In
this case it holds � � d�x� y�� jxj�
� Episode distance �DFG����� allows only insertions� which cost �� In the literature
the search problem is in many cases called �episode matching	� since it models the case
where a sequence of events is sought� where all them must occur within a short period�
This distance is not symmetric� and it may not be possible to convert x into y in this
case� Hence� d�x� y� is either jyj � jxj or ��
� Longest Common Subsequence distance �NW��� AG���� allows only insertions and
deletions� all costing �� The name of this distance refers to the fact that it measures
the length of the longest pairing of characters that can be made between both strings�
so that the pairings respect the order of the letters� The distance is the number of
unpaired characters� The distance is symmetric� and it holds � � d�x� y� � jxj� jyj�

In all cases� except the episode distance� one can think that the changes can be made over x or
y� Insertions on x are the same as deletions in y and vice versa� and replacements can be made in
any of the two strings to match the other�

This paper is most concerned with the simple edit distance� which we denote ed��� Although
transpositions are of interest �especially in case of typing errors�� there are few algorithms to deal
with them� However� we will consider them at some points of this work �note that a transposition
can be simulated with an insertion plus a deletion� but the cost is di�erent�� We also will point out
when the algorithms can be extended to have di�erent costs of the operations �which is of special
interest in computational biology�� including the extreme case of not allowing some operations�
This includes the other distances mentioned�

Note that if the Hamming or edit distance are used� then the problemmakes sense for � � k � m�
since if we can performm operations we can make the pattern match at any text position by means
of m replacements� The case k � � corresponds to exact string matching and is therefore excluded
from this work� Under these distances� we call 	 � k
m the error level� which given the above
conditions satis�es � � 	 � �� This value gives an idea of the �error ratio	 allowed in the match
�i�e� the fraction of the pattern that can be wrong��

We �nish this section with some notes about the algorithmswe are going to consider� Like string
matching� this area is suitable for very theoretical and for very practical contributions� There exist
a number of algorithms with important improvements in their theoretical complexity but very slow
in practice� Of course� for carefully built scenarios �say� m � ���� ��� and k �
� these algorithms
could be a practical alternative� but these cases do not appear in applications� Therefore� we
point out now which are the parameters of the problem that we consider �practical	� i�e� likely to
be of use in some application� and when we say later �in practice	 we mean under the following
assumptions�

�

� The pattern length can be as short as � letters �e�g� text retrieval� and as long as a
few hundred letters �e�g� computational biology��

� The number of errors allowed k satis�es that k
m is a moderately low value� Rea

sonable values range from �
m to �

�

� The text length can be as short as a few thousand letters �e�g� computational biology�
and as long as megabytes or gigabytes �e�g� text retrieval��

� The alphabet size � can be as low as four letters �e�g� DNA� and a high as
�� letters
�e�g� compression applications�� It is also reasonable to think in even larger alphabets
�e�g� oriental languages or word oriented text compression�� The alphabet may or may
not be random�

��� Su�x Trees and Su�x Automata

Su�x trees �Wei��� Knu��� AG��� are widely used data structures for text processing �Apo���� Any
position i in a string S de�nes automatically a su�x of S� namely Si���jSj� In essence� a su�x tree
is a trie data structure built over all the su�xes of S� At the leaf nodes the pointers to the su�xes
are stored� Each leaf represents a su�x and each internal node represents a unique substring of S�
Every substring of S can be found by traversing a path from the root� Each node representing the
substring ax has a su�x link that leads to the node representing the substring x�

To improve space utilization� this trie is compacted into a Patricia tree �Mor���� This involves
compressing unary paths� At the nodes which root a compressed path� an indication of how many
characters to skip is stored� Once unary paths are not present the tree has O�jSj� nodes instead
of the worst
case O�jSj�� of the trie �see Figure ��� The structure can be built in time O�jSj�
�McC��� Ukk����

A DAWG �deterministic acyclic word graph� �Cro��� BBH���� built on a string S is a determin

istic automaton able to recognize all the substrings of S� As each node in the su�x tree corresponds
to a substring� the DAWG is no more than the su�x tree augmented with failure links for the letters
not present in the tree� Since �nal nodes are not distinguished� the DAWG is smaller� DAWGs
have similar applications to those of su�x trees� and also need O�jSj� space and construction time�
Figure
 illustrates�

A su�x automaton on S is an automaton that recognizes all the su�xes of S� The non

deterministic version of this automaton has a very regular structure and is shown in Figure � �the
deterministic version can be seen in Figure
��

��� The Tour

Sections � to � present a historical tour across the four main approaches to online approximate
string matching �see Figure ��� In those historical discussions� keep in mind that there may be
a long gap between the time when a result is discovered and when it gets �nally published in its
de�nitive form� Some apparent inconsistencies can be explained in this way �e�g� algorithms which
are ��nally	 analyzed before they appear�� We did our best in the bibliography to trace the earliest
version of the works� although the full reference corresponds generally to the �nal version�

�

rba a c a d a b r a

1 2 3 4 65 7 8 9 10 11

6
4

"b"
"r" "a"

"r"

"a"
"c"

"d" 7

"c"
5

2

9
"$"

"c"

"a"

"a""r"
8

1
"c"

"$"

11

"b"

"d"

10

3
"$"

"$"

"c" 6
4

3

10

8

1

"b"

"r"

"d" 7

"c"
5

"a"

11

"b"

"d"

"$"

"c"

1

3

"c"

"$"

4 2

9
"$"

"c"

2 5
"c"

"$"

Suffix Trie

Suffix Tree

String

Figure �� The su�x trie and su�x tree for a sample string� The ��	 is a special marker to denote
the end of the text� Two su�x links are exempli�ed in the trie� from �abra� to �bra� and then to
�ra�� The internal nodes of the su�x tree show the character position to inspect in the string�

"r" "a""d" "a" "b""a" "c" "a""a" "b" "r"

"b"

"r"

"c"

"c"

"d"

"d"

Figure
� The DAWG or the su�x automaton for the sample string� If all the states are �nal� it is
a DAWG� If only the
nd� �th and rightmost states are �nal then it is a su�x automaton�

b ra a aa b ad rc

Figure �� A non
deterministic su�x automaton to recognize any su�x of �abracadabra�� Dashed
lines represent �
transitions �i�e� they occur without consuming any input��

��

Based on DP matrix
Worst case

Bit�parallelism

Filters
For very long patterns

Based on DPmatrix

Automaton

Average case

For moderatepatterns

Based on automata

Figure �� Taxonomy of the types of solutions for online searching�

At the beginning of each of these sections we give a taxonomy to help guide the tour� The
taxonomy is an acyclic graph where the nodes are the algorithms and the edges mean that the
lower work can be seen as an evolution of the upper work �although sometimes the developments
are in fact independent��

Finally� we specify some notation regarding time and space complexity� When we say that an
algorithm is O�x� time we refer to its worst case �although sometimes we say that explicitly�� If
the cost is on average� we say so explicitly� We also say sometimes that the algorithm is O�x� cost�
meaning time� When we refer to space complexity we say so explicitly� The average case analysis
normally assumes a random text� where each character is selected uniformly and independently
from the alphabet� The pattern is not normally assumed to be random�

� The Statistics of the Problem

A natural question about approximate searching is� which is the probability of a match� This
question is not only interesting by itself� but also essential for the average case analysis of many
search algorithms� as seen later� We present now the existing results and an empirical validation�
In this section we consider the edit distance only� Some variants can be adapted to these results�

The e�ort towards analyzing the probabilistic behavior of the edit distance has not given good
results in general �KM���� An exact analysis of the probability of the occurrence of a �xed pattern
allowing k replacement errors �i�e� Hamming distance� can be found in �RS���� although the result
is not easy to average over all the possible patterns� The results we present here apply to the edit
distance model and� despite not being exact� are easier to use in general�

The result of �RS��� holds under the assumption that the characters of the text are indepen

dently generated with �xed probabilities� i�e� a Bernoulli model� In the rest of this paper we
consider a simpler model� the �uniform Bernoulli model	� where all the characters occur with the
same probability �
�� Although this is a gross simpli�cation of the real processes that generate the

��

texts used in most applications� the results obtained are quite reliable in practice� In particular�
all the analyses apply quite well to biased texts if we replace � by �
p� where p is the probability
that two random text characters are equal�

Although the problem of the average edit distance between two strings is closely related to the
better studied LCS� the well known results of �CS��� Dek��� can hardly be applied to this case� It
can be shown that the average edit distance between two random strings of length m tends to a
constant fraction of m as m grows� but the fraction is not known� It holds that for any two strings
of length m� m� lcs � ed �
�m� lcs�� where ed is their edit distance and lcs is the length of their
longest common subsequence� As proved in �CS���� the average LCS is between m

p
� and me

p
�

for large �� and therefore the average edit distance is between m�� � e

p
�� and
m�� � �
p���

For large � it is conjectured that the true value is m��� �
p�� in �SM����
For our purposes� bounding the probability of a match allowing errors is more important than

the average edit distance� Let f�m� k� be the probability of a random pattern of length m matching
a given text position with k errors or less under the edit distance �i�e� that the text position is
reported as the end of a match�� In �BYN��� Nav��� NBY��b� upper and lower bounds on the
maximum error level 	� for which f�m� k� is exponentially decreasing on m are found� This is
important because many algorithms search for potential matches that have to be veri�ed later� and
the cost of such veri�cations is polynomial in m� typically O�m��� Therefore� if that event occurs
with probability O��m� for some � � � then the total cost of veri�cations is O�m��m� � o����
which makes the veri�cations cost negligible�

We �rst show the analytical bounds for f�m� k�� then give a new result on average edit distance�
and �nally present an experimental veri�cation�

��� An Upper Bound

The upper bound for 	� comes from the proof that the matching probability is f�m� k� � O��m�
for

� �

�
�

�	
��
��� ��� 	��

����
�

�
e�

���� 	��

����
���

where we note that � is �
� for 	 � � and grows to � as 	 grows� This matching probability is
exponentially decreasing on m as long as � � �� which is equivalent to

	 � �� ep
�
� O��
�� � �� ep

�
�
�

Therefore� 	 � � � e

p
� is a conservative condition on the error level that ensures �few	

matches� Therefore� the maximum level 	� satis�es 	� � �� e

p
��

The proof is obtained using a combinatorial model� Based on the observation that m � k

common characters must appear in the same order in two strings that match with k errors� all
the possible alternatives to select the matching characters from both strings are enumerated� This
model� however� does not take full advantage of the properties of the edit distance� even if m� k
characters match� the distance can be larger than k� For example� in ed�abc� bcd� �
� i�e� although
two characters match� the distance is not ��

�

��� A Lower Bound

On the other hand� the only optimistic bound we know of is based on considering that only replace

ments are allowed �i�e� Hamming distance�� This distance is simpler to analyze but its matching
probability is much lower� Using again a combinatorial model it is shown that the matching prob

ability is f�m� k� � �m m����� where

� �

�
�

��� 	��

����

Therefore an upper bound for the maximum 	� value is 	� � �� �
�� since otherwise it can be
proved that f�m� k� is not exponentially decreasing on m �i�e� it is �m�������

��� A New Result on Average Edit Distance

We can now prove that the average edit distance is larger than m��� e

p
�� for any � �recall that

the result of �CS��� holds for large ��� We de�ne p�m� k� as the probability that the edit distance
between two strings of length m is at most k� Note that p�m� k� � f�m� k� because in the latter
case we can match with any text su�x of length from m � k to m � k� Then the average edit
distance is

mX
k��

k Pr�ed � k� �
mX
k��

Pr�ed � k� �
mX
k��

�� p�m� k� � m�
mX
k��

p�m� k�

which� since p�m� k� increases with k� is larger than

m � �Kp�m�K� � �m�K�� � K��� p�m�K��

for any K of our choice� In particular� for K
m � � � e

p
� we have that p�m�K� � f�m�K� �

O��m� for � � �� Therefore choosing K � m��� e

p
��� � yields that the edit distance is at least

m���e

p
���O���� for any �� As we see later� this proofs converts a conjecture about the average

running time of an algorithm �CL�
� into a fact�

��� Empirical Veri�cation

We verify the analysis experimentally in this section �this is also taken from �BYN��� Nav�����
The experiment consists of generating a large random text �n � �� Mb� and running the search
of a random pattern on that text� allowing k � m errors� At each text character� we record the
minimum allowed error k for which that text position would match the pattern� We repeat the
experiment with ����� random patterns�

Finally� we build the cumulative histogram� �nding how many text positions have matched with
up to k errors� for each k value� We consider that k is �low enough	 up to where the histogram
values become signi�cant� that is� as long as few text positions have matched� The threshold is set
to n
m�� since m� is the normal cost of verifying a match� However� the selection of this threshold
is not very important� since the histogram is extremely concentrated� For example� for m in the
hundreds� it moves from almost zero to almost n in just �ve or six increments of k�

��

Figure � shows the results for � � �
� On the left we show the histogram we have built� where
the matching probability undergoes a sharp increase at 	�� On the right we show the 	� value as
m grows� It is clear that 	� is essentially independent on m� although it is a bit lower for short
patterns� The increase in the left plot at 	� is so sharp that the right plot would be the same if we
plotted the value of the average edit distance divided by m�

��� ������ ��
 ��� ��� ��� ���

���

���

���

���

��

���

���

���

���

���

���

���

	

f�m��m�

�� ����
�� ��� ��� ��� ����

���

���

���

���

��

���

���

���

���

���

���

���

m

	�

Figure �� On the left� probability of an approximatematch as a function of the error level �m � �����
On the right� the observed 	� error level as a function of the pattern length� Both cases correspond
to random text with � � �
�

Figure � uses a stable m � ��� to show the 	� value as a function of �� The curve 	 � ���
p�
is included to show its closeness to the experimental data� Least squares give the approximation
	� � ������
p�� with a relative error smaller than ��� This shows that the upper bound analysis
�Eq� �
�� matches reality better� provided we replace e by ���� in the formulas�

�

�

�

�
�

�
�

�
�
�

� � � �

 ��
� �� �� �� ��
�

��

���

���

���

���

�
�

� Upper bound �� ���
The curve �� ��

p
�

Experimental data
� Exact lower bound with � � �� Eq� ���

 Conservative lower bound� Eq� �	�

Figure �� Theoretical and practical values for 	�� for m � ��� and di�erent � values�

��

Therefore� we have shown that the matching probability has a sharp behavior� for low 	 it is
very low� not as low as �
�m like exact string matching� but still exponentially decreasing in m�
with an exponent base larger than �
�� At some 	 value �that we called 	�� it sharply increases
and quickly becomes almost �� This point is close to 	� � �� �
p� in practice�

This is why the problem has interest only up to a given error level� since for higher errors almost
all text positions match� This is also the reason that makes some algorithms to have good average
behavior only for low enough error levels� The point 	� � � � �
p� matches the conjecture of
�SM����

� Dynamic Programming Algorithms

We start our tour with the oldest among the four areas� which inherits directly from the earliest
work� Most of the theoretical breakthroughs in the worst case algorithms belong to this category�
although only a few of them are really competitive in practice� The latest practical work in this area
dates back to ���
� although there are recent theoretical improvements� The major achievements
are O�kn� worst
case algorithms and O�kn

p
�� average
case algorithms� as well as other recent

theoretical improvements on the worst
case�
We start by presenting the �rst algorithm that solved the problem and then give a historical

tour on the improvements over the initial solution� Figure � helps guide the tour�

��� The First Algorithm

We present now the �rst algorithm to solve the problem� It has been rediscovered many times in
the past� in di�erent areas� e�g� �Vin��� NW��� San�
� Sel��� WF��� LW��� �there are more in
�Ull��� SK��� Kuk�
��� However� this algorithm computed the edit distance� and it was converted
into a search algorithm only in ���� by Sellers �Sel���� Although the algorithm is not very e�cient�
it is among the most !exible ones to adapt to di�erent distance functions�

We �rst show how to compute the edit distance between two strings x and y� Later� we extend
that algorithm to search a pattern in a text allowing errors� Finally� we show how to handle more
general distance functions�

����� Computing Edit Distance

The algorithm is based on dynamic programming� Imagine that we need to compute ed�x� y��
A matrix C���jxj����jyj is �lled� where Ci�j represents the minimum number of operations needed to
match x���i to y���j � This is computed as follows

Ci�� � i

C��j � j

Ci�j � if �xi � yj� then Ci���j��
else � �min�Ci���j� Ci�j��� Ci���j���

where at the end Cjxj�jyj � ed�x� y�� The rationale of the above formula is as follows� First� Ci�� and
C��j represent the edit distance between a string of length i or j and the empty string� Clearly i

��

�CL	�
 �SV	�

time

Text Searching Edit Distance

O�m� space
O�k�n� time

TheoreticalPractical

�Sel��

FirstO�mn� search algorithm
O�m� space

nk��� log� n�
�

log �

O�k�� space
O�k�� edit distance

�Ukk�
a� Mye��b

Analysis �CL	�� BYN		

O�m� space
O�m�� edit distance

�Sel��� WF��� LW�

�Vin��� NW��� San��

O�kn� expected time
O�m� space

�Mye��a� GP	�
 �GP	�
 �UW	�
 �GG��

O�kn� time
O�m� space

O�kn� time
O�m� space

O�kn� time
O�m�� space

O�kn� expected
O�k� space

O�kn�
p
�� expected

O�m�� space

Cut�o� heuristic

�Ukk�
b

�MP��

O�n� extra space
O�nm� log�� n� time
Four russians

�LV��

O�kn� time
O�n� space

�LV�	

Su�� tree of patt�

O�m� space
O�km� time

�GP	�� CL	�

Pre�xmatrix

Columnpartitioning

time �c�� or ��
O�n���kc�m��

�CH	�

Brute force

Diagonal transition

Partial s� tree

Patt� period�

O�kn� time

�Mye��a

All matches

O�n� space

Suf� aut� of patt

Figure �� Taxonomy of algorithms based on the dynamic programming matrix�

��

�respectively j� deletions are needed on the nonempty string� For two non
empty strings of length
i and j� we assume inductively that all the edit distances between shorter strings have already been
computed� and try to convert x���i into y���j �

Consider the last characters xi and yj � If they are equal� then we do not need to consider them
and we proceed in the best possible way to convert x���i�� into y���j��� On the other hand� if they
are not equal� we must deal with them in some way� Following the three allowed operations� we
can delete xi and convert in the best way x���i�� into y���j � insert yj at the end of x���i and convert
in the best way x���i into y���j��� or replace xi by yj and convert in the best way x���i�� into y���j���
In all cases� the cost is � plus the cost for the rest of the process �already computed�� Notice that
the insertions in one string are equivalent to deletions in the other�

An equivalent formula which is also widely used is

C�
i � min�Ci���j�� � ��xi� yj�� Ci���j � �� Ci�j�� � ��

where ��a� b� � � if a � b and � otherwise� It is easy to see that both formulas are equivalent
because neighboring cells di�er in at most one �just recall the meaning of Ci�j�� and therefore when
��xi� yj� � � we have that Ci���j�� cannot be larger than Ci���j � � or Ci�j�� � ��

The dynamic programming algorithm must �ll the matrix in such a way that the upper� left�
and upper
left neighbors of a cell are computed prior to computing that cell� This is easily achieved
by either a row
wise left
to
right traversal or a column
wise top
to
bottom traversal� but we will see
later that� using a di�erence recurrence� the matrix can also be �lled by �upper
left to lower
right�
diagonals or �secondary	 �upper
right to lower
left� diagonals� Figure � illustrates the algorithm
to compute ed��survey�� �surgery���

s u r g e r y

� �
 � � � � �

s � � �
 � � � �

u
 � � �
 � � �

r �
 � � �
 � �

v � �
 � �
 � �

e � � �

 � � �

y � � � � �

 �

Figure �� The dynamic programming algorithm to compute the edit distance between �survey�

and �surgery�� The bold entries show the path to the �nal result�

Therefore� the algorithm is O�jxjjyj� time in the worst and average case� However� the space
required is only O�min�jxj� jyj��� This is because� in the case of a column
wise processing� only
the previous column must be stored in order to compute the new one� and therefore we just keep
one column and update it� We can process the matrix row
wise or column
wise so that the space
requirement is minimized�

On the other hand� the sequences of operations performed to transform x into y can be easily
recovered from the matrix� simply by proceeding from the cell Cjxj�jyj to the cell C��� following the

��

path �i�e� sequence of operations� that matches the update formula �multiple paths may exist��
In this case� however� we need to store the complete matrix or at least an area around the main
diagonal�

This matrix has some properties which can be easily proved by induction �see� e�g� �Ukk��a��
and which make it possible to design better algorithms� Some of the most used are that the
values of neighboring cells di�er in at most one� and that upper
left to lower
right diagonals are
nondecreasing�

����� Text Searching

We show now how to adapt this algorithm to search a short pattern P in a long text T � The
algorithm is basically the same� with x � P and y � T �proceeding column
wise so that O�m�
space is required�� The only di�erence is that we must allow that any text position is the potential
start of a match� This is achieved by setting C��j � � for all j � ���n� That is� the empty pattern
matches with zero errors at any text position �because it matches with a text substring of length
zero��

The algorithm then initializes its column C���m with the values Ci � i� and processes the text
character by character� At each new text character Tj � its column vector is updated to C

�
���m� The

update formula is

C�
i � if �Pi � Tj� then Ci��

else � � min�C�
i��� Ci� Ci���

and the text positions where Cm � k are reported�
The search time of this algorithm is O�mn� and its space requirement is O�m�� This is a sort

of worst case in the analysis of all the algorithms that we consider later� Figure � exempli�es this
algorithm applied to search the pattern �survey� in the text �surgery� �a very short text indeed�
with at most k �
 errors� In this case there are � occurrences�

s u r g e r y

� � � � � � � �

s � � � � � � � �

u
 � � �

r �
 � � �

 �

v � �
 � �
 � �

e � � �

 �
 �

y � � � � � � � �

Figure �� The dynamic programming algorithm to search �survey� in the text �surgery� with
two errors� Each column of this matrix is a value of the C vector� Bold entries indicate matching
text positions�

��

����� Other Distance Functions

It is easy to adapt this algorithm for the other distance functions mentioned� If the operations have
di�erent costs� we add the cost instead of adding � when computing Ci�j � i�e�

C��� � �

Ci�j � min�Ci���j�� � ��xi� yj�� Ci���j � ��xi� ��� Ci�j��� ���� yj��

where we assume ��a� a� � � for any a � � and that C���j � Ci��� �� for all i� j�
For distances that do not allow some operations� we just take them out of the minimization

formula� or which is the same� we assign � to their � cost� For transpositions� we allow a fourth
rule that says that Ci�j can be Ci���j�� � � if xi��xi � yjyj�� �LW����

The most complex case is to allow general substring replacements� in the form of a �nite set R
of rules� The formula is given in �Ukk��a��

C��� � �

Ci�j � min�Ci���j�� if xi � yj �

Ci�js�j�j�js�j � ��s�� s�� for each �s�� s�� � R� x���i � x�s�� y���j � y�s��

An interesting problem is how to compute this recurrence e�ciently� A naive approach takes
O�jRjmn�� where jRj is the sum of all the lengths of the strings in R� A better solution is to build
two Aho
Corasick automata �AC��� with the left and right hand sides of the rules� respectively�
The automata are run as we advance in both strings �left hand sides in x and right hand sides
in y�� For each pair of states �i�� i�� of the automata we precompute the set of replacements that
can be tried �i�e� those �"s whose left and right hand match the su�xes of x and y� respectively�
represented by the automata states�� Hence� we know in constant time �per cell� the set of possible
replacements� The complexity is now much lower� in the worst case it is O�cmn� where c is the
maximum number of rules applicable to a single text position�

As said� the dynamic programming approach is unbeaten in !exibility� but its time requirements
are indeed high� A number of improved solutions have been proposed along the years� Some of
them work only for the edit distance� while others can still be adapted to other distance functions�
Before considering the improvements� we mention that there exists a way to see the problem as a
shortest path problem on a graph built on the pattern and the text �Ukk��a�� This reformulation
has been conceptually useful for more complex variants of the problem�

��� Improving the Worst Case

Masek and Paterson ���� It is interesting that one important worst
case theoretical result
on this area is as old as the Sellers �Sel��� algorithm itself� In ����� Masek and Paterson �MP���
found an algorithm whose worst case cost is O�mn
 log�� n� and requires O�n� extra space� This is
an improvement over the O�mn� classical complexity�

The algorithm is based on the Four
Russians technique �ADKF���� Basically� it replaces the
alphabet � by r
tuples �i�e� �r� for a small r� Considered algorithmically� it �rst builds a table of
solutions of all the possible problems �i�e� portions of the matrix� of size r � r� and then uses the
table to solve the original problem in blocks of size r� Figure �� illustrates�

��

The values inside the r � r size cells depend on the corresponding letters in the pattern and
the text� which gives ��r possibilities� They also depend on the values in the last column and row
of the upper and left cells� as well as the bottom
right state of the upper left cell �see Figure ����
Since neighboring cells di�er in at most one� there are only three choices for adjacent cells once the
current cell is known� Therefore� this adds only m���r� possibilities� In total� there are m�����r

di�erent cells to precompute� Using O�n� memory we have enough space for r � log�� n� and since
we �nally compute mn
r� cells� the �nal complexity follows�

text

pattern
r

e y

v

e

y

s ru g r ,...

u

s

Figure ��� The Masek and Paterson algorithm partitions the dynamic programming matrix in cells
�r �
 in this example�� On the right� we shaded the entries of adjacent cells that in!uence the
current one�

The algorithm is only of theoretical interest� since as the same authors estimate� it will not beat
the classical algorithm for texts below �� Gb size �and it would need that extra space#�� Adapting
it to other distance functions seems not di�cult� but the dependencies among di�erent cells may
become more complex�

Ukkonen ���� In ����� Ukkonen �Ukk��a� presented an algorithm able to compute the edit
distance between two strings x and y in O�ed�x� y��� time� or to check in time O�k�� whether that
distance was � k or not� This is the �rst member of what has been called �diagonal transition
algorithms	� since it is based in the fact that the diagonals of the dynamic programming matrix
�running from the upper
left to the lower
right cells� are monotonically increasing �more than that�
Ci���j�� � fCi�j� Ci�j � �g�� The algorithm is based on computing in constant time the positions
where the values along the diagonals are incremented� Only O�k�� such positions are computed to
reach the lower
right decisive cell�

Figure �� illustrates the idea� Each diagonal stroke represents a number of errors� and is a
sequence where both strings match� When a stroke of e errors starts� it continues until the adjacent
e� � strokes continue or until it keeps matching the text� To compute each stroke in constant time
we need to know until where it matches the text� The way to do this in constant time is explained
shortly�

Landau and Vishkin ���� In ���� and ����� Landau and Vishkin found the �rst worst
case
time improvements for the search problem� All of them and the thread that followed were diagonal
transition algorithms� In ���� �LV��� they show an algorithm which is O�k�n� time and O�m�
space� and in ���� �LV��� they obtain O�kn� time and O�n� space�

The main idea of Landau and Vishkin was to adapt to text searching the Ukkonen"s diagonal
transition algorithm for edit distance �Ukk��a�� Basically� the dynamic programming matrix was

�

0

1

2

3

1

3

1

2

3

2

3

3

32

2

3

e-1

e-1e-1

e

Figure ��� On the left� the O�k�� algorithm to compute the edit distance� On the right� the way
to compute the strokes in diagonal transition algorithms� The solid bold line is guaranteed to be
part of the new stroke of e errors� while the dashed part continues as long as both strings match�

computed diagonal
wise �i�e� stroke by stroke� instead of column
wise� They wanted to compute
in constant time the length of each stroke �i�e� the point where the values along a diagonal were to
be incremented�� Since a text position was to be reported when matrix row m was reached before
incrementing more than k times the values along the diagonal� this gave immediately the O�kn�
algorithm� Another way to see it is that each diagonal is abandoned as soon as the k
th stroke
ends� there are n diagonals and hence nk strokes� each of them computed in constant time �recall
Figure ����

A recurrence on diagonals �d� and number of errors �e�� instead of rows �i� and columns �j�� is
set up in the following way

Ld��� � Ln���e � ��� for all e� d
Ld�jdj�� � jdj �
� for � �k � �� � d � ��
Ld�jdj�� � jdj � �� for � �k � �� � d � ��

Ld�e � i � max
�
�Pi����i�� � Td�i����d�i���

where i � max�Ld�e�� � �� Ld���e��� Ld���e�� � ��

where the external loop updates e from � to k and the internal one updates d from �e to n�
Negative numbered diagonals are those virtually starting before the �rst text position� Figure �

shows our search example using this recurrence�

Note that the L matrix has to be �lled by diagonals� e�g� L���� L���� L���� L���� L���� L���� L��
� ����
The di�cult part is how to compute the strokes in constant time �i�e� the max��� � ���� The problem
is equivalent to knowing which is the longest pre�x of Pi���m that matches Tj���n� This data has ben
called thereafter �matching statistics	� The algorithms of this section di�er basically in how they
manage to compute the matching statistics fast�

We defer the explanation of �LV��� for later �together with Galil and Park ������ In �LV���� the
longest match is obtained by building the su�x tree �see Section ��
� of T $P �text concatenated
with pattern�� where the huge O�n� extra space comes from� The longest pre�x common to both
su�xes Pi���m and Tj���n can be visualized in the su�x tree as follows� imagine the root to leaf
paths that end in each of the two su�xes� Both parts share the beginning of the path �at least

�

�

� � �
 � � � � �

� � � � � � � � � � �

� � � � � � � � � � � �

 � 	 	 	 �
 �

Figure �
� The diagonal transition matrix to search �survey� in the text �surgery� with two
errors� Bold entries indicate matching diagonals� The rows are e values and the columns are the d
values�

they share the root�� The last su�x tree node common to both paths represents a substring which
is precisely the longest common pre�x� In the literature� this last common node is called lowest
common ancestor �LCA� of two nodes�

Despite being conceptually clear� it is not easy to �nd this node in constant time� In �����
the only existing LCA algorithm was �HT���� which had constant amortized time� i�e� it answered
n� � n LCA queries in O�n�� time� In our case we have kn queries� so each one �nally costed O����
The resulting algorithm� however� is quite slow in practice�

Myers ���	 In ����� Myers found also an algorithm with O�kn� worst
case behavior �Mye��a��
It needed O�n� extra space� and shared the idea of computing the k new strokes using the previous
ones� as well as the use of a su�x tree on the text for the LCA algorithm� Unlike other algorithms�
this one is able to report the O�kn� matching substrings of the text �not only the endpoints� in
O�kn� time� This makes the algorithm suitable for more complex applications� for instance in
computational biology� The original reference is a technical report and never went to press� but it
has been recently included in a larger work �LMS����

Galil and Giancarlo ���� In ����� Galil and Giancarlo �GG��� obtained the same time com

plexity of Landau and Vishkin using O�m� space� Basically� the su�x tree of the text is built by
overlapping pieces of size O�m�� The algorithm scans the text four times� being even slower than
�LV���� Therefore� the result was of theoretical interest�

Galil and Park ���� One year later� in ����� Galil and Park �GP��� obtained O�kn� worst
case
time and O�m�� space� worse in theory than �GG��� but much better in practice� Their idea is
rooted in the work of �LV��� �which had obtained O�k�n� time�� In both cases� the idea is to
build the matching statistics of the pattern against itself �longest match between Pi���m and Pj���m��
resembling in some sense the basic ideas of �KMP���� This algorithm is still slow in practice anyway�

Consider again Figure ��� and in particular the new stroke with e errors at the right� The
beginning of the stroke is dictated by the three neighboring strokes of e � � errors� but after the
longest of the three ceases to a�ect the new stroke� how long it continues �dashed line� depends
only on the similarity between pattern and text� More speci�cally� if the dotted line �su�x of a
stroke� at diagonal d spans rows i� to i�� �� this means that the longest match between Td�i��� and
Pi��� has length �� Therefore� the strokes computed by the algorithm give some information about

longest matches between text and pattern� The di�cult part is how to use that information�
Figure �� illustrates the algorithm� As explained� the algorithm progresses by strokes� �lling

diagonally the matrix of Figure �
� so that when a stroke is computed its three neighbors are already
computed� We have enclosed in a dotted triangle the strokes that may contain the information on
longest matches relevant to the new strokes that are being computed� The algorithm of �LV���
basically searches the relevant information in this triangle and hence it is O�k�n� time�

000

1

1

1 2

2
2

0

1

2

3

0

1

2
3

0

1

2

3

1

2

3

1

2

3

00

1
2

3

0

P

T

Figure ��� On the left� the way in which the stroke
wise algorithm progresses� The relevant strokes
are enclosed in a dotted triangle and the last k strokes computed are in bold� On the right� the
selection of the k relevant strokes to cover the last text area� We put in bold the parts of the strokes
that are used�

This is improved in �GP��� to O�kn� by considering carefully the relevant strokes� Let us call e

stroke a stroke with e errors� First consider a �
stroke� This full stroke �not only a su�x� represents
a longest match between pattern and text� So� from the k previous �
strokes we can keep the one
that lasts more in the text� and up to that text position we have all the information we need about
longest matches� We consider now all the �
strokes� Despite that only a su�x of those strokes
really represent a longest match between pattern and text� we know that this is de�nitely true
after the last text position reached by a �
stroke �since by then no �
stroke can �help	 a �
stroke
to last more�� Therefore� we can keep the �
stroke that lasts more in the text and use it to de�ne
longest matches between pattern and text when there are no more active �
strokes� This argument
continues for all the k errors� showing that in fact the complete text area that is relevant can be
covered with just k strokes� Figure �� �right� illustrates this idea�

The algorithm of �GP��� basically keeps this list of k relevant strokes� up to date all the time�
Each time a new e
stroke is produced� it is compared against the current relevant e
stroke� and if
the new one lasts more in the text than the old one� it replaces the old stroke� Since the algorithm
progresses in the text� old strokes are naturally eliminated with this procedure�

A last problem is how to use the indirect information given by the relevant strokes to compute
the longest matches between pattern and text� What we have is a set of longest matches covering
the text area of interest� plus the precomputed longest matches of the pattern against itself �starting
at any position�� We now know where the dashed line of Figure �� starts �say it is Pi� and Td�i��
and want to compute its length� To know where the longest match between pattern and text ends�

�Called �reference triples� in there	

�

we �nd the relevant stroke where the beginning of the dashed line falls� That stroke represents a
maximal match between Td�i��� and some Pj���� As we know by the preprocessing the longest match
between Pi��� and Pj���� we can derive the longest match between Pi��� and Td�i���� There are some
extra complications to take care of when both longest matches end at the same position or one has
length zero� but all them can be sorted out in O�k� time per diagonal of the L matrix�

Finally� Galil and Park show that the O�m�� extra space needed to store the matrix of longest
matches can be reduced to O�m� by using a su�x tree of the pattern �not the text as in previous
work� and LCA algorithms� so we add di�erent entries in Figure � �note that �LV��� had already
O�m� space�� Galil and Park also show how to add transpositions to the edit operations at the
same complexity� This technique can be extended to all these diagonal transition algorithms� We
believe that allowing di�erent integral costs for the operations or forbidding some of them can be
achieved with simple modi�cations of the algorithms�

Ukkonen and Wood ���� An idea similar to that of using the su�x tree of the pattern �and
similarly slow in practice� was independently discovered by Ukkonen and Wood in ���� �UW����
They use a su�x automaton �described in Section ��
� on the pattern to �nd the matching statistics�
instead of the table� As the algorithm progresses over the text� the su�x automaton keeps count of
the pattern substrings that match the text at any moment� Despite that they report O�m�� space
for the su�x automaton� it can take O�m� space�

Chang and Lawler ���� Also in ����� Chang and Lawler �CL��� repeated the idea that was
brie!y mentioned in �GP���� the matching statistics can be computed using the su�x tree of the
pattern and LCA algorithms� However� they used a newer and faster LCA algorithm �SV���� truly
O���� and reported the best time among algorithms with guaranteed O�kn� performance� However�
the algorithm is still not competitive in practice�

Cole and Hariharan ���� In ����� Cole and Hariharan �CH��� presented an algorithm with
worst case O�n��� kc
m��� where c � � if the pattern is �mostly aperiodic	 and c � � otherwise��
The idea is that� unless a pattern has a lot of self
repetition� only a few diagonals of a diagonal
transition algorithm need to be computed�

This algorithm can be thought of as a �lter �see next sections� with worst case guarantee useful
for very small k� It resembles some ideas of the �lters developed in �CL���� Probably other �lters
can be proved to have good worst cases under some periodicity assumptions on the pattern� but
this thread has not been explored up to now� This algorithm is an evolution over a previous one
�SV���� which is more complex and has a worse complexity� namely O�nk��	 log� n��� log ��� In any
case� the interest of this work is theoretical too�

��� Improving the Average Case

Ukkonen ���� The �rst improvement to the average case is due to Ukkonen in ����� The
algorithm� a short note at the end of �Ukk��b�� improved the dynamic programming algorithm

�The de
nition of �mostly aperiodic� is rather technical and related to the number of auto�repetition that occurs
in the pattern	 Most patterns are �mostly aperiodic�	

�

to O�kn� average time and and O�m� space� This algorithm has been called later the �cut
o�
heuristic	� The main idea is that� since a pattern does not normally match in the text� the values
at each column �from top to bottom� quickly reach k � � �i�e� mismatch�� and that if a cell has a
value larger than k� �� the result of the search does not depend on its exact value� A cell is called
active if its value is at most k� The algorithm simply keeps count of which is the last active cell
and avoids working on the rest of the cells�

To keep the last active cell� we must be able to recompute it for each new column� At each new
column� the last active cell can be incremented in at most one� so we check if we have activated
the next cell at O��� cost� However� it is also possible that which was the last active cell becomes
inactive now� In this case we have to search upwards which is the new last active cell� Despite
that we can work O�m� in a given column� we cannot work more than O�n� overall� because there
are at most n increments of this value in the whole process� and hence there are no more than n

decrements� Hence� the last active cell is maintained at O��� amortized cost per column�
Ukkonen conjectured that this algorithm was O�kn� on average� but this was proven only in

���
 by Chang and Lampe �CL�
�� The proof was re�ned in ���� by Baeza
Yates and Navarro
�BYN���� The result can probably be extended to more complex distance functions� although with
substrings the last active cell must exceed k by enough to ensure that it can never return to a value
smaller than k� In particular� it must have the value k �
 if transpositions are allowed�

Myers ���	 An algorithm in �Mye��a� is based on diagonal transitions as those of the previous
sections� but the strokes are simply computed by brute force� Myers showed that the resulting
algorithm was O�kn� on average� This is clear because the length of the strokes is �
����� � O���
on average� The same algorithm was proposed again in ���� by Galil and Park �GP���� Since only
the k strokes need to be stored� the space is O�k��

Chang and Lampe ���� In ���
� Chang and Lampe �CL�
� gave a new algorithm called �col

umn partitioning	� based on exploiting a di�erent property of the dynamic programming matrix�
They consider again the fact that� along each column� the numbers are normally increasing� They
work on �runs	 of consecutive increasing cells �a run ends when Ci�� 	� Ci � ��� They manage to
work O��� per run in the column actualization process�

To update each run in constant time� they precompute loc�j� x� � minj��j Pj� � x for all pattern
positions j and all characters x �hence it needs O�m�� space�� At each column of the matrix� they
consider the current text character x and the current row j� and know in constant time where the
run is going to end �i�e� next character match�� The run can end before� namely where the parallel
run of the previous column ends�

Based on empirical observations� they conjecture that the average length of the runs is O�
p
���

Notice that this matches our result that the average edit distance is m��� e

p
��� since this is the

number of increments along columns� and therefore there are O�m

p
�� non
increments �i�e� runs��

From there it is clear that each run has average length O�
p
��� Therefore� we have just proved

Chang and Lampe"s conjecture�
Since the paper uses the cut
o� heuristic of Ukkonen� their average search time is O�kn

p
���

This is� in practice� the fastest algorithm of this class�
Unlike the other algorithms of this section� it seems di�cult to adapt �CL�
� to other distance

�

functions� since the idea strongly relies on the unitary costs� It is mentioned that the algorithm
could run in average time O�kn log log�m�
�� but it would not be practical�

� Algorithms Based on Automata

This area is also rather old� It is interesting because it gives the best worst
case time algorithm
�O�n�� which matches the lower bound of the problem�� However� there is a time and space
exponential dependence on m and k that limits its practicality�

We �rst present the basic solution and then discuss the improvements� Figure �� shows the
historical map of this area�

�MP��

Four Russians technique

�Ukk�
b

De�nitionof DFA

min��m�m��m��k� states

Lazy automaton

�Kur	�� Nav	�b
�Mel	�

Improvedanalysis

�k���m�k�k���� states

replaces � bymin���m�

�WMM���

O�s� space

O�mn� log s� time

Figure ��� Taxonomy of algorithms based on deterministic automata�

	�� An Automaton for Approximate Search

An alternative and very useful way to consider the problem is to model the search with a non

deterministic automaton �NFA�� This automaton �in its deterministic form� was �rstly proposed in
�Ukk��b�� and �rstly used in non
deterministic form �although implicitly� in �WM�
a�� It is shown
explicitly in �BY��� BY��� BYN����

Consider the NFA for k �
 errors under edit distance shown in Figure ��� Every row denotes
the number of errors seen �the �rst row zero� the second row one� etc��� Every column represents
matching a pattern pre�x� Horizontal arrows represent matching a character �i�e� if the pattern
and text characters match� we advance in the pattern and in the text�� All the others increment
the number of errors �move to the next row�� vertical arrows insert a character in the pattern �we
advance in the text but not in the pattern�� solid diagonal arrows replace a character �we advance
in the text and pattern�� and dashed diagonal arrows delete a character of the pattern �they are
�
transitions� since we advance in the pattern without advancing in the text�� The initial self
loop
allows a match to start anywhere in the text� The automaton signals �the end of� a match whenever
a rightmost state is active� If we do not care about the number of errors of the occurrences� we can
consider �nal states those of the last full diagonal�

�

It is not hard to see that once a state in the automaton is active� all the states of the same
column and higher rows are active too� Moreover� at a given text character� if we collect the
smallest active rows at each column� we obtain the vertical vector of the dynamic programming
algorithm �in this case ��� ��
� �� �� ��
�� compare to Figure ���

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

s u

s

s u

u

v

v

v

r

r

r

e

e

no errors

2 errors

1 error

y

y

y

e

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure ��� An NFA for approximate string matching of the pattern �survey� with two errors� The
shaded states are those active after reading the text �surgery��

Other types of distances �Hamming� LCS and Episode� are obtained by deleting some arrows
of the automaton� Di�erent integer costs for the operations can also be modeled by changing the
arrows� For instance� if insertions cost
 instead of �� we make the vertical arrows to move from
rows i to rows i�
� Transpositions are modeled by adding an extra state Si�j between each pair
of states at position �i� j� and �i � �� j �
�� and arrows labeled Pi�� from state �i� j� to Sij and
Pi�� between Si�j and �i��� j�
� �Mel���� Adapting to general substring replacement needs more
complex setups but it is always possible�

This automaton can be simply made deterministic to obtain O�n� worst case search time�
However� as we see next� the main problem becomes the construction of the DFA �deterministic
�nite automaton�� An alternative solution is based on simulating the NFA instead of making it
deterministic�

	�� Implementing the Automaton

Ukkonen ���� In ����� Ukkonen proposed the idea of a deterministic automaton for this problem
�Ukk��b�� However� an automaton as that of Figure �� was not explicitly considered� Rather� each
possible set of values for the columns of the dynamic programming matrix was a state of the
automaton� Once the set of all possible columns and the transitions among them were built� the
text was scanned with the resulting automaton� performing exactly one transition per character
read�

The big problem with this scheme was that the automaton had a potentially huge number of
states� which had to be built and stored� To improve space usage� Ukkonen proved that all the
elements in the columns that were larger than k � � could be replaced by k � � without a�ecting

�

the output of the search �the lemma was used in the same paper to design the cut
o� heuristic
described in Section ����� This reduced the potential number of di�erent columns� He also showed
that adjacent cells in a column di�ered in at most one� Hence� the column states could be de�ned
as a vector of m incremental values in the set f��� �� �g�

All this made possible to obtain in �Ukk��b� a nontrivial bound to the number of states of
the automaton� namely O�min��m� m�
m��k��� This size� although much better than the obvious
O��k � ��m�� is still very large except for short patterns or very low error levels� The resulting
space complexity of the algorithm is m times the above value� This exponential space complexity
has to be added to the O�n� time complexity� as the preprocessing time to build the automaton�

As a �nal comment� Ukkonen suggested that the columns could be only partially computed up
to� say� �k

 entries� Since he conjectured �and later was proved in �CL�
�� that the columns of
interest were O�k� on average� this would normally not a�ect the algorithm� though it will reduce
the number of possible states� If at some point the states not computed were really needed� the
algorithm would compute them by dynamic programming�

Notice that to incorporate transpositions and substring replacements into this conception we
need to consider that each state is the set of the j last columns of the dynamic programmingmatrix�
where j is the longest left hand side of a rule� In this case it is better to build the automaton of
Figure �� explicitly and make it deterministic�

Wu
 Manber and Myers ���� It was not until ���
 that Wu� Manber and Myers looked again
into this problem �WMM���� The idea was to trade time for space using a Four Russians technique
�ADKF���� Since the cells could be expressed using only values in f��� �� �g� the columns were
partitioned into blocks of r cells �called �regions	� which took
r bits each� Instead of precomputing
the transitions from a whole column to the next� the transitions from a region to the next region
in the column were precomputed� although the current region could now depend on three previous
regions �see Figure ���� Since the regions were smaller than the columns� much less space was
necessary� The total amount of work was O�m
r� per column in the worst case� and O�k
r� on
average� The space requirement was exponential in r� By using O�n� extra space� the algorithm
was O�kn
 logn� on average and O�mn
 logn� in the worst case� Notice that this shares with
�MP��� the Four Russians approach� but there is an important di�erence� the states in this case
do not depend on the letters of the pattern and text� The states of the �automaton	 of �MP���� on
the other hand� depend on the text and pattern�

This Four Russians approach is so !exible that this work was extended to handle regular expres

sions allowing errors �WMM���� The technique for exact regular expression searching is to pack
portions of the deterministic automaton in bits and compute transition tables for each portion�
The few transitions among portions are left nondeterministic and simulated one by one� To allow
errors� each state is not anymore active or inactive� but they keep count of the minimum number
of errors that makes it active� in O�logk� bits�

Melichar ���� In ����� Melichar �Mel��� studied again the size of the deterministic automa

ton� By considering the properties of the NFA of Figure ��� he re�ned the bound of �Ukk��b� to
O�min��m� m�
mt�k� �k �
�m�k�k � ��#��� where t � min�m � �� ��� The space complexity and
preprocessing time of the automaton is t times the number of states� Melichar also conjectured

�

Figure ��� On the left� the automaton of �Ukk��b� where each column is a state� On the right� the
automaton of �WMM��� where each region is a state� Both compute the columns of the dynamic
programming matrix�

that this automaton is bigger when there are periodicities in the pattern� which matches with the
results of �CH��� �Section ��
�� in the sense that periodic patterns are more problematic� This is
in fact a property shared with other problems in string matching�

Kurtz ���	 In ����� Kurtz �Kur��� proposed another way to reduce the space requirements to
at most O�mn�� It is an adaptation of �BYG���� which �rst proposed it for the Hamming distance�
The idea was to build the automaton in lazy form� i�e� build only the states and transitions actually
reached in the processing of the text� The automaton starts as just one initial state and the states
and transitions are built as needed� By doing this� all those transitions that Ukkonen �Ukk��b�
considered that were not necessary were not built in fact� without need to guess� The price was the
extra overhead of a lazy construction versus a direct construction� but the idea pays o�� Kurtz also
proposed to have built only the initial part of the automaton �which should be the most commonly
traversed states� to save space�

Navarro studied in �Nav��b� Nav��� the growth of the complete and lazy automata as a function
of m� k and n �this last value for the lazy automaton only�� The empirical results show that the
lazy automaton grows with the text at a rate of O�n��� for � �
 � � dependent on �� m and k�
Some replacement policies designed to work with bounded memory are proposed in �Nav����

� Bit�Parallelism

These algorithms are based on exploiting the parallelism of the computer when it works on bits�
This is also a new �after ����� and very active area� The basic idea is to �parallelize	 another
algorithm using bits� The results are interesting from the practical point of view� and are especially
signi�cative when short patterns are involved �typical in text retrieval�� They may work e�ectively
for any error level�

In this section we �nd elements which strictly could belong to other sections� since we paral

lelize other algorithms� There are two main trends� parallelize the work of the non
deterministic
automaton that solves the problem �Figure ���� and parallelize the work of the dynamic program

�

ming matrix�
We �rst explain the technique and then the results achieved using it� Figure �� shows the

historical development of this area�

�BY�	

Birth of bit�parallelism

ParallelizedDP matrix

�Wri	�

O�mn log����w� time

Parallelize matrix

�WM	�a

Bit�parallelNFA
O�kdm�wen� time

�Mye	�

Optimal parall� DPmatrix
O�mn�w� worst�case
O�kn�w� on average

�BYN		

NFA parallelizedby diagonals

O�dkm�wen� worst�case
O�k�n�w� average

Parallelize automaton

Figure ��� Taxonomy of bit
parallel algorithms�

�� The Technique of Bit�Parallelism

This technique� of common use in string matching �BY��� BY�
�� was born in the PhD� Thesis of
Baeza
Yates �BY���� It consists in taking advantage of the intrinsic parallelism of the bit operations
inside a computer word� By using cleverly this fact� the number of operations that an algorithm
performs can be cut down by a factor of at most w� where w is the number of bits in the computer
word� Since in current architectures w is �
 or ��� the speedup is very signi�cative in practice
and improves with technological progress� In order to relate the behavior of bit
parallel algorithms
to other works� it is normally assumed that w � %�logn�� as dictated by the RAM model of
computation� We prefer� however� to keep w as an independent value� We introduce now some
notation we use for bit
parallel algorithms�

� The length of the computer word �in bits� is w�

� We denote as b����b� the bits of a mask of length �� This mask is stored somewhere
inside the computer word� Since the length w of the computer word is �xed� we are
hiding the details on where we store the � bits inside it�

� We use exponentiation to denote bit repetition �e�g� ��� � ������

�We use C
like syntax for operations on the bits of computer words� �j	 is the bitwise

or� �&	 is the bitwise
and� � b 	 is the bitwise
xor and ��	 complements all the bits�

��

The shift
left operation� ���	� moves the bits to the left and enters zeros from the
right� i�e� bmbm�����b�b� �� r � bm�r���b�b��r� The shift
right� ���	 moves the bits
in the other direction� Finally� we can perform arithmetic operations on the bits� such
as addition and subtraction� which operate the bits as if they formed a number� For
instance� b����bx������ � � b����bx������

We explain now the �rst bit
parallel algorithm� Shift
Or �BYG�
�� since it is the basis of much
of which follows� The algorithm searches a pattern in a text �without errors� by parallelizing the
operation of a non
deterministic �nite automaton that looks for the pattern� Figure �� illustrates
this automaton�

rs u v e y
60 1 2 3 4 5

Figure ��� Nondeterministic automaton that searches �survey� exactly�

This automaton has m�� states� and can be simulated in its non
deterministic form in O�mn�
time� The Shift
Or algorithm achieves O�mn
w� worst
case time �i�e� optimal speedup�� Notice
that if we convert the non
deterministic automaton to a deterministic one to have O�n� search
time� we get an improved version of the KMP algorithm �KMP���� However KMP is twice as slow
for m � w�

The algorithm �rst builds a table B which for each character c stores a bit mask B�c� � bm���b��
The mask in B�c� has the bit bi in one if and only if Pi � c� The state of the search is kept in a
machine word D � dm���d�� where di is one whenever P���i matches the end of the text read up to
now �i�e� the state numbered i in Figure �� is active�� Therefore� a match is reported whenever
dm � ��

D is set to �m originally� and for each new text character Tj � D is updated using the formula

D�
 ��D �� �� j ��m��� & B�Tj �

The formula is correct because the i
th bit is set if and only if the �i � ��
th bit was set for
the previous text character and the new text character matches the pattern at position i� In other
words� Tj�i����j � P���i if and only if Tj�i����j�� � P���i�� and Tj � Pi� It is possible to relate
this formula to the movement that occurs in the non
deterministic automaton for each new text
character� each state gets the value of the previous state� but this happens only if the text character
matches the corresponding arrow�

For patterns longer than the computer word �i�e� m � w�� the algorithm uses dm
we computer
words for the simulation �not all them are active all the time�� The algorithm is O�n� on average�

It is easy to extend Shift
Or to handle classes of characters� In this extension� each position
in the pattern matches with a set of characters rather than with a single character� The classical

�The real algorithm uses the bits with the inverse meaning and therefore the operation �j ��m��� is not necessary	
It also shifts in the other direction to ensure that a fresh zero
lls the hole left by the shift� which is more machine
dependent for the right shift	 We have preferred to explain this more didactic version	

��

string matching algorithms are not so easily extended� In Shift
Or� it is enough to set the i
th bit
of B�c� for every c � Pi �Pi is a set now�� For instance� to search for �survey� in case
insensitive
form� we just set to � the �rst bit of B��s�� and of B��S��� and the same with the rest� Shift
Or
can also search for multiple patterns �where the complexity is O�mn
w� if we consider that m is
the total length of all the patterns�� and it was later enhanced �WM�
a� to support a larger set of
extended patterns and even regular expressions�

Many online text algorithms can be seen as implementations of an automaton �classically� in its
deterministic form�� Bit
parallelism has since its invention became a general way to simulate simple
non
deterministic automata instead of converting them to deterministic� It has the advantage of
being much simpler� in many cases faster �since it makes better usage of the registers of the computer
word�� and easier to extend to handle complex patterns than its classical counterparts� Its main
disadvantage is the limitation it imposes with regard to the size of the computer word� In many
cases its adaptations to cope with longer patterns are not so e�cient�

�� Parallelizing Non�deterministic Automata

Wu and Manber ���� In ���
� Wu and Manber �WM�
a� published a number of ideas that
had a great impact in the future of practical text searching� They �rst extended the Shift
Or
algorithm to handle wild cards �i�e� allow an arbitrary number of characters between two given
positions in the pattern�� and regular expressions �the most !exible pattern that can be e�ciently
searched�� What is of more interest to us is that they presented a simple scheme to combine any
of the preceding extensions with approximate string matching�

The idea is to simulate the NFA of Figure �� using bit
parallelism� so that each row i of the
automaton �ts in a computer word Ri �each state is represented by a bit�� For each new text
character� all the transitions of the automaton are simulated using bit operations among the k� �
computer words� Notice that all the k � � computer words have the same structure �i�e� the same
bit is aligned to the same text position�� The update formula to obtain the new R�

i values at text
position j from the current Ri values is

R�
� � ��R� �� �� j ��m��� & B�Tj �

R�
i�� � ��Ri�� �� �� & B�Tj �� j Ri j �Ri �� �� j �R�

i �� ��

and we start the search with Ri � �i�m�i� As expected� R� undergoes a simple Shift
Or process�
while the other rows receive ones �i�e� active states� from previous rows as well� In the formula for
R�
i�� are expressed� in that order� horizontal� vertical� diagonal and dashed diagonal arrows�
The cost of this simulation is O�kdm
wen� in the worst and average case� which is O�kn� for

patterns typical in text searching �i�e� m � w�� This is a perfect speedup over the serial simulation
of the automaton� which would costO�mkn� time� Notice that for short patterns� this is competitive
to the best worst
case algorithms�

Thanks to the simplicity of the construction� the rows of the pattern can be changed by a
di�erent automaton� As long as one is able to solve a problem for exact string matching� one makes
k�� copies of the resulting computer word� performs the same operations in the k�� words �plus
the arrows that connect the words� and one has an algorithm to �nd the same pattern allowing
errors� Hence� they are able to perform approximate string matching with sets of characters� wild

�

cards� and regular expressions� They also allow some extensions unique of approximate searching�
a part of the pattern can be searched with errors and another may be forced to match exactly� and
di�erent integer costs of the edit operations can be accommodated �including not allowing some of
them�� Finally� they are able to search a set of patterns at the same time� but this capability is
very limited �since all the patterns must �t in a computer word��

The great !exibility obtained encouraged the authors to build a software calledAgrep �WM�
b���
where all these capabilities are implemented �although some particular cases are solved in a di�erent
manner�� This software has been taken as a reference in all the subsequent research�

Baeza�Yates and Navarro ���	 In ����� Baeza
Yates and Navarro presented a new bit
parallel
algorithm able to parallelize the computation of the automaton even more �BYN���� The classi

cal dynamic programming algorithm can be thought of as a column
wise �parallelization	 of the
automaton �BY���� and Wu and Manber �WM�
a� proposed a row
wise parallelization� Neither
algorithm was able to increase the parallelism �even if all the NFA states �t in a computer word�
because of the �
transitions of the automaton� which caused what we call zero�time dependencies�
That is� the current values of two rows or two columns depend on each other� and hence cannot be
computed in parallel�

In �BYN��� the bit
parallel formula for a diagonal parallelization was found� They packed the
states of the automaton along diagonals instead of rows or columns� which run in the same direction
of the diagonal arrows �notice that this is totally di�erent from the diagonals of the dynamic
programming matrix�� This idea had been mentioned much earlier by Baeza
Yates �BY��� but no
bit
parallel formula was found� There are m � k � � complete diagonals �the others are not really
necessary� which are numbered from � to m�k� The number Di is the row of the �rst active state
in diagonal i �all the subsequent states in the diagonal are active because of the �
transitions�� The
new D�

i values after reading text position j are computed as

D�
i � min� Di � �� Di�� � �� g�Di��� Tj� �

where the �rst term represents the insertions� the second term the replacements and the last term
the matches �deletions are implicit since we represent only the lowest active state of each diagonal��
The main problem is how to compute the function g� de�ned as

g�Di� Tj� � min� fk � �g � f r
 r � Di � Pi�r � Tj g �
Notice that an active state that crosses a horizontal edge has to propagate all the way down

by the diagonal� This was �nally solved in ���� �BYN��� Nav��� by representing the Di values
in unary and using arithmetic operations on the bits� which have the desired propagation e�ects�
The formula can be understood either numerically �operating the Di"s� or logically �simulating the
arrows of the automaton��

The resulting algorithm is O�n� worst case time and very fast in practice if all the bits of the
automaton �t in the computer word �while �WM�
a� keeps O�kn��� In general� it is O�dk�m �
k�
wen� worst case time� and O�dk�
wen� on average since the Ukkonen cut
o� heuristic is used
�see Section ����� The scheme can handle classes of characters� wild cards and di�erent integral
costs in the edit operations�

�Available at ftp�cs�arizona�edu	

��

�� Parallelizing the Dynamic Programming Matrix

Wright ���� In ����� Wright �Wri��� presented the �rst work using bit
parallelism on the dy

namic programming matrix� The idea was to consider secondary diagonals �i�e� those that run
from the upper
right to the bottom
left� of the matrix� The main observation is that the elements
of the matrix follow the recurrence�

Ci�j � Ci���j�� if Pi � Tj or Ci���j � Ci���j�� � � or Ci�j�� � Ci���j�� � �
Ci���j�� � � otherwise

which shows that the new secondary diagonal can be computed using the two previous ones� The
algorithm stores the di�erences between Ci�j and Ci���j�� and represents the recurrence using
modulo � arithmetic� The algorithm packs many pattern and text characters in a computer word
and performs in parallel a number of pattern versus text comparisons� then using the vector of the
results of the comparisons to update many cells of the diagonal in parallel� Since it has to store
characters of the alphabet in the bits� the algorithm is O�nm log���
w� in the worst and average
case� This was competitive at that time for very small alphabets �e�g� DNA�� As the author
recognizes� it seems quite di�cult to adapt this algorithm for other distance functions�

Myers ���� In ����� Myers �Mye��� found a better way to parallelize the computation of
the dynamic programming matrix� He represented the di�erences along columns instead of the
columns themselves� so that two bits per cell were enough �in fact this algorithm can be seen as
the bit
parallel implementation of the automaton which is made deterministic in �WMM���� see
Section ��
�� A new recurrence is found where the cells of the dynamic programmingmatrix are ex

pressed using horizontal and vertical di�erences� i�e� 'vi�j � Ci�j�Ci���j and 'hi�j � Ci�j�Ci�j���

'vi�j � min��Eqi�j �'vi�j���'hi���j� � ���'hi���j�
'hi�j � min��Eqi�j �'vi�j���'hi���j� � ���'vi�j���

where Eqi�j is � if Pi � Tj and zero otherwise� The idea is to keep packed binary vectors representing
the current �i�e� j
th� values of the di�erences� and �nding the way to update the vectors in a single
operation� Each cell Ci�j is seen as a small processor that receives inputs 'vi�j��� 'hi���j and Eqi�j
and produces outputs 'vi�j and 'hi�j � There are ����
 � �� possible inputs and a simple formula
is found to express the cell logic �unlike �Wri���� the approach is logical rather than arithmetical��
The hard part is to parallelize the work along the column� because of the zero
time dependency
problem� The author �nds a solution which� despite that a very di�erent model is used� is very
similar to that of �BYN����

The result is an algorithm that uses better the bits of the computer word� with a worst case
of O�dm
wen� and an average case of O�dk
wen� since it uses the Ukkonen cut
o� �Section �����
The update formula is a little more complex than that of �BYN��� and hence the algorithm is a bit
slower� but it adapts better to longer patterns because less computer words are needed�

As it is di�cult to improve over O�kn� algorithms� this algorithm may be the last word with
respect to asymptotic e�ciency of parallelization� except for the possibility to parallelize an O�kn�

�The original one in �Wri��� has errors	

��

worst case algorithm� As it is now common to expect in bit
parallel algorithms� this scheme is
able to search some extended patterns as well� but it seems di�cult to adapt it to other distance
functions�

	 Filtering Algorithms

Our last category is quite young� starting in ���� and still very active� It is formed by algorithms
that �lter the text� quickly discarding text areas which cannot match� Filtering algorithms address
only the average case� and their major interest is the potential for algorithms that do not inspect
all text characters� The major theoretical achievement is an algorithm with average cost O�n�k �
log�m�
m�� which has been proven optimal� In practice� �ltering algorithms are the fastest too�
All of them� however� are limited in their applicability by the error level 	� Moreover� they need a
non
�lter algorithm to check the potential matches�

We �rst explain the general concept and then consider the developments that have occurred in
this area� See Figure ���

��� The Concept of Filtering

Filtering is based on the fact that it may be much easier to tell that a text position does not match
than to tell that it matches� For instance� if neither �sur� nor �vey� appear in a text area� then
�survey� cannot be found there with one error under the edit distance� This is because a single
edit operation cannot alter both halves of the pattern�

Most �ltering algorithms take advantage of this fact by searching pieces of the pattern without
errors� Since the exact searching algorithms can be much faster than approximate searching ones�
�ltering algorithms can be very competitive �in fact� they dominate on a large range of parameters��

It is important to notice that a �ltering algorithm is normally unable to discover the matching
text positions by itself� Rather� it is used to discard �hopefully large� areas of the text which cannot
contain a match� For instance� in our example� it is necessary that either �sur� or �vey� appears
in an approximate occurrence� but it is not su�cient� Any �ltering algorithmmust be coupled with
a process that veri�es all those text positions that could not be discarded by the �lter�

Virtually any non
�ltering algorithm can be used for this veri�cation� and in many cases the
developers of a �ltering algorithm do not care in looking for the best veri�cation algorithm� but
they just use the dynamic programming algorithm� That selection is normally independent� but the
veri�cation algorithm must behave well on short texts because it can be started at many di�erent
text positions to work on small text areas� By careful programming it is almost always possible to
keep the worst
case behavior of the verifying algorithm �i�e� avoid verifying overlapping areas��

Finally� the performance of �ltering algorithms is very sensitive to the error level 	� Most �lters
work very well on low error levels and very bad otherwise� This is related to the amount of text
that the �lter is able to discard� When evaluating �ltering algorithms� it is important not only
to consider their time e�ciency but also their tolerance to errors� One possible measure for this
�ltration e�ciency is the total amount of matches found divided by the total amount of potential
matches pointed out by the �ltration algorithm �Sut����

A term normally used when referring to �lters is �sublinearity	� It is said that a �lter is sublinear
when it does not inspect all the characters of the text �like the Boyer
Moore �BM��� algorithms

��

�GKHO	�

Dynamic �ltering

Moderate patterns Long patterns

�CL	�� Ukk	�
 �CL	�

SET

�NBY	�a

Hierarchical verif�

for �	��e�p�

n
p

mk��w time

Superimposition

�BYN		

n
p

mk��w time

Horspool�like�lter

�TU	�

for �	e�	�k
����

�NR	�b

Su�x automata

for �	
��e�p�
��e�p�

n�
�
�� log�	m��m

	�������� �

�NBY		c

for �	�� log�m

Hierarchical verif�

�WM	�a� BYP	�� BYN		

Partition in k�� pieces

for �	���� log�m�

�Ukk	�

Generaliz� to q�grams

�CM	�

Opt� algor� � lower bound

for �	��e�p�

LET

n for �	O����log�m��

for �	�� log�m�O���

�Tak	�

Text h�samples

for �	O��� log�m�

�n log��m� time n�k�log�m��m� time

�ST	

Many h�samples

for �	O��� log�m�
�n log��m� time

e	�k
����kn time

�JTU	�� Nav	�a

Counting �lter

n time for �	e�m��
n time �n log��m� time

kn log��m��� timePart� into less errors

�BYN		
 ��		��

n
p

mk�w time

for �	��em
�p
w �

p
�

for �	��em
�p
w �

p
�

kn log��m��� time

for �	O��� log�m�
�n log��m� time
k�s pieces

�Shi	�

Figure ��� Taxonomy of �ltering algorithms� Complexities are all on average�

for exact searching� which can be at best O�n
m��� However� no online algorithm can be truly
sublinear� i�e� o�n�� if m is independent of n� This is only achievable with indexing algorithms�

We divide this area in two parts� moderate and very long patterns� The algorithms for the two
areas are normally di�erent� since more complex �lters are worthwhile only for longer patterns�

��� Moderate Patterns

Tarhio and Ukkonen ���� Tarhio and Ukkonen �TU���� launched this area in ����� publishing
an algorithm that used Boyer
Moore
Horspool techniques �BM��� Hor��� to �lter the text� The
idea is to align the pattern with a text window and scan the text backwards� The scanning ends
where more than k �bad	 text characters are found� A �bad	 character is one that not only does
not match the pattern position it is aligned with� but it also does not match any pattern character

�See also �JTU���� which has a correction to the algorithm	

��

at a distance of k characters or less� More formally� assume that the window starts at text position
j � �� and therefore Tj�i is aligned with Pi� Then Tj�i is bad when Bad�i� Tj�i�� where Bad�i� c�
has been precomputed as c 	� fPi�k� Pi�k��� ���� Pi� ���Pi�kg�

The idea of the bad characters is that we know for sure that we have to make an error to match
them� i�e� they will not match as a byproduct of inserting or deleting other characters� When more
than k characters that are errors for sure are found� the current text window can be abandoned and
shifted forward� If� on the other hand� the beginning of the window is reached� the area Tj���k��j�m
must be checked with a classical algorithm�

To know how much can we shift the window� the authors show that there is no point in shifting P
to a new position j� where none of the k�� text characters that are at the end of the current window
�Tj�m�k � ���Tj�m� match the corresponding character of P � i�e� where Tj�m�r 	� Pm�r��j��j�� If
those di�erences are �xed with replacements we make k � � errors� and if they can be �xed with
less than k � � operations� then it is because we aligned some of the involved pattern and text
characters using insertions and deletions� In this case� we would have obtained the same e�ect
aligning the matching characters from start�

So for each pattern position i � fm� k��mg and each text character a that could be aligned to
position i �i�e� for all a � �� the shift to align a in the pattern is precomputed� i�e� Shift�i� a� �
mins
�fPi�s � ag �or m if no such s exists�� Later� the shift for the window is computed as
mini�m�k��m Shift�i� Tj�i�� This last minimum is computed together with the backward window
traversal�

The analysis in �TU��� shows that the search time is O�kn�k
� � �
�m � k���� without con

sidering veri�cations� In the Appendix we show that the amount of veri�cation is negligible for
	 � e���k������ The analysis is valid for m �� � � k� so we can simplify the search time to
O�k�n
��� The algorithm is competitive in practice for low error levels� Interestingly� the version
k � � corresponds exactly to Horspool algorithm �Hor���� Like Horspool� it does not take proper
advantage of very long patterns� The algorithm can probably be adapted to other simple distance
functions if we de�ne k as the minimum number of errors needed to reject a string�

Jokinen
 Tarhio and Ukkonen ���� In ����� Jokinen� Tarhio and Ukkonen �JTU��� adapted
a previous �lter for the k
mismatches problem �GL���� The �lter is based on the simple fact that
inside any match with at most k errors there must be at leastm�k letters belonging to the pattern�
The �lter does not care about the order of those letters� This is a simple version of �CL��� �see
Section ����� with less �ltering e�ciency but simpler implementation�

The search algorithm slides a window of length m over the text	 and keeps count of the number
of window characters that belong to the pattern� This is easily done with a table that for each
character a stores a counter of a"s in the pattern that have not yet been seen in the text window� The
counter is incremented when an a enters the window and decremented when it leaves the window�
Each time a positive counter is decremented� the window character is considered as belonging to
the pattern� When there are m� k such characters� the area is veri�ed with a classical algorithm�

The algorithm was analyzed by Navarro in ���� �Nav��a� using a model of urns and balls� He
shows that the algorithm is O�n� time for 	 � e�m�� � Some possible extensions are studied in
�Nav����

�The original version used a variable size window	 This simpli
cation is from �Nav��a�	

��

The resulting algorithm is competitive in practice for short patterns� but it worsens for long
ones� It is simple to adapt to other distance functions� just by determining how many characters
must match in an approximate occurrence�

Wu and Manber ���� In ���
� a very simple �lter was proposed by Wu and Manber �WM�
a�
�among many other ideas of that work�� The basic idea is in fact very old �Riv���� if a pattern is cut
in k�� pieces� then at least one of the pieces must appear unchanged in an approximate occurrence�
This is evident� since k errors cannot alter the k � � pieces� The proposal was then to split the
pattern in k � � approximately equal length pieces� search the pieces in the text� and check the
neighborhood of their matches �of length m�
k�� They used an extension of Shift
Or �BYG�
� to
search all the pieces simultaneously in O�mn
w� time� In the same ���
� Baeza
Yates and Perleberg
�BYP��� suggested better algorithms for the multipattern search� an Aho
Corasick machine �AC���
to guarantee O�n� search time �excluding veri�cations�� or Commentz
Walter �CW����

Only in ���� the improvement was really implemented �BYN���� by adapting the Boyer
Moore

Sunday algorithm �Sun��� to multipattern search �using a trie of patterns and a pessimistic shift
table�� The resulting algorithm is surprisingly fast in practice for low error levels�

There is no closed expression for the average case cost of this algorithm �BYR���� but we
show in the Appendix that a gross approximation is O�kn log��m�
��� Two independent proofs in
�BYN��� BYP��� show that the cost of the search dominates for 	 � �
�� log�m�� A simple way to
see it is to consider that checking a text area costs O�m�� and is done when any of the k�� pieces
of length m
�k��� matches� which happens with probability near k
����� The result follows from
requiring the average veri�cation cost to be O����

This �lter can be adapted� with some care� to other distance functions� The main issue is to
determine how many pieces can an edit operation destroy and how many edit operations can be
made before surpassing the error threshold� For example� a transposition can destroy two pieces in
one operation� so we would need to split the pattern in
k�� pieces to ensure that one is unaltered�
A more clever solution for this case is to leave a hole of one character between each pair of pieces�
so the transposition cannot alter both�

Baeza�Yates and Navarro ���	 The bit
parallel algorithms presented in Section � �BYN���
were also the basis for novel �ltering techniques� As the basic algorithm is limited to short patterns�
they split longer patterns in j parts� making them short enough to be searchable with the basic
bit
parallel automaton �using one computer word��

The method is based on a more general version of the partition into k � � pieces �Mye��a�
BYN���� For any j� if we cut the pattern in j pieces� then at least one of them appears with bk
jc
errors in any occurrence of the pattern� This is clear because if each piece needs more than k
j

errors to match� then the complete match needs more than k errors�
Hence� the pattern was split in j pieces �of length m
j� which were searched with k
j errors

using the basic algorithm� Each time a piece was found� the neighborhood was veri�ed to check for
the complete pattern� Notice that the error level 	 for the pieces is kept unchanged�

The resulting algorithm is O�n
p
mk
w� on average� Its maximum	 value is ��emO���

p
w�

p
��

smaller than � � e

p
� and worsening as m grows� This may be surprising since the error level

	 is the same for the subproblems� The reason is that the veri�cation cost keeps O�m�� but the

��

matching probability is O��m�j�� larger than O��m� �see Section ���
In ����� the technique was enriched with �superimposition	 �BYN���� The idea is to avoid

performing one separate search for each piece of the pattern� A multipattern approximate searching
is designed using the ability of bit
parallelism to search for classes of characters� Assume that we
want to search �survey� and �secret�� We search the pattern �s�ue��rc��vr�e�yt��� where
�ab� means fa� bg� In the NFA of Figure ��� the horizontal arrows are traversable by more than
one letter� Clearly any match of each of the two patterns is also a match of the superimposed
pattern� but not vice
versa �e�g� �servet� matches with zero errors�� So the �lter is weakened
but the search is made faster� Superimposition allowed to lower the average search time to O�n�
for 	 � �� emO���

p
w�
p
m
�

p
w and to O�n

p
mk
��w�� for the maximum 	 of the ���� version�

By using a j value smaller than the necessary to put the automata in single machine words� an
intermediate scheme was obtained that softly adapted to higher error levels� The algorithm was
O�kn log�m�
w� for 	 � �� e

p
��

Navarro and Baeza�Yates ���� The �nal twist to the previous scheme was the introduction of
�hierarchical veri�cation	 in ���� �NBY��a�� For simplicity assume that the pattern is partitioned
in j �
r pieces� although the technique is general� The pattern is split in two halves� each one to
be searched with bk

c errors� Each half is recursively split in two and so on� until the pattern is
short enough to make its NFA �t in a computer word �see Figure
��� The leaves of this tree are
the pieces actually searched� When a leaf �nds a match� instead of checking the whole pattern as
in the previous technique� its parent is checked �in a small area around the piece that matched��
If the parent is not found� the veri�cation stops� otherwise it continues with the grandparent until
the root �i�e� the whole pattern� is found� This is correct because the partitioning scheme applies
to each level of the tree� the grandparent cannot appear if none of its children appear� even if a
grandchild appeared�

Figure
� shows an example� If one searches the pattern �aaabbbcccddd� with four errors in
the text �xxxbbxxxxxxx�� and split the pattern in four pieces to be searched with one error� the
piece �bbb� will be found in the text� In the original approach� one would verify the complete
pattern in the text area� while with the new approach one veri�es only its parent �aaabbb� and
immediately determine that there cannot be a complete match�

An orthogonal hierarchical veri�cation technique is also presented in �NBY��a� to include su

perimposition in this scheme� If the superimposition of � patterns matches� the set is split in two
sets of two patterns each� and it is checked whether some of them match instead of verifying all
the � patterns one by one�

The analysis in �Nav��� NBY��a� shows that the average veri�cation cost drops to O��m
j����
Only now the problem scales well �i�e� O��m�j� veri�cation probability and O��m
j��� veri�cation
cost�� With hierarchical veri�cation� the veri�cation cost keeps negligible for 	 � � � e

p
�� All

the simple extensions of bit
parallel algorithms apply� although the partition into j pieces may
need some redesign for other distances� Notice that it is very di�cult to break the barrier of
	� � �� e

p
� for any �lter because� as shown in Section �� there are too many real matches� and

even the best �lters must check real matches�
In the same ����� the same authors �NBY��c� Nav��� added hierarchical veri�cation to the �lter

that splits the pattern in k� � pieces and searches them with zero errors� The analysis shows that

��

aaabbbcccddd

aaabbb cccddd

ccc dddbbbaaa

Figure
�� The hierarchical veri�cation method for a pattern split in � parts� The boxes �leaves�
are the elements which are really searched� and the root represents the whole pattern� At least
one pattern at each level must match in any occurrence of the complete pattern� If the bold box is
found� all the bold lines may be veri�ed�

with this technique the veri�cation cost does not dominate the search time for 	 � �
 log�m� The
resulting �lter is the fastest for most cases of interest�

Navarro and Ra
not ���� In ���� Navarro and Ra�not �NR��b� Nav��� presented a novel
approach based on su�x automata �see Section ��
�� They adapted an exact string matching
algorithm� BDM� to allow errors�

The idea of the original BDM algorithm is as follows �CCG���� CR���� The deterministic
su�x automaton of the reverse pattern is built� so it recognizes the reverse pre�xes of the pattern�
Then the pattern is aligned with a text window� and the window is scanned backwards with the
automaton �this is why the pattern is reversed�� The automaton is active as long as what it has
read is a substring of the pattern� Each time the automaton reaches a �nal state� it has seen a
pattern pre�x� so we remember the last time it happened� If the automaton arrives with active
states to the beginning of the window then the pattern has been found� otherwise what is there is
not a substring of the pattern and hence the pattern cannot be in the window� In any case the last
window position that matched a pattern pre�x gives the next initial window position� The algorithm
BNDM �NR��a� is a bit
parallel implementation �using the nondeterministic su�x automaton� see
Figure �� which is much faster in practice and allows searching for classes of characters� etc�

The modi�cation of �NR��b� Nav��� is to build a NFA to search the reversed pattern allowing
errors� modify it to match any pattern su�x� and apply essentially the same algorithm BNDM
using this automaton� Figure
� shows the resulting automaton�

This automaton recognizes any reverse pre�x of P allowing k errors� The window will be
abandoned when no pattern substring matches with k errors what was read� The window is shifted
to the next pattern pre�x found with k errors� The matches must start exactly at the initial window
position� The window length is m� k� not m� to ensure that if there is an occurrence starting at
the window position then a substring of the pattern occurs in any su�x of the window �so we do
not abandon the window before reaching the occurrence�� Reaching the beginning of the window
does not guarantee a match� however� so we have to check the area by computing edit distance
from the beginning of the window �at most m� k text characters��

In the Appendix it is shown that the average complexity�� is O�n�	 � 	� log��m�
m�
����
	�	� � 	�� and the �lter works well for 	 � �� � e

p
��
�
 � e

p
��� which for large alphabets

�
The original analysis of �Nav��� is inaccurate	

��

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

εεεεεε

εεεεεε

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

ε ε ε ε ε εε

y e

y

y e

e

r

r

r

v

v

v

u

u

no errors

2 errors

1 error

s

s

s

u

Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ

Figure
�� The construction to search any reverse pre�x of �survey� allowing
 errors�

tends to �

� The result is competitive for low error levels� but the pattern cannot be very long
because of the bit
parallel implementation� Notice that trying to do this with the deterministic
BDM would have generated a very complex construction� while the algorithm is simple with the
nondeterministic automaton� Moreover� a deterministic automaton would have too many states�
just as in Section ��
� All the simple extensions of bit
parallelism apply� provided the window
length m� k is carefully reconsidered�

��� Very Long Patterns

Chang and Lawler ���� In ����� Chang and Lawler �CL��� presented two algorithms �better
analyzed in �GKHO����� A �rst one� called LET �for �linear expected time	�� works as follows� the
text is traversed linearly� and at each time the longest pattern substring that matches the text is
maintained� When the substring cannot be further extended� it starts again from the current text
position� Figure

 illustrates�

P P

TT

SETLET

Figure

� Algorithms LET and SET� LET covers all the text with pattern substrings� while SET
works only at block beginnings and stop when it �nds k di�erences�

The crucial observation is that� if less than m�k text characters have been covered by concate

��

nating k longest substrings� then the text area does not match the pattern� This is evident since a
match is formed by k � � correct strokes �recall Section ��
� separated by k errors� Moreover� the
strokes need to be ordered� which is not required by the �lter�

The algorithm uses a su�x tree on the pattern to determine in a linear pass the longest pattern
substring matching the text seen up to now� Notice that the article is from ����� the same year when
Ukkonen and Wood did the same with a su�x automaton �UW��� �see Section ��
�� Therefore� the
�ltering is O�n� time� The authors use �LV��� as the verifying algorithm and therefore the worst
case is O�kn�� The authors show that the �ltering time dominates for 	 � �
 log�m� O���� The
constants are involved� but practical �gures are 	 � ���� for � � �� or 	 � ���� for � � ��

The second algorithm presented was called SET �for �sublinear expected time	�� The idea is
similar to LET� except because the text is split in �xed blocks of size �m� k�

� and the check for
k contiguous strokes starts only at block boundaries� Since the shortest match is of length m� k�
at least one of these blocks is always contained completely in a match� If one is able to discard the
block� no occurrence can contain it� This is also illustrated in Figure

�

The sublinearity is clear once it is proven that in O�k log�m� comparisons a block is discarded
on average� Since
n
�m�k� blocks are considered� the average time is O�	n log��m�
���	��� The
maximum 	 level keeps the same as in LET� so the complexity can be simpli�ed to O�	n log�m��
Although the proof that limits the comparisons per block is quite involved� it is not hard to see
intuitively why it is true� the probability of �nding in the pattern a stroke of length � is limited by
m
��� and the detailed proof shows that � � log�m is on average the longest stroke found� This
contrast with the result of �Mye��a� �Section ����� that shows that k strokes add up O�k� length�
The di�erence is that here we can take the strokes from anywhere in the pattern�

Both LET and SET are e�ective for very long patterns only� since their overhead does not pay
o� on short patterns� Di�erent distance functions can be accommodated after re
reasoning the
adequate k values�

Ukkonen ���� In ���
� Ukkonen �Ukk�
� independently rediscovered some of the ideas of Chang
and Lampe� He presented two �ltering algorithms� one of which �based on what he called �maximal
matches	� is similar to LET of �CL��� �in fact Ukkonen presents it as a new �block distance	
computable in linear time and shows that it serves as a �lter for the edit distance�� The other
�lter is the �rst reference to �q
grams	 for online searching �there are much older ones in indexed
searching �Ull�����

A q
gram is a substring of length q� A �lter was proposed based on counting the number of
q
grams shared between the pattern and a text window �this is presented in terms of a new �q
gram
distance	 which may be of interest by its own�� A pattern of length m has �m� q��� overlapping
q
grams� Each error can alter q q
grams of the pattern� and therefore �m � q � � � kq� pattern
q
grams must appear in any occurrence� Figure
� illustrates�

Notice that this is a generalization of the counting �lter of �JTU��� �Section ��
�� which would
correspond to q � �� The search algorithm is similar as well� although of course keeping a table
with a counter for each of the �q q
grams is impractical �especially because only m� q�� of them
are present�� Ukkonen uses a su�x tree to keep count in linear time of the last q
gram seen �the
relevant information can be attached to the m � q � � important nodes at depth q in the su�x
tree��

�

text window text samples

[Ukk92] [ST95]

TT

q-grams

P

q-grams

P

Figure
�� Q
gram algorithm� The left one �Ukk�
� counts the number of pattern q
grams in a text
window� The right one �ST��� �nds sequences of pattern q
grams in approximately the same text
positions �we have put in bold a text sample and the possible q
grams to match it��

The �lter takes therefore linear time� There is no analysis to show which is the maximum error
level tolerated by the �lter� so we attempt a gross analysis in the Appendix� valid for large m�
The result is that the �lter works well for 	 � O��
 log�m�� and that the optimal q to obtain it is
q � log�m� The search algorithm is more complicated than that of �JTU���� Therefore� using larger
q values only pays o� for larger patterns� Di�erent distance functions are easily accommodated by
recomputing the number of q
grams that must be preserved in any occurrence�

Takaoka ���� In ����� Takaoka �Tak��� presented a simpli�cation of �CL���� He considered
h
samples of the text �which are non
overlapping q
grams of the text taken each h characters� for
h � q�� The idea was that if one h
sample was found in the pattern� then a neighborhood of the
area was veri�ed�

By using h � b�m� k� q� ��
�k� ��c one cannot miss a match� The easiest way to see this is
to start with k � �� Clearly we need h � m� q � � to not loose any matches� For larger k� recall
that if the pattern is split in k � � pieces some of them must appear with no errors� The �lter
divides h by k � � to ensure that any occurrence of those pieces will be found �we are assuming
q � m
�k � ����

Using a su�x tree of the pattern the h
sample can be found in O�q� time� and therefore the
�ltering time is O�qn
h�� which is O�	n log��m�
��� 	�� if the optimal q � log�m is used� The
error level is again 	 � O��
 log�m�� which makes the time O�	n log�m��

Chang and Marr ���� It looks like O�	n log�m� is the best complexity achievable by using
�lters� and that it will work only for 	 � O��
 log�m�� but in ���� Chang and Marr obtained an
algorithm which was

O

�
k � log�m

m
n

�
for 	 � ��� where �� depends only on � and it tends to �� e

p
� for very large �� At the same

time� they proved that this was a lower bound for the average complexity of the problem �and
therefore their algorithm was optimal on average�� This is a major theoretical breakthrough�

��

The lower bound is obtained by taking the maximum �or sum� of two simple facts� the �rst
one is the O�n log��m�
m� bound of �Yao��� for exact string matching� and the second one is the
obvious fact that in order to discard a block of m text characters� at least k characters should
be examined to �nd the k errors �and hence O�kn
m� is a lower bound�� Also� the maximum
error level is optimal according to Section �� What is impressive is that an algorithm with such
complexity was found�

The algorithm is a variation of SET �CL���� It is of polynomial space in m� i�e� O�mt� space
for some constant t which depends on �� It is based on splitting the text in contiguous substrings
of length � � t log�m� Instead of �nding in the pattern the longest exact matches starting at the
beginning of blocks of size �m � k�

� it searches the text substrings of length � in the pattern
allowing errors�

The algorithm proceeds as follows� The best matches allowing errors inside P are precomputed
for every �
tuple �hence the O�mt� space�� Starting at the beginning of the block� it searches
consecutive �
tuples in the pattern �each in O��� time�� until the total number of errors made
exceeds k� If by that time it has not yet covered m � k text characters� the block can be safely
skipped�

The reason why this works is a simple extension of that for SET� We have found an area
contained in the possible occurrence which cannot be covered with k errors �even allowing the use
of unordered portions of the pattern for the match�� The algorithm is only practical for very long
patterns� and can be extended for other distances with the same ideas of the other �ltration and
q
gram methods�

It is interesting to notice that 	 � �� e

p
� is the limit we have discussed in Section �� which

is a �rm barrier for any �ltering mechanism� Chang and Lawler proved an asymptotic result� while
a general bound is proved in �BYN���� The �lters of �CM��� NBY��a� reduce the problem to less
errors instead of to zero errors� An interesting observation is that it seems that all the �lters that
partition the problem into exact search can be applied for 	 � O��
 log�m�� and that in order
to improve this to �� e

p
� we must partition the problem into �smaller� approximate searching

subproblems�

Sutinen and Tarhio ���� Sutinen and Tarhio generalized the Takaoka �lter in ���� �ST����
improving its �ltering e�ciency� This is the �rst �lter that takes into account the relative positions
of the pattern pieces that match in the text �all the previous matched pieces of the pattern in any
order�� The generalization is to force that s q
grams of the pattern match �not just one�� The
pieces must conserve their relative ordering in the pattern and must not be more than k characters
away from their correct position �otherwise we need to make more than k errors to use them�� This
method is also illustrated in Figure
��

In this case� the sampling step is reduced to h � b�m � k � q � ��
�k � s�c� The reason for
this reduction is that� to ensure that s pieces of the pattern match� we need to cut the pattern
in k � s pieces� To search the pieces forcing that they are not too far away from their correct
positions� the pattern is divided in k � s pieces and a hashed set is created for each piece� The
set contains the q
grams of the piece and some neighboring ones too �because the sample can be
slightly misaligned�� At search time� instead of a single h
sample� they consider text windows of
contiguous sequences of k�s h
samples� Each of these h
samples are searched in the corresponding

��

set� and if at least s are found the area is veri�ed� This is a sort of Hamming distance� and the
authors resort to an e�cient algorithm for that distance �BYG�
� to process the text�

The resulting algorithm is O�	n log�m� on average using optimal q � log�m� and works well
for 	 � �
 log�m� The algorithm is better suited for long patterns� although with s �
 it can be
reasonably applied to short ones as well� In fact the analysis is done for s �
 only in �ST����

Shi ���	 In ���� Shi �Shi��� proposed to extend the idea of the k � � pieces �explained in
Section ��
� to k�s pieces� so that at least s pieces must match� This idea is implicit in the �lter of
Sutinen and Tarhio but had not been explicitly written down� Shi compared his �lter against the
simple one� �nding that the �ltering e�ciency was improved� However� this improvement will be
noticeable only for long patterns� Moreover� the online searching e�ciency is degraded because the
pieces are shorter �which a�ects any Boyer
Moore
like search�� and because the veri�cation logic
is more complex� No analysis is presented in the paper� but we conjecture that the optimum s is
O��� and therefore the same complexity and tolerance to errors is maintained�

Giegerich
 Kurtz
 Hischke and Ohlebusch ���	 Also in ����� a general method to improve
�lters was developed �GKHO���� The idea is to mix the phases of �ltering and checking� so that the
veri�cation of a text area is abandoned as soon as the combined information from the �lter �number
of guaranteed di�erences left� and the veri�cation in progress �number of actual di�erences seen�
shows that a match is not possible� As they show� however� the improvement occurs in a very
narrow area of 	� This is a consequence of the statistics of this problem that we have discussed in
Section ��

 Experiments

We perform in this section an empirical comparison among the algorithms described along this
work� Our goal is to show which are the best options at hand depending on the case� Nearly ��
algorithms have been surveyed� some of them without existing implementation and many of them
already known to be impractical� To avoid an excessively lengthly comparison among algorithms
known to be not competitive� we have left aside many of them�

�� Included and Excluded Algorithms

A large group of excluded algorithms is from those theoretical ones based on the dynamic pro

gramming matrix� We remark that all these algorithm� despite not being competitive in practice�
represent �or represented at their time� a valuable contribution to the development of the algorith

mic aspect of the problem� The dynamic programming algorithm �Sel��� is excluded because the
cut
o� heuristic of Ukkonen �Ukk��b� is well known to be faster �e�g� in �CL�
� and in our internal
tests�$ the algorithm of �MP��� is argued in the same paper to be worse than dynamic programming
�which is quite bad� for n � �� Gb$ �LV��� has bad complexity and was improved later by many
others in theory and practice$ �LV��� is implemented with a better LCA algorithm in �CL�
� and
found too slow$ �Mye��a� is considered slow in practice by the same author in �WMM���$ �GG���
is clearly slower than �LV���$ �GP���� one of the fastest among the O�kn� worst case algorithms� is

��

shown to be extremely slow in �UW��� CL�
� Wri��� and in internal tests done by ourselves$ �UW���
is shown to be slow in �JTU���$ the O�kn� algorithm implemented in �CL��� is in the same paper
argued to be the fastest of the group and shown to be not competitive in practice$ �SV��� CH���
are clearly theoretical� their complexities show that the patterns have to be very long and the error
level too low to be of practical application� To give an idea of how slow is �slow	� we found �GP���
�� times slower than Ukkonen"s cut
o� heuristic �a similar result is reported by Chang and Lampe
�CL�
��� Finally� other O�kn� average time algorithms are proposed in �Mye��a� GP���� and they
are shown to be very similar to Ukkonen"s cut
o� �Ukk��b� in �CL�
�� Since the cut
o� heuristic
is already not very competitive we leave aside the other similar algorithms� Therefore� from the
group based on dynamic programming we consider only cut
o� heuristic �mainly as a reference�
and �CL�
�� which is the only one competitive in practice�

From the algorithms based on automata we consider the DFA algorithm �Ukk��b�� but prefer its
lazy version implemented in �Nav��b�� which is equally fast for small automata and much faster for
large automata� We also consider the four Russians algorithm of �WMM���� From the bit
parallel
algorithms we consider �WM�
a� BYN��� Mye���� leaving aside �Wri���� As shown in the ����
version of �BYN���� the algorithm of �Wri��� was competitive only on binary text� and this was
shown to not hold anymore in �Mye����

From the �ltering algorithms� we have included �TU���$ the counting �lter proposed in �JTU���
�as simpli�ed in �Nav��a��$ the algorithm of �NR��b� Nav���$ and those of �ST��� and �Tak��� �this
last one seen as the case s � � of �ST���� since this implementation worked better�� We have
also included the �lters proposed in �BYN��� NBY��a� Nav���� preferring to present only the last
version which incorporates all the twists of superimposition� hierarchical veri�cation and mixed
partitioning� Many previous versions are outperformed by this one� We have also included the
best version of the �lters that partition the pattern in k � � pieces� namely the one incorporating
hierarchical veri�cation �NBY��c� Nav���� In those publications it is shown that this version clearly
outperforms the previous ones proposed in �WM�
a� BYP��� BYN���� Finally� we are discarding
some �lters �CL��� Ukk�
� CM��� Shi��� which are applicable only to very long patterns� since this
case is excluded from our experiments as explained shortly� Some comparisons among them were
carried out by Chang and Lampe �CL�
�� showing that LET is equivalent to the cut
o� algorithm
with k �
�� and that the time for SET is
	 times that of LET� LET was shown to be the fastest
with patterns of hundred letters long and a few errors in �JTU���� but we recall that many modern
�lters were not included in that comparison�

We list now the algorithms included and the relevant comments on them� All the algorithms
implemented by ourselves represent our best coding e�ort and have been found similar or faster
than other implementations found elsewhere� The implementations coming from other authors were
checked with the same standards and in some cases their code was improved with better register
usage and I�O management� The number in parenthesis following the name of each algorithm is
the number of lines of the C implementation we use� This gives a rough idea of how complex is the
implementation of each algorithm�

CTF �
��� The cut
o� heuristic of �Ukk��b� implemented by ourselves�

CLP ��
�� The column partitioning algorithm of �CL�
�� implemented by them� We replaced their
I�O by ours� which is faster�

DFA �
��� The lazy deterministic automaton of �Nav��b�� implemented by ourselves�

��

RUS ����� The four Russians algorithm of �WMM���� implemented by them� We tried di�erent
r values �related to the time�space tradeo�� and found that the best option is always r � �
in our machine�

BPR �

�� The NFA bit
parallelized by rows �WM�
a�� implemented by ourselves and restricted
to m � w� Separate code is used for k � ��
� � and k � �� We could continue writing
separate versions but have considered that this is reasonable up to k � �� as at that point
the algorithm is not competitive anyway�

BPD �
�� (��

�� The NFA bit
parallelized by diagonals �BYN���� implemented by ourselves�
Here we do not include any �ltering technique� The �rst number �
��� corresponds to the
plain technique and the second one ���

�� to handling partitioned automata�

BPM �
�� (�

� The bit
parallel implementation of the dynamic programming matrix �Mye����
implemented by that author� The two numbers have the same meaning as in the previous
item�

BMH �
��� The adaptation of Horspool to allow errors �TU���� implemented by them� We use
their algorithm
 �which is faster�� improve some register usage and replace their I�O by ours�
which is faster�

CNT ����� The counting �lter of �JTU���� as simpli�ed in �Nav��a� and implemented by ourselves�

EXP ����� Partitioning in k�� pieces plus hierarchical veri�cation �NBY��c� Nav���� implemented
by ourselves�

BPP ������� The bit
parallel algorithms of �BYN��� NBY��a� Nav��� using pattern partitioning�
superimposition and hierarchical veri�cation� The implementation is ours and is a packaged
software that can be downloaded from the Web page of the author�

BND ����� The BNDM algorithm adapted to allow errors in �NR��b� Nav���� implemented by
ourselves and restricted to m � w� Separate code is used for k � ��
� � and k � �� We could
continue writing separate versions but have considered that this is reasonable up to k � ��

QG� ����� The q
gram �lter of �ST���� implemented by them and used with s �
 �since s � �
is the algorithm �Tak���� see next item$ and s �
 worked well only for very long patterns��
The code is restricted to k � w

� �� and it is also not run when q is found to be � since the
performance is very poor� We improved register usage and replaced the I�O management by
our faster versions�

QG� ����� The q
gram algorithm of �Tak���� run as the special case s � � of the previous item�
The same restrictions on the code apply�

We made our best e�ort to uniformize the algorithms� The I�O is the same in all cases� the
text is read in chunks of �� Kb to improve locality �this is the optimum in our machine� and care is
taken to not lose or repeat matches in the borders$ open is used instead of fopen because this last
one is slower� We also uniformize internal conventions� only a �nal special character �zero� is used
at the end of the bu�er to help algorithms recognize it$ and only the number of matches found is
reported�

We separate in the experiments the �ltering and non
�ltering algorithms� This is because the
�lters can in general use any non
�lter to check for potential matches� so the best algorithm is
formed by a combination of both� All the �ltering algorithms in the experiments use the cut
o�

��

algorithm �Ukk��b� as their veri�cation engine� except for BPP �whose very essence is to switch
smoothly to BPD� and BND �that uses a reverse BPR to search in the window and a forward BPR
for the veri�cations��

�� Experimental Setup

Apart from the algorithms to be included and their details� we describe our experimental setup�
We measure CPU times and show the results in tenths of seconds per megabyte� Our machine is a
Sun UltraSparc
� of ��� MHz and �� Mb of main memory� we run Solaris
���� and the texts are
in a local disk of
 Gb� Our experiments were run on texts of �� Mb of size and repeated
� times
�with di�erent search patterns�� The same patterns are used for all the algorithms�

Considering the applications� we have selected three types of texts�

DNA This �le is formed by concatenating the ���� Mb DNA chain of h�influenzae with itself
until obtaining �� Mb� Lines are cut at �� characters� The patterns are selected randomly
from the text avoiding line breaks if possible� The alphabet size is � save a few exceptions
along the �le� and the results are similar to a random four
letter text�

Natural language This �le is formed by ��
� Mb of writings of B� Franklin �ltered to lower case
and separators converted to a space �except line breaks which are respected�� This mimics
common Information Retrieval scenarios� The text is replicated to obtain �� Mb and search
patterns are randomly selected from the same text at word beginnings� The results on this
text are roughly equivalent to a random text over �� characters�

Speech We obtained speech �les from discussions on the U�S� Law from Indiana University� in
PCM format with � bits per sample� Of course the standard edit distance is of no use here�
since it has to take into account the absolute values of the di�erences between two characters�
We simpli�ed the problem to use edit distance� we reduced the range of values to �� by
quantization� therefore considering equal two samples that lie in the same range� We used
the �rst �� Mb of the resulting �le� The results are similar to those on a random text of ��
letters� although the �le shows smooth changes from a letter to the next�

We present results using di�erent pattern lengths and error levels� in two !avors� we �x m and
show the e�ect of increasing k� or we �x 	 and show the e�ect of increasing m� A given algorithm
may not appear at all in a plot when its times are above the y range of interest or its restrictions
on m and k do not intersect with the x range of interest� In particular� �lters are shown only for
	 � �

� We remind that in most applications the error levels of interest are low�

�� Results

Figure
� shows the results for short patterns �m � ��� and varying k� In non
�ltering algorithms
BPD is normally the fastest� up to ��� faster than the next one� BPM� The DFA is also quite
close in most cases� For k � �� a specialized version of BPR is slightly faster than BPD �recall that
for k � � BPR starts to use a nonspecialized algorithm� hence the jump�� An exception to this
situation occurs in DNA text� where for k � � and k � � BPD shows a nonmonotonic behavior and

��

BPM becomes the fastest� This behavior comes from its O�k�m� k�n
w� complexity��� which in
texts with larger alphabets is not noticeable because the cut
o� heuristic keeps the cost unchanged�
Indeed� the behavior of BPD would have been totally stable if we chose m � � instead of m � ���
because the problem would �t in a computer word all the time� BPM� on the other hand� handles
much longer patterns keeping such stability� although it takes up to ��� more time than BPD�

With respect to �lters� we see that EXP is the fastest for low error levels� The value of �low	
increases for larger alphabets� At some point� BPP starts to dominate� BPP adapts smoothly to
higher error levels by slowly switching to BPD� so BPP is a good alternative for intermediate error
levels� from where EXP ceases to work until it should switch to BPD� However� this range is void
on DNA and English text for m � ��� Other �lters competitive with EXP are BND and BMH� In
fact� BND is the fastest for k � � on DNA� although really no �lter works very well in that case�
Finally� QG
 does not appear because it only worked for k � � and it was worse than QG��

The best choice for short patterns seems to be using EXP while it works and switching to the
best bit
parallel algorithm for higher errors� Moreover� the veri�cation algorithm for EXP should
be BPR or BPD �which are the fastest where EXP dominates��

Figure
� shows the case of longer patterns �m � ���� Many of the observations are still valid
in this case� However� the algorithm BPM shows in this case its advantage over BPD� since still all
the problem �ts in a computer word for BPM and it does not for BPD� Hence in the left plots the
best algorithm is BPM except for low k� where BPR or BPD are better� With respect to �lters�
EXP or BND are the fastest depending on the alphabet� until a certain error level is reached� At
that point BPP becomes the fastest� in some cases still faster than BPM� Notice that for DNA a
specialized version of BND for k � � and even � could be the fastest choice�

In Figure
� we consider the case of �xed 	 � ��� and growingm� The results repeat somewhat
with regard to non
�ltering algorithms� BPR is the best for k � � �i�e� m � ���� then BPD is the
best until certain pattern length �which varies from �� on DNA to �� on speech� and �nally BPM
becomes the fastest� Note that for so low error level the number of active columns is quite small�
which permits algorithms like BPD and BPM keeping their good behavior for patterns much longer
than what they can handle in a single machine word� The DFA is also quite competitive until its
memory requirements become unreasonable�

The real change� however� is in the �lters� In this case PEX becomes the star �lter in English
and speech texts� by far unbeaten� The situation on DNA� on the other hand� is quite complex� For
m � �� BND is the fastest� and indeed an extended implementation of it allowing longer patterns
could keep being the fastest for a few more points� However� that case would have to handle four
errors� and only a specialized implementation for �xed k � �� �� etc� could keep a competitive
performance� We have determined that such specialized code is worthwhile up to k � � only�
When BND ceases to be applicable� PEX becomes the fastest algorithm and �nally QG
 beats it
�for m � ���� However� notice that for m � �� all the �lters are beaten by BPM and therefore
make little sense �on DNA��

There is a �nal phenomenon that deserves mention with respect to �lters� The algorithms QG�
and QG
 improve as m grows� These algorithms are the most practical and the only ones we
tested among the family of algorithms suitable for very long patterns� This shows that� despite
that all these algorithms would not be competitive in our tests �where m � ����� they should be

��Another reason for this behavior is that there are integer round�o� e�ects that produce nonmonotonic results	

��

� �
�

�
�

�
�

� �
�

�

� �
�

�

� �
�

�
�

�

�

�

� �
�

�

�

� � �
�

� � � � � � � � �

� ��
 � � � � � � �

�

�

�

�

�

�

�

�

k

t

�
�

�

�

�

� �

�

�

�

�

�

� ��
 � � �

�

�

�

�

�

�

�

�

k

t

� � � � �
�

�
�

�

�
�

�

� � � �
�

�

�
�

�

�

�

� � � � � � � �
�

� � � � � � � � �

� ��
 � � � � � � �

�

�

�

�

�

�

�

�

k

t

�
�

�

� �

�

�

�
�

�

�

�
�

� �
�

�
�

�

� ��
 � � �

�

�

�

�

�

�

�

�

k

t

� � � � � � � �
�

� �
�

�

� � � �
�

�
�

�

�

�

� � � � � � � �
�

� � � � � � � � �

� ��
 � � � � � � �

�

�

�

�

�

�

�

�

k

t

� �
�

�

�

� � �
�

�

� � � �

�

� � � � �

�
�

�

� ��
 � � �

�

�

�

�

�

�

�

�

k

t

CTF
CLP

� DFA
� RUS

� BPR
� BPD
� BPM

QG	
QG�

� BPP
� CNT

� BMH
� EXP
� BND

Figure
�� Results for m � �� and varying k� The left plots show non
�ltering and the right plots
show �ltering algorithms� Rows � to � show DNA� English and speech �les� respectively�

��

�

�

�

�

�
�

� �
�

�

�

�

�

�

�
� � � � � � �

�
�� � � �� ��
�
�
�

�

��

�

�

�

�

��

k

t

�
�

�
�

�

�

� ��� � � � � �� �� ��

�

��

�

�

�

�

��

k

t

�
�

�

�

�

�

�

�

�
� �

�

�

� �

�
�

�

�

� � � � � � � �

�
�� � � �� ��
�
�
�

�

��

�

�

�

�

��

k

t

�

�

�

�

�
�

�

�

�

�

�

�

�

� ��� � � � � �� �� ��

�

��

�

�

�

�

��

k

t

� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�

� �
� �

� � �

� � � � � � �

�
�� � � �� ��
�
�
�

�

��

�

�

�

�

��

k

t

�
�

�

� �
�

� � �
�

�
�

�
�

�

�

� ��� � � � � �� �� ��

�

��

�

�

�

�

��

k

t

CTF
CLP

� DFA
� RUS

� BPR
� BPD
� BPM

QG	
QG�

� BPP
� CNT

� BMH
� EXP
� BND

Figure
�� Results for m � �� and varying k� The left plots show non
�ltering and the right plots
show �ltering algorithms� Rows � to � show DNA� English and speech �les� respectively�

��

considered in scenarios where the patterns are much longer and the error level keeps very low� In
such a scenario� those algorithms would �nally beat all the algorithms we are considering here�

The situation becomes worse for the �lters when we consider 	 � ��� and varyingm �Figure
���
On DNA� no �lter can beat the non
�ltering algorithms� and among these the tricks to keep few
active columns do not work well� This favors the algorithms that pack more information per bit�
which makes BPM the best in all cases except for m � �� �where BPD is better�� The situation
is almost the same on English text� except because BPP works reasonably well and becomes quite
similar to BPM �the periods where each one dominates are interleaved�� On speech� on the other
hand� the scenario is similar for non
�ltering algorithms� but the PEX �lter still beats all them� as
��� of errors is low enough on the speech �les� Note in passing that the error level is too high for
QG� and QG
� which can only be applied in a short range and yield bad results�

To give an idea of which are the areas where each algorithm dominates� Figure
� shows the case
of English text� There is more information in Figure
� that what can be inferred from previous
plots� such as the area where RUS is better than BPM� We have shown the non
�ltering algorithms
and superimposed in gray the area where the �lters dominate� Therefore� in the grayed area the
best choice is to use the corresponding �lter using the dominating non
�lter as its veri�cation
engine� In the non grayed area it is better to use the dominating non
�ltering algorithm directly�
with no �lter�

A code implementing such a heuristic �including only EXP� BPD and BPP� is publicly available
from the Web page of the author��� This combined code is faster than each isolated algorithm�
although of course it is not really a single algorithm but the combination of the best choices�

�� Conclusions

We reach the end of this tour on approximate string matching� Our goal has been to present and
explain the main ideas that exist behind the existing algorithms� to classify them according to the
type of approach proposed� and to show how they perform in practice in a subset of the possible
practical scenarios� We have shown that the oldest approaches� based on the dynamic programming
matrix� yielded the most important theoretical developments� but in general the algorithms have
been improved by modern developments based on �ltering and bit
parallelism� In particular� the
fastest algorithms combine a fast �lter to discard most of the text with a fastest non
�lter algorithm
to check the potential matches�

We show some plots summarizing the contents of the survey� Figure
� shows the historical order
in which the algorithms appeared in the di�erent areas� Figure �� shows a worst case time�space
complexity plot for the non
�ltering algorithms� Figure �� considers �ltration algorithms� showing
their average case complexity and the maximum error level 	 for which they work� Some practical
assumptions have been made to order the di�erent functions of k� m� �� w and n�

Approximate string matching is a very active research area and it should continue in that
status in the foreseeable future� strong genome projects in computational biology� the pressure for
oral human
machine communication and the heterogeneity and spelling errors present in textual
databases are just a sample of the reasons that are driving researchers to look for faster and more
!exible algorithms for approximate pattern matching�

��http���www�dcc�uchile�cl��gnavarro�pubcode	 To apply EXP the option �ep must be used	

�

� �
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

� � �
� � �

�
� � � � � � � � � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

�

�

�

�

m

t

�

�

�

�

�

�

� � � � � � � � � �

�
�

�

�
�

�

�

� �
�

� � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

�

�

�

�

m

t

� � � �
�

�
�

�

�

�

�
�

�

�

�

�

�
�

�

�

�
�

�
� � � � � �

�
�

�

� � � � � � � � � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

�

�

m

t

�
�

�

�
�

� � � � �

� � � � � � � � � �

� � � � � � � � � �
�

� � � � � � � � �

� � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

�

�

m

t

� � � � � � �

�
�

�

� �
�

�

� �
�

�

�

�

�
�

�

� � � � � � � �
� �

� � � � � � � � � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

m

t

� � � � � �
� � � �

� � � � � � � � � �

� � � � � � � � � �
� � �

� �
� �

� �
�

� � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

m

t

CTF
CLP

� DFA
� RUS

� BPR
� BPD
� BPM

QG	
QG�

� BPP
� CNT

� BMH
� EXP
� BND

Figure
�� Results for 	 � ��� and varying m� The left plots show non
�ltering and the right plots
show �ltering algorithms� Rows � to � show DNA� English and speech �les� respectively�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� � �
�

� � � � �
�

�� �����
� �� �� �� �� �� �� �� ���

�

��

�

�

�

�

��

�

��

��

m

t

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �����
� �� �� �� �� �� �� �� ���

�

��

�

�

�

�

��

�

��

��

m

t

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�
�

�
�

� � � � �
�

� � � �

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

��

�

m

t

�

�

�

�

�

� � � � �
� �

� � �

�
� �

�
�

�

�
�

�
�

�

�

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

��

�

m

t

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

�
� �

� � � �

� � � � � � �
�

�
�

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

m

t

� �
�

�
�

�

�

� � � � �
�

�
�

� �

� � � � � � � � � �
�

� �
� � �

�

�

�

�

�

�

�

�� �����
� �� �� �� �� �� �� �� ���

�

�

�

�

�

�

m

t

CTF
CLP

� DFA
� RUS

� BPR
� BPD
� BPM

QG	
QG�

� BPP
� CNT

� BMH
� EXP
� BND

Figure
�� Results for 	 � ��� and varying m� The left plots show non
�ltering and the right plots
show �ltering algorithms� Rows � to � show DNA� English and speech �les� respectively�

��

0
m

0.5

1

0.3

0.7

100

BPD

RUS

BPM

0.1

α

BPR
BPD

703010 50

BPP
PEX

Figure
�� The areas where each algorithm is the best� graying that of �ltering algorithms�

It is interesting to point out which theoretical and practical questions are still open in the area�

� A di�cult open question is about the exact matching probability and average edit distance
between two random strings� We found a new bound in this survey� but the problem is still
open�

� A worst case lower bound of the problem is clearly O�n�� but the only algorithms achieving
it have space and preprocessing cost exponential in m or k� The only improvements to the
worst case with polynomial space complexity are the O�kn� algorithms and� for very small k�
O�n�� � k�
m��� Is it possible to improve the algorithms or to �nd a better lower bound for
this case�

� The previous question has also a practical side� is it possible to �nd an algorithm which
is O�kn� in the worst case and e�cient in practice� Using bit
parallelism there are good
practical algorithms that achieve O�kn
w� on average and O�mn
w� in the worst case�

� The lower bound of the problem for the average case is known to be O�n�k�log�m�
m� and
there exists an algorithm achieving it� so from the theoretical point of view that problem is
closed� However� from the practical side we have that the algorithms approaching those limits
work well only for very long patterns� while a much simpler algorithm �EXP� is the best for
moderate and short patterns� Is is possible to �nd a uni�ed approach� good in practice and
with that theoretical complexity�

� Another practical question on �ltering algorithms is� is it possible in practice to improve over
the current best existing algorithms�

� Finally� there are many other open questions related to o)ine approximate searching� which
is a much less mature area needing more research�

��

�� �Sel��
 �MP��
�rst algorithm

�LV��
 �Ukk�
b
 �Ukk�
b
��best worst cases

�LV�	
 �Mye��a
��

��
�GG��
��
�GP	�
��
�CL	�
 �UW	�
 �TU	�
 �CL	�
���rst �lter

�JTU	�
��
�CL	�
 �WMM	�
 �WM	�a
 �WM	�a
 �BYP	�
 �Ukk	�
�
�rst bit�parallel

��
�Wri	�
 �CM	�
 �Tak	�
��avg� lower bound

�Mel	�
 �ST	

��
�Kur	�
 �BYN		
 �BYN		
 �Shi	�
 �GKHO	�
��

�SV	�
 �Nav	�a
��
�CH	�
 �Mye	�
 �NBY	�a
 �NBY		c
 �NR	�b
��fastest practical

Dyn�Prog� Automata Bit Par� Filters

Figure
�� Historical development of the di�erent areas�

Acknowledgements

The author wishes to thank the many top researchers in this area for their willingness to exchange
ideas and�or share their implementations� Amihood Amir� Ricardo Baeza
Yates� William Chang�
Udi Manber� Gene Myers� Erkki Sutinen� Tadao Takaoka� Jorma Tarhio� Esko Ukkonen and Alden
Wright�

References

�AAL���� A� Amir� Y� Aumann� G� Landau� M� Lewenstein� and N� Lewenstein� Pattern matching
with swaps� In Proc� FOCS��	� pages ���(���� �����

�AC��� A� Aho and M� Corasick� E�cient string matching� an aid to bibliographic search�
Comm� of the ACM� ���������(���� �����

�ADKF��� V� Arlazarov� E� Dinic� M� Konrod� and I� Faradzev� On economic construction of the
transitive closure of a directed graph� Soviet Mathematics Doklady� ����
��(�
��� �����
Original in Russian in Doklady Akademi Nauk SSSR� v� ���� �����

��

m�m n

�Sel���

�LV���

�CL���

�GG���
�UW���
�GP���

�GP���

�MP���

�LV���

exp �m�

�Ukk��a�

�WMM���

�

�Mye���

�BYN���

�WM��a�

kn

mn

k�n

n

mn� log�� n

�Mye��a�

space

time

kndm� logne

mn� logn

ndkm� logne
n���k��m� �CH���

Figure ��� Worst case time and space complexity of non
�ltering algorithms� We replaced w by
%�logn��

�AG��� A� Apostolico and Z� Galil� Combinatorial Algorithms on Words� NATO ISI Series�
Springer
Verlag� �����

�AG��� A� Apostolico and C� Guerra� The Longest Common Subsequence problem revisited�
Algorithmica�
����(���� �����

�AG��� A� Apostolico and Z� Galil� Pattern Matching Algorithms� Oxford University Press�
Oxford� UK� �����

�AGM���� S� Altschul� W� Gish� W� Miller� G� Myers� and D� Lipman� Basic local alignment search
tool� Journal of Molecular Biology�
������(���� �����

�AHU��� A� Aho� J� Hopcroft� and J� Ullman� The Design and Analysis of Computer Algorithms�
Addison
Wesley� �����

�AJS��� M� Atallah� P� Jacquet� and W� Szpankowski� A probabilistic approach to pattern
matching with mismatches� Random Structures and Algorithms� �����(
��� �����

�ALL��� A� Amir� M� Lewenstein� and N� Lewenstein� Pattern matching in hypertext� In Proc�
WADS��	� LNCS �
�
� pages ���(���� Springer
Verlag� �����

�ANZ��� M� Ara*ujo� G� Navarro� and N� Ziviani� Large text searching allowing errors� In Proc�
WSP��	� pages
(
�� Carleton University Press� �����

��

n

k�n��

e�m�� e�	�k
���� ��e�p�

�CM���

�NR��b�

�CL���
�ST���
�Shi���
�Tak���

�NBY��a�
�BYN���

�TU���

�JTU���
�WM��a�
�CL���
�Ukk���

�NBY��a��BYN���

kn log��m���

n�k�log�m��m

n�
�
�� log�	m��m

	�������� �

kn log�m��w �BYN���

�BYN���
���

�� emO	��
p
w�

p
�

n
p

km�w

n
p

km��w��

max �

time

��e�p�
��e�p�

�n log�m

O��� log�m�

Figure ��� Average time and maximum tolerated error level for the �ltration algorithms�

�Apo��� A� Apostolico� The myriad virtues of subword trees� In Combinatorial Algorithms on
Words� pages ��(��� Springer
Verlag� �����

�BBH���� A� Blumer� J� Blumer� D� Haussler� A� Ehrenfeucht� M� Chen� and J� Seiferas� The
samllest automaton recognizing the subwords of a text� Theoretical Computer Science�
�����(��� �����

�BM��� R� Boyer and J� Moore� A fast string searching algorithm� Comm� of the ACM�

��������
(��
� �����

�BY��� R� Baeza
Yates� E�cient Text Searching� PhD thesis� Dept� of Computer Science�
University of Waterloo� May ����� Also as Research Report CS
��
���

�BY��� R� Baeza
Yates� Some new results on approximate string matching� In Workshop on
Data Structures� Dagstuhl� Germany� ����� Abstract�

�BY�
� R� Baeza
Yates� Text retrieval� Theory and practice� In
�th IFIP World Computer
Congress� volume I� pages ���(���� Elsevier Science� ���
�

�BY��� R� Baeza
Yates� A uni�ed view of string matching algorithms� In SOFSEM���
 Theory
and Practice of Informatics� LNCS ����� pages �(��� Springer
Verlag� �����

��

�BYG�
� R� Baeza
Yates and G� Gonnet� A new approach to text searching� Comm� of the ACM�
���������(�
� ���
� Preliminary version in ACM SIGIR���� �����

�BYG��� R� Baeza
Yates and G� Gonnet� Fast string matching with mismatches� Information
and Computation� ����
�����(���� ����� Preliminary version as Tech� Report CS
��
���
Data Structuring Group� University of Waterloo� Sept� �����

�BYN��a� R� Baeza
Yates and G� Navarro� Block
addressing indices for approximate text retrieval�
In Proc� ACM CIKM��	� pages �(�� ����� Extended version to appear in JASIS�

�BYN��b� R� Baeza
Yates and G� Navarro� Multiple approximate string matching� In Proc�
WADS��	� LNCS �
�
� pages ���(���� Springer
Verlag� �����

�BYN��� R� Baeza
Yates and G� Navarro� New and faster �lters for multiple approximate string
matching� Technical Report
TR�DCC
��
��� Dept� of Computer Science� University of Chile� ����� Submitted�
ftp���ftp�dcc�uchile�cl�pub�users�gnavarro�multi�ps�gz�

�BYN��� R� Baeza
Yates and G� Navarro� Faster approximate string matching� Algorithmica�

��
���
�(���� ����� Preliminary versions in Proc� CPM���� LNCS ����� ����� and in
Proc� WSP���� Carleton University Press� �����

�BYP��� R� Baeza
Yates and C� Perleberg� Fast and practical approximate pattern matching�
Information Processing Letters� ���
�(
�� ����� Preliminary version in CPM���� LNCS
���� ���
�

�BYR��� R� Baeza
Yates and M� R*egnier� Fast algorithms for two dimensional and multiple
pattern matching� In Proc� SWAT���� LNCS ���� pages ��
(���� Springer
Verlag�
�����

�BYRN��� R� Baeza
Yates and B� Ribeiro
Neto� editors� Modern Information Retrieval� Addison

Wesley� �����

�CCG���� M� Crochemore� A� Czumaj� L� Gasieniec� S� Jarominek� T� Lecroq� W� Plandowski�
and W� Rytter� Speeding up two string
matching algorithms� Algorithmica� �
�
��(
���
�����

�CH��� R� Cole and R� Hariharan� Approximate string matching� a simpler faster algorithm�
In Proc� ACM�SIAM SODA���� pages ���(��
� �����

�CL�
� W� Chang and J� Lampe� Theoretical and empirical comparisons of approximate string
matching algorithms� In Proc� CPM���� LNCS ���� pages ��
(���� Springer
Verlag�
���
�

�CL��� W� Chang and E� Lawler� Sublinear approximate string matching and biological appli

cations� Algorithmica� �
�������
�(���� ����� Preliminary version in FOCS���� �����

�CLR��� T� Cormen� C� Leiserson� and R� Rivest� Introduction to Algorithms� MIT Press� �����

��

�CM��� W� Chang and T� Marr� Approximate string matching and local similarity� In Proc�
CPM���� LNCS ���� pages
��(
��� Springer
Verlag� �����

�Cob��� A� Cobbs� Fast approximate matching using su�x trees� In Proc� CPM���� pages ��(���
�����

�CR��� M� Crochemore and W� Rytter� Text Algorithms� Oxford University Press� Oxford�
UK� �����

�Cro��� M� Crochemore� Transducers and repetitions� Theoretical Computer Science� �����(���
�����

�CS��� V� Chv*atal and D� Sanko�� Longest common subsequences of two random sequences�
Journal of Applied Probability� �
����(���� �����

�CW��� B� Commentz
Walter� A string matching algorithm fast on the average� In Proc�
ICALP�	�� LNCS �� pages ���(��
� Springer
Verlag� �����

�Dam��� F� Damerau� A technique for computer detection and correction of spelling errors�
Comm� of the ACM� ��������(���� �����

�Dek��� J� Deken� Some limit results for longest common subsequences� Discrete Mathematics�

����(��� �����

�DFG���� G� Das� R� Fleisher� L� Gasieniek� D� Gunopulos� and J� K+ark+ainen� Episode matching�
In Proc� CPM��	� LNCS �
��� pages �
(
�� Springer
Verlag� �����

�DM��� R� Dixon and T� Martin� editors� Automatic speech and speaker recognition� IEEE
Press� �����

�EH��� A� Ehrenfeucht and D� Haussler� A new distance metric on strings computable in linear
time� Discrete Applied Mathematics�
�����(
��� �����

�EL��� D� Elliman and I� Lancaster� A review of segmentation and contextual analysis tech

niques for text recognition� Pattern Recognition�
����������(���� �����

�FPS��� J� French� A� Powell� and E� Schulman� Applications of approximate word matching in
information retrieval� In Proc� ACM CIKM��	� pages �(��� �����

�GBY��� G� Gonnet and R� Baeza
Yates� Handbook of Algorithms and Data Structures� Addison

Wesley�
nd edition� �����

�GG��� Z� Galil and R� Giancarlo� Data structures and algorithms for approximate string
matching� Journal of Complexity� ����(�
� �����

�GKHO��� R� Giegerich� S� Kurtz� F� Hischke� and E� Ohlebusch� A general technique to improve
�lter algorithms for approximate string matching� In Proc� WSP��	� pages ��(�
� Car

leton University Press� ����� Preliminary version as Technical Report ��
��� Universit+at
Bielefeld� Germany� �����

��

�GL��� R� Grossi and F� Luccio� Simple and e�cient string matching with k mismatches�
Information Processing Letters� ���������(�
�� �����

�Gon�
� G� Gonnet� A tutorial introduction to Computational Biochemistry using Darwin�
Technical report� Informatik E�T�H�� Zuerich� Switzerland� ���
�

�Gos��� J� Gosling� A redisplay algorithm� In Proc� ACM SIGPLAN�SIGOA Symp� on Text
Manipulation� pages �
�(�
�� �����

�GP��� Z� Galil and K� Park� An improved algorithm for approximate string matching� SIAM
Journal on Computing� ���������(���� ����� Preliminary version in ICALP���� LNCS
��
� �����

�GT��� R� Gonz*alez and M� Thomason� Syntactic pattern recognition� Addison
Wesley� �����

�Gus��� D� Gus�eld� Algorithms on Strings� Trees and Sequences� Cambridge University Press�
�����

�HD��� P� Hall and G� Dowling� Approximate string matching� ACM Computing Surveys�
�
�������(��
� �����

�Hec��� P� Heckel� A technique for isolating di�erences between �les� Comm� of the ACM�

�����
��(
��� �����

�Hor��� R� Horspool� Practical fast searching in strings� Software Practice and Experience�
������(���� �����

�HS��� N� Holsti and E� Sutinen� Approximate string matching using q
gram places� In Proc�
	th Finnish Symposium on Computer Science� pages
�(�
� University of Joensuu� �����

�HT��� D� Harel and E� Tarjan� Fast algorithms for �nding nearest common ancestors� SIAM
Journal on Computing� ���
�����(���� �����

�HU��� J� Hopcroft and J� Ullman� Introduction to Automata Theory� Languages and Compu�
tation� Addison
Wesley� �����

�JTU��� P� Jokinen� J� Tarhio� and E� Ukkonen� A comparison of approximate string matching
algorithms� Software Practice and Experience�
���
������(����� ����� Preliminary ver

sion in Technical Report A
����
�� Dept� of Computer Science� University of Helsinki�
�����

�JU��� P� Jokinen and E� Ukkonen� Two algorithms for approximate string matching in static
texts� In Proc� MFCS��
� volume ��� pages
��(
��� Springer
Verlag� �����

�Kar��� H� Karlo�� Fast algorithms for approximately counting mismatches� Information
Processing Letters� �����(��� �����

�KM��� S� Kurtz and G� Myers� Estimating the probability of approximate matches� In Proc�
CPM��	� LNCS �
��� pages �
(��� Springer
Verlag� �����

��

�KMP��� D� Knuth� J� Morris� Jr� and V� Pratt� Fast pattern matching in strings� SIAM Journal
on Computing� ������
�(���� �����

�Knu��� D� Knuth� The Art of Computer Programming� volume �� Sorting and Searching�
Addison
Wesley� �����

�KS��� S� Kumar and E� Spa�ord� A pattern
matching model for intrusion detection� In Proc�
National Computer Security Conference� pages ��(
�� �����

�KS��� J� Kececioglu and D� Sanko�� Exact and approximation algorithms for the inversion
distance between two permutations� Algorithmica� ������(
��� �����

�Kuk�
� K� Kukich� Techniques for automatically correcting words in text� ACM Computing
Surveys�
��������(���� ���
�

�Kur��� S� Kurtz� Approximate string searching under weighted edit distance� In Proc� WSP����
pages ���(���� Carleton University Press� �����

�Lev��� V� Levenshtein� Binary codes capable of correcting spurious insertions and deletions of
ones� Problems of Information Transmission� ���(��� �����

�Lev��� V� Levenshtein� Binary codes capable of correcting deletions� insertions and reversals�
Soviet Physics Doklady� ���������(���� ����� Original in Russian in Doklady Akademii
Nauk SSSR�
�����
��������
����

�LG��� S� Lawrence and C� Lee Giles� Accessibility of information on the web� Nature� �������(
���� July �����

�LKPC��� J� Lee� D� Kim� K� Park� and Y� Cho� E�cient algorithms for approximate string
matching with swaps� In Proc� CPM��	� LNCS �
��� pages
�(��� Springer
Verlag�
�����

�LL��� R� Lipton and D� Lopresti� A systolic array for rapid string comparison� In Proc� Chapel
Hill Conference on VLSI� pages ���(���� �����

�LMS��� G� Landau� E� Myers� and J� Schmidt� Incremental string comparison� SIAM Journal
on Computing�
��
�����(��
� �����

�LS��� T� Luczak and W� Szpankowski� A suboptimal lossy data compression based on ap

proximate pattern matching� IEEE Trans� on Information Theory� �������(����� �����

�LT��� D� Lopresti and A� Tomkins� On the searchability of electronic ink� In Proc� �th
International Workshop on Frontiers in Handwriting Recognition� pages ���(���� �����

�LT��� D� Lopresti and A� Tomkins� Block edit models for approximate string matching�
Theoretical Computer Science� ����������(���� �����

�LV��� G� Landau and U� Vishkin� Fast string matching with k di�erences� Journal of Com�
puter and Systems Science� �����(��� ����� Preliminary version in FOCS���� �����

�

�LV��� G� Landau and U� Vishkin� Fast parallel and serial approximate string matching�
Journal of Algorithms� ������(���� ����� Preliminary version in ACM STOC���� �����

�LW��� R� Lowrance and R� Wagner� An extension of the string
to
string correction problem�
Journal of the ACM�

����(���� �����

�Mas
�� H� Masters� A study of spelling errors� University of Iowa Studies in Education� �����
��
��

�McC��� E� McCreight� A space
economical su�x tree construction algorithm� Journal of the
ACM�
��
��
�
(
�
� �����

�Mel��� B� Melichar� String matching with k di�erences by �nite automata� In Proc� ICPR����
pages
��(
��� IEEE CS Press� ����� Preliminary version in Computer Analysis of
Images and Patterns� LNCS ���� �����

�MM��� R� Muth and U� Manber� Approximate multiple string search� In Proc� CPM���� LNCS
����� pages ��(��� Springer
Verlag� �����

�Mor��� D� Morrison� PATRICIA (Practical Algorithm To Retrieve Information Coded In
Alphanumeric� Journal of the ACM� ���������(���� �����

�MP��� W� Masek and M� Paterson� A faster algorithm for computing string edit distances�
Journal of Computer and System Sciences�
����(��� �����

�MW��� U� Manber and S� Wu� glimpse� A tool to search through entire �le systems� In
Proc� USENIX Technical Conference� pages
�(�
� USENIX Association� Berkeley� CA�
USA� Winter ����� Preliminary version as Technical Report ��
��� Dept� of Computer
Science� University of Arizona� Oct� �����

�Mye��a� G� Myers� Incremental alignment algorithms and their applications� Technical Report
��(

� Dept� of Computer Science� University of Arizona� �����

�Mye��b� G� Myers� An O�ND� di�erence algorithm and its variations� Algorithmica� ��
��(
���
�����

�Mye��� G� Myers� An overview of sequence comparison algorithms in molecular biology� Tech

nical Report TR
��

�� Dept� of Computer Science� University of Arizona� �����

�Mye��a� E� Myers� A sublinear algorithm for approximate keyword searching� Algorithmica�
�
���������(���� ����� Perliminary version in Technical Report TR��

�� Computer
Science Dept�� University of Arizona� Sept� �����

�Mye��b� G� Myers� Algorithmic Advances for Searching Biosequence Databases� pages �
�(����
Plenum Press� �����

�Mye��� G� Myers� A fast bit
vector algorithm for approximate pattern matching based on
dynamic progamming� In Proc� CPM���� LNCS ����� pages �(��� Springer
Verlag�
�����

��

�Nav��a� G� Navarro� Multiple approximate string matching by counting� In Proc� WSP��	�
pages �
�(���� Carleton University Press� �����

�Nav��b� G� Navarro� A partial deterministic automaton for approximate string matching� In
Proc� WSP��	� pages ��
(�
�� Carleton University Press� �����

�Nav��� G� Navarro� Approximate Text Searching� PhD thesis� Dept� of Computer Sci

ence� University of Chile� December ����� Technical Report TR�DCC
��
���
ftp���ftp�dcc�uchile�cl�pub�users�gnavarro�thesis�	�ps�gz�

�Nav��� G� Navarro� Improved approximate pattern matching on hypertext� Theoretical Com�
puter Science�
���� To appear� Previous version in Proc� of LATIN���� LNCS �����

�NBY��a� G� Navarro and R� Baeza
Yates� Improving an algorithm for approximate pattern
matching� Tech

nical Report TR�DCC
��
�� Dept� of Computer Science� University of Chile� �����
Submitted� ftp���ftp�dcc�uchile�cl�pub�users�gnavarro�dexp�ps�gz�

�NBY��b� G� Navarro and R� Baeza
Yates� A practical q
gram index for text retrieval allowing
errors� CLEI Electronic Journal� ��
�� ����� http���www�clei�cl�

�NBY��a� G� Navarro and R� Baeza
Yates� Fast multi
dimensional approximate pattern matching�
In Proc� CPM���� LNCS ����� pages
��(
��� �����

�NBY��b� G� Navarro and R� Baeza
Yates� A new indexing method for approximate string match

ing� In Proc� of the
�th Annual Symposium on Combinatorial Pattern Matching
�CPM����� LNCS ����� pages ���(���� �����

�NBY��c� G� Navarro and R� Baeza
Yates� Very fast and simple approximate string matching�
Information Processing Letters� �
���(��� �����

�Nes��� J� Nesbit� The accuracy of approximate string matching algorithms� Journal of
Computer�Based Instruction� ��������(��� �����

�NMN���� G� Navarro� E� Moura� M� Neubert� N� Ziviani� and R� Baeza
Yates� Adding compres

sion to block addressing inverted indexes� Kluwer Information Retrieval Journal�
����
To appear�

�NR��a� G� Navarro and M� Ra�not� A bit
parallel approach to su�x automata� Fast extended
string matching� In Proc� CPM���� LNCS ����� pages ��(��� Springer
Verlag� �����

�NR��b� G� Navarro and M� Ra�not� Fast and !exible string matching by com

bining bit
parallelism and su�x automata� Technical Report TR�DCC
��

�� Dept� of Computer Science� University of Chile� ����� Submitted�
ftp���ftp�dcc�uchile�cl�pub�users�gnavarro�bndm
�ps�gz�

�NW��� S� Needleman and C� Wunsch� A general method applicable to the search for similarities
in the amino acid sequences of two proteins� Journal of Molecular Biology� ������(����
�����

��

�OM��� O� Owolabi and R� McGregor� Fast approximate string matching� Software Practice
and Experience� ���������(���� �����

�Riv��� R� Rivest� Partial
match retrieval algorithms� SIAM Journal on Computing� ����� �����

�RS��� M� R*egnier and W� Szpankowski� On the approximate pattern occurrence in a text� In
Proc� Compression and Complexity of SEQUENCES��	� IEEE Press� �����

�San�
� D� Sanko�� Matching sequences under deletion�insertion constraints� In Proc� of the
National Academy of Sciences of the USA� volume ��� pages �(�� ���
�

�Sel��� P� Sellers� On the theory and computation of evolutionary distances� SIAM Journal of
Applied Mathematics�
�����(���� �����

�Sel��� P� Sellers� The theory and computation of evolutionary distances� pattern recognition�
Journal of Algorithms� �����(���� �����

�Shi��� F� Shi� Fast approximate string matching with q
blocks sequences� In Proc� WSP����
pages
��(
��� Carleton University Press� �����

�SK��� D� Sanko� and J� Kruskal� editors� Time Warps� String Edits� and Macromolecules

The Theory and Practice of Sequence Comparison� Addison
Wesley� �����

�SM��� D� Sanko� and S� Mainville� Common subsequences and monotone subsequences� pages
���(���� Addison
Wesley� �����

�ST��� E� Sutinen and J� Tarhio� On using q
gram locations in approximate string matching�
In Proc� ESA���� LNCS ���� pages �
�(���� Springer
Verlag� �����

�ST��� E� Sutinen and J� Tarhio� Filtration with q
samples in approximate string matching�
In Proc� CPM���� LNCS ����� pages ��(��� Springer
Verlag� �����

�Sun��� D� Sunday� A very fast substring search algorithm� Comm� of the ACM� ��������
(��
�
�����

�Sut��� E� Sutinen� Approximate Pattern Matching with the q�Gram Family� PhD thesis� Dept�
of Computer Science� University of Helsinki� Finland� ����� Tech� Report A
����
��

�SV��� B� Schieber and U� Vishkin� On �nding lowest common ancestors� simpli�cation and
parallelization� SIAM Journal on Computing� �������
��(�
�
� �����

�SV��� S� Sahinalp and U� Vishkin� Approximate pattern matching using locally consistent
parsing� Manuscript� University of Maryland Institute for Advanced Computer Studies
�UMIACS�� �����

�Tak��� T� Takaoka� Approximate pattern matching with samples� In Proc� ISAAC���� LNCS
���� pages
��(
�
� Springer
Verlag� �����

�Tic��� W� Tichy� The string
to
string correction problem with block moves� ACM Transactions
on Computer Systems�
�������(�
�� �����

��

�TU��� J� Tarhio and E� Ukkonen� A greedy approximation algorithm for constructing shortest
common superstrings� Theoretical Computer Science� ������(���� �����

�TU��� J� Tarhio and E� Ukkonen� Approximate Boyer
Moore string matching� SIAM Journal
on Computing�

�
��
��(
��� ����� Preliminary version in SWAT���� LNCS ���� �����

�Ukk��a� E� Ukkonen� Algorithms for approximate string matching� Information and Control�
������(���� ����� Preliminary version in Proc� Int� Conf� Found� Comp� Theory� LNCS
���� �����

�Ukk��b� E� Ukkonen� Finding approximate patterns in strings� Journal of Algorithms� ����
(����
�����

�Ukk�
� E� Ukkonen� Approximate string matching with q
grams and maximal matches� Theo�
retical Computer Science� �����(
��� ���
�

�Ukk��� E� Ukkonen� Approximate string matching over su�x trees� In Proc� CPM���� pages

�(
�
� �����

�Ukk��� E� Ukkonen� Constructing su�x trees on
line in linear time� Algorithmica� ������
��(

��� �����

�Ull��� J� Ullman� A binary n
gram technique for automatic correction of substitution� deletion�
insertion and reversal errors in words� The Computer Journal� ������(���� �����

�UW��� E� Ukkonen and D� Wood� Approximate string matching with su�x automata� Algo�
rithmica� ������(���� ����� Preliminary version in Report A
����
�� Dept� of Computer
Science� University of Helsinki� April �����

�Vin��� T� Vintsyuk� Speech discrimination by dynamic programming� Cybernetics� ���
(���
�����

�Wat��� M� Waterman� Introduction to Computational Biology� Chapman and Hall� �����

�Wei��� P� Weiner� Linear pattern matching algorithms� In Proc� IEEE Symp� on Switching
and Automata Theory� pages �(��� �����

�WF��� R� Wagner and M� Fisher� The string to string correction problem� Journal of the
ACM�
�����(���� �����

�WM�
a� S� Wu and U� Manber� Fast text searching allowing errors� Comm� of the ACM�
���������(��� ���
�

�WM�
b� S� Wu and U� Manber� Agrep (a fast approximate pattern
matching tool� In Proc�
USENIX Technical Conference� pages ���(��
� Berkeley� CA� USA� Winter ���
�
USENIX Association�

�WMM��� S� Wu� U� Manber� and E� Myers� A sub
quadratic algorithm for approximate regular
expression matching� Journal of Algorithms� ���������(���� ����� Submitted in ���
�

��

�WMM��� S� Wu� U� Manber� and E� Myers� A sub
quadratic algorithm for approximate limited
expression matching� Algorithmica� ��������(��� ����� Preliminary version as Technical
Report TR
�
��� Computer Science Dept�� University of Arizona� ���
�

�Wri��� A� Wright� Approximate string matching using within
word parallelism� Software Prac�
tice and Experience�
��������(��
� �����

�Yao��� A� Yao� The complexity of pattern matching for a random string� SIAM Journal on
Computing� �����(���� �����

�YFM��� T� Yap� O� Frieder� and R� Martino� High performance computational methods for
biological sequence analysis� Kluwer Academic Publishers� �����

�ZD��� J� Zobel and P� Dart� Phonetic string matching� lessons from information retrieval� In
Proc� SIGIR���� pages ���(��
� �����

Appendix� Some Analyses

Since some of the source papers lack an analysis or they do not analyze exactly what is of our
interest� we have provided a simple analysis for them� This is not the purpose of this survey� so
we have contented ourselves with rough �gures� In particular� our analyses are valid for � �� m�
All refer to �lters and are organized according to the original paragraphs� so the reader should �rst
read the algorithm description to understand the terminology of each�

Tarhio and Ukkonen ���� First� the probability of a text character being �bad	 is that of not
matching
k � � pattern positions� i�e� Pbad � �� � �
���k�� � e���k������ so we try on average
�
Pbad characters until �nding a bad one� Since k � � bad characters have to be found� we work
O�k
Pbad� to abandon the window� On the other hand� the probability of verifying a text window
is that of reaching its beginning� We approximate that probability by equating m to the average
portion of the traversed window �k
Pbad�� to obtain 	 � e���k������

Wu and Manber ���� The Sunday algorithm can be analyzed as follows� To see how far can
we verify in the current window� consider that the �k � �� patterns have to fail� Each one fails on
average in log��m
�k � ��� character comparisons� but the time for all them to fail is longer� By
Yao"s bound �Yao���� this cannot be less than log�m� Otherwise we could split the test of a single
pattern in �k � �� tests of subpatterns and all them would fail in less than log�m time� breaking
the lower bound� To compute the average shift� consider that k characters must be di�erent from
the last window character� and therefore the average shift is �
k� The �nal complexity is therefore
O�kn log��m�
��� This is optimistic but we conjecture that it is the correct complexity� An upper
bound is obtained by replacing k by k� �i�e� adding the times for all the pieces to fail��

Navarro and Ra
not ���� The automatonmatches with the text window with k errors almost
surely until k
	� characters have been inspected �so that the error level becomes lower than 	���
From there on� it becomes exponentially decreasing on �� which can be made �
� in O�k� total

��

steps� From that point on we are in a case of exact string matching and then log�m characters
are inspected� for a total of O�k
	� � log�m�� When the window is shifted to the last pre�x that
matched with k errors� this is also at k
	� distance from the end of the window� on average� The
window length is m� k� and therefore we shift the window in m� k� k
	� on average� Therefore�
the total amount of work is O�n�	� 	� log��m�
m�
���� 	�	� � 	��� The �lter works well unless
the probability of �nding a pattern pre�x with errors at the beginning of the window is high� This
is the same to say that k
	� � m� k� which gives 	 � ��� e

p
��
�
� e

p
���

Ukkonen ���� The probability of �nding a given q
gram in the text window is ������
�q�m �
� � e�m��q � So the probability of verifying the text position is that of �nding �m � q � � � kq�
q
grams of the pattern� i�e�

�
m�q��

kq

�
��� e�m��q �m�q���kq � This must be O��
m�� to not interfere

with the search time� Taking logarithms and approximating the combinatorials using Stirling"s
n# � �n
e�n

p

�n�� �O��
n�� we arrive to

kq �

 log�m� �m� q � �� log���� e�m��q �

log���� e�m��q � � log��kq�� log��m� q � ��

from where by replacing q � log�m we obtain

	 �
�

log�m�log� 	� log� log�m�
� O

�
�

log�m

�
a quite common result for this type of �lters� The choice q � log�m is because the result improves
as q grows� but it is necessary that q � log�m holds� since otherwise log��� � e�m��q � becomes
zero and the result worsens�

��

