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Abstract

Managing interschema knowledge is an essential task when dealing
with cooperative information systems. We propose a logical approach
to the problem of both expressing interschema knowledge, and rea-
soning about it. In particular, we set up a structured representation
language for expressing semantic interdependencies between classes
belonging to different database schemas, and present a method for
reasoning over such interdependencies. The language and the asso-
ciated reasoning technique makes it possible to build a logic-based
module that can draw useful inferences whenever the need arises of
both comparing and combining the knowledge represented in the vari-
ous schemas. Notable examples of such inferences include checking the
coherence of interschema knowledge, and providing integrated access
to a cooperative information system.
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1 Introduction

Understanding the semantics of data stored in different databases is an essen-
tial task when dealing with cooperative information systems. Recent work
on interoperability (see for example [9, 19, 22]) points out that two individual
information systems can interoperate on the basis of a mutual understand-
ing of the information resources they provide. Obviously, in order to achieve
this mutual understanding, several forms of interschema knowledge must be
expressed and reasoned upon.

It is important to note that interschema knowledge is needed in a coop-
erative information system, independently of the architecture of the system.
Following [12], we can distinguish between two basic approaches for access-
ing cooperative information systems. This first approach is based on a global
schema describing the information in the individual databases, in such a way
that users and applications are presented with the illusion of a single, cen-
tralized information system. The second approach avoids constructing the
global schema, and relies on various tools to be used for sharing information
by users and applications. It is evident that interschema knowledge is an
essential element in both approaches: in the former, it provides the neces-
sary information for building the global schema, while in the latter, it is used
for understanding the content of different databases, so as to share relevant
information.

In this paper, we investigate on the possibility of using logic for both ex-
pressing interschema knowledge, and reasoning about it. We assume that the
individual information systems which are the components of the cooperative
information system are defined in terms of the same data model, which is
an class-oriented model. This assumption allows us to hide some technical
problems related to the treatment of heterogeneous databases, that would
deserve more details. However, since there exist formal translations between
virtually all data models (see for example [16]) and the language we use here,
the whole approach is still valid if we relax the above assumption.

The basic idea of our approach is to propose a logic-based language to
express interdependencies between classes belonging to different schemas.
Such interdependencies allow a designer of a cooperative information system
to establish several relationships between both the intensional definition and
the set of instances of classes represented in different schemas. For example,
one can assert in our language that the concept represented by the class
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GraduateStudent in the schema S1 is the same as the concept represented by
SeniorStudent in S2. Such assertion implies a sort of intensional equivalence
between the two classes, but does not imply that the set of instances of the
former is always the same as the set of instances of the latter. On the other
hand, one can assert that the set of instances of the class Teacher in the
schema S2 is always disjoint from the set of instances of the class Tutor in
S3, even if there exists a form of intensional inclusion between the latter and
the former.

Once we have a set of assertions of the above mentioned kinds, we may
benefit in several ways from the possibility of reasoning about them. One
distinguishing feature of our work is to provide inference mechanisms that
allow such reasoning to be carried out. Based on the formal semantics of the
language, we can indeed devise suitable reasoning procedures that allow one
to draw useful inferences on interschema knowledge. For example, one can
check whether one class represented in the cooperative information system
is incoherent, i.e. it has an empty extension in every state, or can deduce
that the extension of a class A in the schema Si is always a subset of the
extension of the class B in Sj, so that accessing Si is useless if we want to
retrieve all the instances (stored in any of the information systems) of the
concept represented by B.

Several recent papers in the literature share our general goal of represent-
ing and using interschema knowledge.

In [12], a method supporting the integrated acces to a set of informa-
tion systems is proposed, based on the use of a global schema managed by
the Cyc knwoledge representation system. One basic difference with our
approach is the need for such a global schema that represents a sort of back-
ground knowledge for the whole set of information systems. As we shall see
later, our approach is still valid if no common knowledge is available. An-
other difference with our work is that in [12] no distinction is made between
intensional and extensional interdependencies between classes.

The problem of providing tools and techniques for the integrated access to
a cooperative information system (either through a global schema, or through
information sharing) is also addressed in [2, 14, 18, 17]. In [14, 18], an object-
based common data model, similar to the one presented here, is adopted for
expressing interschema knowledge. The main differences with our work are
that only extensional interdependencies between classes are considered, and
that reasoning does not play an important role in using interschema knowl-
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edge. Both [2] and [17] advocate the use of a second-order language for
representing several types of interschema dependencies. In particular, the
main focus of [2] is to fully cope with representational hetereogeneity by pro-
viding suitable means for representing the constructs of different data models,
whereas the main goal of [17] is to provide language features in order to deal
with interoperable databases with schematic discrepancies. The problem ad-
dressed by these two last papers is more general in several aspects than the
one studied here. On the other hand, compared with them, we are more con-
cerned with representing intensional as well as extensional interdependencies
between classes, and developing specialized reasoning techniques that allow
for automatically exploiting interschema knowledge in various tasks.

Interschema knowledge is also the subject of [23], where the problem
of maintaining consistency of related data in a multidatabase environment is
studied. Finally, we mention several papers [15, 25, 28] that aim at developing
methods and tools supporting the discovery of interschema dependencies.
Since our techniques assume that a set of interschema assertions are given,
this issue is somehow complementary to the one addressed in this paper.

The paper is organized as follows. In Section 2, we describe the basic
cheracteristics of the class representation language we use for expressing the
intensional level of individual information systems. In Section 3, we set up
a logical language for expressing semantic interdependencies between classes
belonging to different information systems. In Section 4, we address the prob-
lem of reasoning about interschema knowledge, and in Section 5, we illustrate
how to make use of the interschema knowledge and the associated reason-
ing mechanisms when dealing with two important tasks, namely, checking
interschema coherence, and providing integrated access to the cooperative
information system. Finally, conclusions as well as a discussion on future
development of our work are presented in Section 6.

2 Class representation language

In this section, we describe the formalism that we adopt for expressing the
various schemas of a cooperative information system. In this formalism, the
basic structure of a schema is expressed in terms of an entity-relationship-
like notation [11]. Moreover, a logic-based language can be used for denoting
complex class expressions, and for representing a rich variety of properties of
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both entities and relationships. In the first subsection we describe the basic
elements of our formalism, in the second subsection we present the language
for denoting class expressions, and, finally, in the third subsection we discuss
the expressive power of the formalism.

2.1 Basic elements of the representation language

As in most data models, in our model the universe of discourse is partitioned
into two levels, called the instance level and the class level.

The basic elements of the instance level are objects, i.e. atomic things that
can be identified through a unique symbol. Such a symbol plays the role of
object identifier, like in many recent object-oriented data models [1]. As we
shall see later, objects are grouped into classes, and the objects belonging to
a class C are called the instances of C.

In order to reflect relevant associations, objects can be aggregated into
tuples. The number of objects which are components of a tuple is called the
arity of the tuple. Tuples of the same arity can be grouped into sets that are
called relationships. The tuples belonging to a relationship R are called the
instances of R.

The class level, which is specified in terms of a so-called schema, is con-
stituted by an alphabet of class symbols, and by the specification of how the
classes are related to each other. The alphabet is simply a list of symbols
(or names) partitioned into entity, relationship, role, attribute, value, and
domain symbols.

An entity is an abstraction for a class of objects (called its instances).
The properties of an entity are modeled in terms of a set of attributes and a
set of relationships with other entities.

A relationship is a class of tuples of objects of the same arity, described
by a set of roles. Each relationship R has an associated arity, which is also
the arity of the tuples that are instances of R. A role denotes a component of
the relationship. A relationship has as many roles as its arity. For example,
the relationship Marriage, of arity 2, has two associated roles, Husband and
Wife. Every tuple that is an instance of a relationship has one component
for each role of the relationship. Thus, every instance of Marriage has two
components, one for the role Husband and one for the role Wife.

A domain is a set of values. We assume that a suitable set of constructs
(such as enumeration, interval, basic domains like integer, string, etc.) in the
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style of type definitions in conventional programming languages, are available
for specifying the structures of domains. Also, we assume to have a collection
of symbols representing values, i.e. elements of the domains. An attribute is
a relation between an entity or a relationship, and a domain.

It is worth noting that in our model, attributes and relationships can be
declared as functional (for example, the attribute Age of the entity Person).
However, for the sake of simplicity, we do not consider this feature in this
paper.

In the following, we use the term class as an abstraction for entity, rela-
tionship, attribute and domain.

2.2 Class expressions and assertions

Our model provides a rich variety of mechanisms for specifying meaningful
properties of the classes of objects represented in the schema. The idea is that
all the knowledge about the basic elements in the schema can be specified in
terms of a set of assertions.

Syntactically, an assertion is a statement of the form

L1 ≤̇ L2

where L1, L2 are expressions in a suitable language, each one denoting a
class. Informally, an assertion of the above form states that every instance of
the class (denoted by the expression) L1 is also an instance of the class L2.
As we shall se later, this assertional mechanism allow us to specify several
interesting features of the classes.

Suppose we are given an alphabet of symbols B for a schema S, as speci-
fied in the previous subsection. We assume that B includes two special entity
symbols, namely ⊤ and ⊥, whose meaning will be clear later. We use the
term class expression over B to denote any expression that is formed using
the symbols in B according to the syntactic rules that we describe below.
There are four kinds of class expressions, namely, entity, domain, relation-
ship, and attribute expressions.

Let us discuss entity expressions first. The simplest type of entity ex-

pression is the so-called atomic expression, i.e. the one formed simply by the
name of an entity. More complex entity expressions can be built by means
of suitable constructors. In fact, the characteristics of the constructors we
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use to form entity expressions resemble those of the so-called terminological
or frame-based languages introduced in Artificial Intelligence (see for exam-
ple [8, 13, 21]), whose connections with databases have been investigated in
several ways [4, 6, 5, 7]. From a syntactic point of view, an entity expression
over the alphabet B of the schema S is formed by means of the following
rules (which implicitly define domain expressions too):

C,F −→ E |

C ⊓ F |

C ⊔ F |

¬C |

(∀R[U ].T1 : C1, . . . , Tn : Cn) |

(∃R[U ].T1 : C1, . . . , Tn : Cn) |

∀A.D |

∃A.D

D −→ V |

{v1, . . . , vn}

where the following metavariables are used:

• E,R, T1, . . . , Tn, U, A, V denote symbols in the alphabet B. In par-
ticular, E denotes a name of an entity, R a name of a relationship,
T1, . . . , Tn, U denote names of roles, A a name of an attribute, and V

a name of a domain,

• C and F denote entity expressions, and D denotes a domain expression
over B,

• v1, . . . , vn denote symbols of values belonging to domains in B.

The intuitive meaning of entity expressions is as follows:

• ⊤ and ⊥ represent the universal entity (the entity whose instances are
all the objects in the schema) and the empty entity (the entity with no
instance), respectively;

• E denotes the set of instances of the entity E;
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• C ⊓ F represents the set of instances of both C and F ;

• C ⊔ F represents the union of the set of instances of C and the set of
instances of F ;

• ¬C represents the set of objects that are not instances of C;

• (∀R[U ].T1 : C1, . . . , Tn : Cn) represents the set of objects x such that
for each tuple r of R with x as U -component, the Ti-component of r
belongs to the extension of Ci;

• (∃R[U ].T1 : C1, . . . , Tn : Cn) represents the set of objects x such
that there exists a tuple r of R with x as U -component and y as Ti-
component, such that y belongs to the extension of Ci;

• ∀A.D represents the set of objects that are associated with values in
D by the attribute A;

• ∃A.D represents the set of objects that are associated with at least one
value in D by the attribute A.

We provide an example of entity expression. Suppose that Student,
GraduateStudent and GraduateCourse are entity symbols, and Enrolled

is a relationship symbol, with associated roles s and c. Then

Student ⊓ ¬GraduateStudent ⊓ ∃Enrolled[s].c : GraduateCourse

denotes the set students that are not graduate students and are enrolled in
some graduate course.

Let us now turn our attention to relationship and attribute expressions.
A relationship expression is simply an expression of the form

R[U1, . . . , Un]

where R is a relationship name, and {U1, . . . , Un} = rol(R) are the roles
associated to R. Finally an attribute expression is simply constitued by an
attribute name A.

The formal semantics of class expressions is based on the notion of inter-
pretation. An interpretation I = (∆I , γI , ·I) for a schema S with alphabet
B consists of
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• a nonempty set ∆I (the universe of I, which is assumed to include all
the values that are elements of the domains used in the schema),

• a function γI that maps every value to an element of ∆I in such a way
that γI(a) 6= γI(b) if a 6= b, and

• a function ·I (the interpretation function of I) that maps every entity
expression to a subset of ∆I , every attribute to a subset of ∆I × ∆I ,
and every relationship to a set of labeled tuples over ∆I .

In particular, if R is a relationship whose set of associated roles is
rol(R) = {U1, . . . , Um}, then RI is a set of labeled tuples of the form
〈U1 : u1, . . . , Um : um〉, where u1, . . . , um ∈ ∆I . Formally, a labeled
tuple over ∆I that is an instance of R can be defined as a function
from rol(R) to ∆I . In the following, if r is an instance of R, then we
write r[Ui] to denote the value associated with the Ui-component of the
tuple r.

Moreover, in order for I to be an interpretation for S, the following equations
must be satisfied:

⊤I = ∆I

⊥I = ∅

{v1, . . . , vn}
I = {γI(v1), . . . , γ

I(vn)}

(C ⊓ F )I = CI ∩ F I

(C ⊔ F )I = CI ∪ F I

(¬C)I = {a ∈ ∆I | a 6∈ CI}

(∀R[U ].T1 : C1, . . . , Tn : Cn)
I = {a | ∀r ∈ RI

.(r[U ] = a) ⇒

(r[T1] ∈ CI

1
∧ · · · ∧ r[Tn] ∈ CI

n )}

(∃R[U ].T1 : C1, . . . , Tn : Cn)
I = {a | ∃r ∈ RI

.(r[U ] = a) ∧

r[T1] ∈ CI

1
∧ · · · ∧ r[Tn] ∈ CI

n}

(∀A.V )I = {a | ∀(a, b) ∈ AI
.b ∈ V I}

(∃A.V )I = {a | ∃(a, b) ∈ AI
. b ∈ V I}

(R[U1, . . . , Un])
I = RI

Note that the notion of interpretation for a schema S corresponds to the
notion of database state for S. Notice also that, with the above definition
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of interpretation, we have provided the semantics of class expressions in the
schema S. In particular, the semantics of a class expression L in the schema
S with respect to an interpretation I for S is simply given by LI .

We are now ready to formally specify the meaning of a set of assertions.
As we said before, an assertion is a statement of the form

L1 ≤̇ L2

where L1 and L2 are class expressions of the same type (either entity, rela-
tionship, or attribute) over an alphabet B of the schema S. The semantics
of L1 ≤̇ L2 is given by the following conditions:

• When L1 and L2 are entity or attribute expressions, the assertion is
satisfied by an interpretation I for S just in case LI

1
⊆ LI

2
.

• When L1 = R1[U1, . . . , Un] and L2 = R2[T1, . . . , Tm] are relationship
expressions, then it must be the case that m = n, and the assertion
is satisfied by I if for every tuple < U1 : d1, . . . , Un : dn > in RI

1
, the

tuple < T1 : d1, . . . , Tn : dn > is in RI

2
.

An interpretation I is called a model of a set of assertions Σ if every assertion
in the set is satisfied by I.

To summarize, we conceive a schema S in our model as a pair S =<

B,Σ >, where B is an alphabet of symbols and Σ is a set of (intraschema)
assertions over B. The semantics of S is formally characterized by all the
interpretations for S that satisfy every assertions in Σ, i.e. by all the models

of S.

2.3 Expressiveness of the representation language

The representation formalism introduced in this paper allows for expressing
several interesting properties of the classes of a schema. The goal of this
subsection is to provide an account of such properties.

The first example of the use of assertions is concerned with the possi-
bility of specifying the type of the various components of a relationship. In
fact, if we want to impose that the U -component of every instance r of the
relationship R is an instance of the entity C, we can use the assertion1:

(∃R[U ]) ≤̇ C.

1We use the notation ∃R[U ] as a shorthand for ∃R[U ].U : ⊤.
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For example, referring to a schema concerning the information about the
organization of a conference, the two assertions

(∃WrittenBy[Writer]) ≤̇ Author

(∃WrittenBy[Publication]) ≤̇ Paper

can be used to specify that the relationship WrittenBy is typed with the en-
tity Author (in the role Writer) and the entity Paper (in the role Publication).

In many recent data models, classes are organized in hierarchies, specified
by means of a binary relation over entities, called ISA relation. The fact that
the class L1 is related to the class L2 by means of the ISA relation in a schema
S specifies that the set of instances of L1 is a subset of the set of instances
of L2 in every interpretation (database state) of S. It is easy to see that the
ISA relation is directly represented in our model in terms of assertions.

For example, to represent that authors, referees, and staff members are
persons, the following assertions can be used:

Author ≤̇ Person

Referee ≤̇ Person

StaffMember ≤̇ Person.

Although in the above two examples the ISA relation is established be-
tween two entities, it is worth mentioning that in our formalism assertions
can be stated on relationships too. This results in a much richer mechanisms
for using the ISA relation in the schema, compared with most of the existing
data models.

In contrast to most of the approaches proposed in the literature, our
model allows negative information to be represented in the schema. One
notable example of negative information is the one stating that the sets of
instances of two entities are disjoint. For example, in the above schema one
can represent the fact that the entities Author and Referee and are disjoint
by means of the assertion

Author ≤̇ ¬Referee.

Another example of negative information is the one stating that a certain
relationship is meaningless for an entity, i.e. that the instances of the entity C

cannot participate in the relationship R in role U . This is expressed through
the assertion
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C ≤̇ ¬∃R[U ].

Several kinds of indefinite information can also be expressed by means of
assertions. Perhaps, the most important kind of indefinite assertion is related
to the use of disjunction. For example, one can represent that every person
is a male or a female by means of the assertion:

Person ≤̇ (Male ⊔ Female).

As another example, suppose that we want to state that no persons other
than authors, referees and staff members are of interest to the application.
This can be represented by

Person ≤̇ (Author ⊔ Referee ⊔ StaffMember).

Finally, our model allows one to specify both necessary and sufficient
conditions for an object to be an instance of a class. The combined use
of necessary and sufficient conditions enables the designer to provide a sort
of definition of entities, which is closely related to the notion of view in
databases. For example, the assertions

AcmConference
.
= (Conference ⊓ (∃SponsoredBy[Event].Sponsor :

AcmOrganization)
ItalianPaper

.
= Paper ⊓ ∀WrittenBy[Publication].Author : Italian

can be used in order to define the entities AcmConference and ItalianPaper.
The above observations show that several interesting modeling constructs

are available in our model, all based on the notion of class, which is generally
recognized as the central notion of most of the existing representation models
[20]. By carrying out an analysis of the main constructs available in different
models, it is possible to show that the most of the data models proposed
in the literature are actually subsumed by our model. This is particularly
important in our context, where we assume that, in case the cooperative
information system adopt different data models, a translation step is carried
out for expressing the various schema in terms of our class representation
language.
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3 Specification of interschema knowledge

In this section, we describe our method for specifying interschema knowledge
in terms of interdependencies between classes belonging to different schemas.
We first describe the form of interschema assertions and their intuitive mean-
ing, and then introduce the notion of cooperative information system in our
context, whose formal semantics determines the semantics of interschema
assertions.

3.1 Interschema assertions

Suppose that the cooperative information system is constituited by n indi-
vidual information systems, called component information systems, whose
schemas are S1, . . . , Sn, with alphabets B1, . . . , Bn. We assume that all the
schema are expressed in the representation formalism presented in Section 2.

Since we want to keep separated the symbols of the various schemas, we
also assume that for every i ∈ {1..n}, the elements of Bi are subscripted with
i. Thus, for example, Teacher2 denotes a class of schema 2, named Teacher.
We use the term Si-class expression to denote any class expression over the
alphabet Bi of the schema Si. For example, if Student1 and Woman1 are
entity symbols in B1, then (Student1 ⊓ Woman1) is an S1-entity expression.
Notice that the symbols used in an Si-class expression must belong to the
alphabet Bi of Si.

Let S0 =< B0,Σ0 > be a further schema, called the common knowledge

schema of the cooperative information system (symbols in B0 are subscripted
with 0). Intuitively, S0 represents the general properties of the classes that
should be considered common knowledge in the cooperative information sys-
tem of interest. Obviously, in those applications where such a knowledge is
not available, the set of assertions in Σ0 will be empty. In this sense, our
framework differs from those approaches where all interschema properties are
established through the use of background knowledge (see for example [12])
to which the various component information systems must conform. On the
other hand, if the common knowledge schema is nonempty, then it is reason-
able to require all the other schemas to be coherent with it. We will come
back to this issue in Section 5.

Please, note that the notion of common knowledge schema is also different
from the one of global schema in the context of schema integration [3], in
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that the former is intended to represent an integrated view of all the classes
of interest in the collection of information systems, while the latter is used
to specify the knowledge that is independent of the views of the world as
reflected in the individual schemas. A consequence of this is that, as we said
before, the common knowledge schema may be empty, whereas the global
schema is always non empty.

Interschema knowledge in our approach is specified in terms of a set of
so-called interschema assertions. There are four kinds of assertions, whose
forms are:

L1

.
=int L2

L1 ≤̇int L2

L1

.
=ext L2

L1 ≤̇ext L2

where in every assertion, L1 represents an Si-class expression, and L2 rep-
resents an Sj-class expression, in such a way that L1 and L2 are class ex-
pressions of the same types (either entity, domain, relationship, or attribute
expressions), and i 6= j. Moreover, if L1 and L2 are relationships expres-
sions, then there is the constraint that the set of roles appearing in L1 has
the same cardinality as the set of roles appearing in L2. In other words, an
interschema assertion represents a well-typed interdependency between two
class expressions belonging to two different schema.

We now discuss the intuitive meaning of the four kinds of interschema
assertions that we have introduced, and then present the formal semantics.
For the sake of simplicity, in the observations on the intuitive meaning of
interschema assertions, we only refer to assertions on entities.

The first assertion states that the entity expression L1 is intensionally
equivalent to L2. Intuitively, this means that, if Si and Sj referred to a unique
set of objects in the real world, then the extension of L1 would be the same as
the extension of L2. Therefore, the above assertion is intended to state that,
although the extension of L1 may be different from the extension of L2, the
concept represented by L1 is in fact the same as the concept represented by
L2. As a simple example, the S1-entity UndergraduateStudent1 can be de-
clared intensionally equivalent to the S1-entity (Student2 ⊓¬ GraduateStudent2),
to reflect that, even if the instances of the two expressions may be different
in the various states of the cooperative information system, the concept of
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UndergraduateStudent in the schema S1 is fully captured by the above en-
tity expression in the schema S2.

The second assertion states that the entity expression L1 (say of schema
Si) is intensionally less general than the entity expression L2 (of schema Sj).
This means that there is a sort of containment between L1 and L2, and this
containment is conceptual, not necessarily being reflected at the instance
level. In other words, the above intensional relationship is intended to state
that, if Si and Sj referred to a unique set of objects in the real world, then
the extension of L1 would be a subset of L2. For example, Tutor2 may be
declared intensionally less general than Teacher3, if the concept of tutor as
represented in the schema S2 is subsumed by the concept of teacher in the
schema S3.

The third assertion states that L1 and L2 are always extensionally equiv-
alent. In this case we are asserting that in every state of the cooperative
information system, the set of objects that are instances of L1 in Si is the
same as the set of objects that are instances of L2 in Sj.

Finally, the fourth assertion states that the extension of L1 is always a
subset of the extension of L2. For example, if the entity Student1 refers
to the students of a University Department, and the schema S2 refers to
the whole University, then we may assert that Student1 is extensionally less
general than Student2.

3.2 Semantics of interschema assertions

In order to assign the formal semantics to assertions, we introduce the notion
of cooperative information system, and the notion of interpretation for it.

A cooperative information system is intended to precisely characterize all
the knowledge represented in the cooperative information system. At the
class level, a cooperative information system G =< S0, S1, . . . , Sn,Σ > is
constituted by

• the collection of the n schemas S1, . . . , Sn of the various information
systems,

• a common knowledge schema S0 (which may be empty),

• a set Σ of interschema assertions of the forms presented above.
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An interpretation I for G =< S0, S1, . . . , Sn,Σ > is built up starting
from n interpretations I1, . . . , In for S1, . . . , Sn, respectively. In particular,
I is defined as a triple (∆I , γI , ·I) such that

• ∆I = ∆I

0
is the union of the various ∆I

i , for i ∈ {1, . . . , n},

• γI and ·I are extensions of the union of the various γI

i and ·Ii (i ∈
{1..n}), respectively, in such a way that every symbol in S0 is given an
extension by I.

We now state the conditions for an interpretation to satisfy an inter-
schema assertion. Let I be an interpretation for G =< S0, S1, . . . , Sn,Σ >.
We assume that in the assertion C1

.
=β C2, where β is either int or ext,

C1 is an Si-class expression and C2 is an Sj-class expression.

• The assertion
C ≤̇int F

where C and F are entity expressions, is satisfied by I if for every
a ∈ ∆I

i ∩ ∆I

j , a ∈ CI implies a ∈ F I .

• The assertion

R1[U1, . . . , Un] ≤̇int R2[T1, . . . , Tn]

where R1 and R2 are relationship expressions, is satisfied by I if for
every u1, . . . , un ∈ ∆I

i ∩ ∆I

j , < U1 : u1, . . . , Un : un >∈ RI

1
implies

< T1 : u1, . . . , Tn : un >∈ RI

2
.

• The assertion
L1

.
=int L2

where L1 and L2 are class expressions, is satisfied by I if both L1 ≤̇int L2

and L2 ≤̇int L1 are satisfied by I.

• The assertion
C ≤̇ext F

where C and F are entity expressions, is satisfied by I if for every
a ∈ ∆I , a ∈ CI implies a ∈ F I .
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• The assertion

R1[U1, . . . , Un]
.
=ext R2[T1, . . . , Tn]

where R1 and R2 are relationships, is satisfied by I if for every u1, . . . , un ∈
∆I , < U1 : u1, . . . , Un : un >∈ RI

1
implies < T1 : u1, . . . , Tn : un >∈ RI

2
.

• The assertion
L1

.
=ext L2

where L1 and L2 are class expressions, is satisfied by I if both L1 ≤̇ext L2

and L2 ≤̇ext L1 are satisfied by I.

Analogous definitions hold for the semantics of assertions on attribute
expressions.

An interpretation I for a cooperative information system G =< S0, S1, . . . , Sn,Σ >

is called a model of G if every assertion in Σ is satisfied by I.
If σ is an (intraschema or interschema) assertion, we say that σ is a logical

consequence of G (written G |= σ) if σ is satisfied by every model of G.

4 Reasoning on interschema assertions

Most of the reasoning we want to perform on a cooperative information sys-
tem G can be reduced to the problem of checking whether G |= σ, where
σ is an assertion. In this section, we describe a technique that can be used
to devise a solution to this problem. We then show how to use the tech-
nique in order to build a so-called interschema knowledge network, which is
a sort of semantic network representing the relevant knowledge about the
interdependencies holding between classes of different schemas.

4.1 Basic reasoning technique

Our reasoning technique is based on the idea of translating G into a set KG

of assertions of the form
L1 ≤̇ext L2

and then taking advantage of a correspondence between sets of assertions in
our language and formulae of a variant of propositional dynamic logic. In
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particular, every element of KG is an assertion over the alphabet B which is
the union of the alphabets of the schemas S0, S1, . . . , Sn.

The translation of G into KG is done as follows (where L1 is an Si-class
expression and L2 is an Sj-class expression):

• first of all, we include in KG all intraschema assertions of each of the
schemas S0, S1, . . . , Sn,

• we include in KG the assertions

⊤0 ≤̇ext ⊤1 ⊔ · · · ⊔ ⊤n

⊤1 ⊔ · · · ⊔ ⊤n ≤̇ext ⊤0

in order to reflect the semantic constraint that ∆I

0
is the union of the

various ∆I

i , for i ∈ {1, . . . , n}),

• for each assertion σ of the form L1 ≤̇ext L2 in Σ, we include σ in KG,

• for each assertion of the form L1

.
=ext L2 in Σ, we include in KG the

assertions

L1 ≤̇ext L2

L2 ≤̇ext L1

• for each assertion of the form L1

.
=int L2 in Σ, we include in KG the

assertions

L1 ⊓ ⊤j ≤̇ext L2

L2 ⊓ ⊤i ≤̇ext L1

• for each assertion of the form L1 ≤̇int L2 in Σ, we include the assertion

L1 ⊓ ⊤j ≤̇ext L2

It is possible to show that, for any G =< S0, S1, . . . , Sn,Σ >, KG correctly
captures the relevant semantics of the assertions in Σ.

The problem is now how to reason on KG, i.e. how to check whether
KG |= σ, where σ is an assertion. To this end, we establish an interesting
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correspondence between the set of assertion in KG and a formula in a special
propositional dynamic logic. A similar correspondence was noticed by Schild
[24] between terminological languages and modal logics of programs. This
method allows us to prove that reasoning in our language is decidable.

Propositional dynamic logic (PDL) is an extension of propositional logic
in order to reason about program schemes. The language of PDL includes
special operators for forming programs and special modal operators for stat-
ing what is true in the states resulting from the execution of the programs.
From a semantic point of view, formulae of PDL are interpreted in a set
of states, so that programs correspond to transitions over such states, and
formulae represent conditions that can be true or false in the variuos states.
We refer, in particular, to Converse-Deterministic-PDL (CDPDL), that is an
extension of the basic PDL to deal with backward computations (inverse of
the transition function corresponding to a program).

Roughly speaking, we associate with KG a CDPDL formula φ(KG) in
such a way that models of KG corresponds to models of φ(KG), and vicev-
ersa. The correspondence between models is based on a one-to-one mapping
between objects in the interpretations of KG and states in the interpretations
of φ(KG), and between roles (recall that roles connect entities to relation-
ships) and programs in φ(KG).

With the above approach, the logical implication problem for KG is re-
duced to the analogous problem for φ(KG). Since the size of φ(KG) is poly-
nomially related to the size of KG, and reasoning over CDPDL formulae
has an exponential time upper bound [27], it follows that reasoning over KG

is decidable, with exponential time as worst case complexity. More details
about the method can be found in [10].

4.2 Interschema knowledge network

While the technique we have described is the basis for reasoning about a
cooperative information system G, it is often useful to embedd the knowl-
edge represented in G into a compact structure, reflecting all the relevant
interdependencies holding between classes of different schemas. In particu-
lar, in our approach, the relevant interschema knowledge can be expressed
in terms of a so-called interschema knowledge network, which is defined as a
directed graph whose nodes represent classes, and arcs represent extensional
containment between classes.
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The construction of the interschema knowledge network NG associated
with a cooperative information system G is again based on the above de-
scribed reasoning technique, and proceeds as follows:

1. select from the schemas S0, S1, . . . , Sn the classes that are to be asso-
ciated with the nodes of NG,

2. for every pair of selected classes L1, L2, draw an arc in NG from the
node corresponding to L1 to the node corresponding to L2, if G |=
L1 ≤̇ext L2,

3. compute the transitive reduction of NG, i.e. iteratively remove from
NG all the arcs from node n1 to node n2 such that there is a node n3

with arcs < n1, n3 > and < n3, n2 > in NG,

4. for every cycle γ in NG, merge all the nodes belonging to γ into a single
node.

By comparing the interschema knowledge network NG with G itself, we
can point out three main characteristics of NG.

First, NG refers to a selected subset of (not necessarily all) the classes in
the various schemas constituting G. There are several possibility for such a
selection. For example, we may select only atomic entities from the various
schemas, or we may include all atomic entities plus some important com-
plex entities, or we may want to represent in NG all the entities denoted
by some expression in the interschema assertions. Note that the choice of
which entities are represented in NG determines both the complexity and the
completeness of the information carried by NG itself.

Second, while G is a flat collection of interschema assertions, NG reflects
the structure of interdependencies between classes, by making explicit all the
extensional inclusions between selected classes that are implied by G. Note
that such a structure results in a partial order between the selected classes.

Finally, the arcs of NG reflect some important inferences that can be
drawn from G. In particular, the existence of a path in NG from two nodes
n1 and n2 implies that all instances of the class represented by n1 is also an
instance of the class represented by n2. Moreover, the mutual extensional
equivalence of a set of selected classes is made explicit in NG by merging the
corresponding nodes.
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The next section is devoted to a discussion on how to use the interschema
knowledge network NG in order to support several types of tasks to be ac-
complished on the cooperative information system G.

5 Using interschema knowledge

In this section, we show how we can make use of interschema assertions and
the associated reasoning mechanisms in order to draw interesting inferences
on the knowledge represented in a cooperative information system. We dis-
cuss this issue by distinguish two main aspects where reasoning can play an
important role, namely interschema consistency, and integrated access to the
cooperative information system.

5.1 Interschema consistency

Besides providing information on the correspondence between classes in dif-
ferent schemas, interschema assertions actually constitute a declarative spec-
ification of several consistency requirements over different databases. For
example, the interschema assertion

GraduateStudent2 ≤̇ext Student1

specifies that any update operation inserting new instances into the class
GraduateStudent of schema S2 should ensure that the same instance is also
in the class Student of schema S1. Obviously, if the interschema knowledge
is itself incoherent, then no state of the cooperative information system may
exists satisfying all the interschema assertions. Therefore checking coherence
is one of the basic activities for verifying the correctness of the cooperative
information system. In our framework, coherence verification corresponds to
checking G for satisfiability (G is said to be satisfiable if it admits at least
one model), and this task can be directly done by exploiting the reasoning
technique described in the previous section.

Even if the set of interschema assertions is globally satisfiable, it may be
the case that the cooperative information system suffers from other types of
incoherence. Let us call a class L incoherent in G if the extension of L is
invariably empty in all the models of G. Class coherence can be checked by
using the interschema knowledge network. Indeed, it is easy to see that the
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fact that a class Li to be incoherent in G is reflected in the existence of a
path in NG from the node corresponding to L to the node associated with
⊥0.

A further aspect related to the consistency of interschema knowledge is
concerned with schema integration. We argue that the whole framework
presented in this paper provides a formal setting for schema integration,
an aspect that is often neglected in the existing integration methodologies.
If we want to integrate two or more schemas belonging to the cooperative
information system, we can benefit from the knowledge expressed in NG,
in all the phases of the integration process (see [3, 26]). In particular, the
activity of conflict detection can be fully automatized in our approach. Also,
NG allows one to single out several forms of redundancies in the integrated
schemas, and makes it explicit which are the links to be included in the
integrated schema in order to reflect meaningful relationships between classes
coming from different schemas.

Notice that the issue of interschema consistency checking is not only rel-
evant when a global view of the cooperative information system is to be
constructed. In fact, checking the coherence of interschema knowledge is re-
quired every time information is shared among two or more databases. For
this reason, this issue is also important in those approaches where building
a global schema is avoided.

5.2 Integrated access

We use the term integrated access to mean any querying operation that may
require accessing different component information systems. As pointed out
in [17], typical needs requiring integrated access include: to pose queries with
the same intention to each component informations system, to pose queries
spanning over several component information systems, to be provided with
a unified view of the cooperative information system.

Our goal in this section is to show that interschema assertions and its
associated reasoning mechanisms can play an important role in supporting
integrated access, in particular by allowing several forms of intensional rea-
soning to be performed over query expressions.

We assume that queries are complex expressions whose atomic compo-
nents are class expressions in the language described in Section 2. Such
atomic components, called query clss expressions, are the elements that the
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system can reason upon. We also assume that all symbols in B0, B1, · · · , Bn

may appear in query class expressions, so that users and applications can
refer both to selected schemas, when classes of objects of a specific infor-
mations system are requested, and to the common knowledge schema, when
general classes, independently of the location of the corresponding instances,
are needed. For example, a query Q may refer to

Student0 ⊓ ∃Enrolled0[s].c : GraduateCourse1

denoting the classes of objects of the common knowledge schema that are
instances of Student and are enrolled in at least one course that is an instance
of the class GraduateCourse1 of schema S1. Notice that the formal semantics
of a query class expression easily derives from the semantics of the cooperative
information system G.

All intensional reasoning performed on a query class expression Q is based
on first classifying Q over the interschema knowledge network NG associated
with a cooperative information system G, and then analysing the result of
such classification in order to deduce relevant information for the query an-
swering strategy.

Classifying Q over NG means

1. introducing a new node D corresponding to Q in the network,

2. drawing an arc from D to E for each node E such that KG |= (D ≤̇ext E),

3. drawing an arc from F to D for each node F such that KG |= (F ≤̇ext D),

4. and, finally, computing the transitive reduction of the network, and
merging nodes corresponding to equivalent, thus obtaining the network
NG

Q .

The resulting network NG
Q carries out several interesting information

about Q. We analyze three interesting cases where the system can take
advantage of such information.

1. The node D is placed under the node associated with ⊥0, meaning that
the query represents class that is incoherent in G. It is evident that
such an information allow the system to avoid accessing the cooperative
information system, thus saving processing time.
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2. The node D is merged with a node Z associated with a class C be-
longing to a schema Si, with i 6= 0. In this case, the query class Q

is extensionally equivalent to C, and the answer to the query can be
obtained simply by accessing the component information system whose
schema is Si.

3. If none of the above two cases occur, then let F1, . . . , Fp be the imme-
diate successors of D such that each i ∈ {1, . . . , p} is different from 0,
and let H1, . . . , Hq be the immediate predecessors of D such that each
i ∈ {1, . . . , q} is different from 0. The basic observation is that possi-
ble redundancies between F1, . . . , Fp (H1, . . . , Hq) and other classes in
the cooperative information system are made explicit by the structure
of NG

Q . For example, it is clear that accessing a class Cj which is a
predecessor of Hk for some K ∈ {1, . . . , q}, is useless for retrieving the
instances of Q.

We illustrate this case by means of an example. Suppose that the
schema S1 refers to the University U and the schema S2 refers to the
Computer Science Department of U, and consider the following inter-
schema assertions:

Student2 ≤̇ext Student1

AdvancedCSC1

.
=ext AdvancedCSC2

CSCourse1

.
=ext CSCourse2

Enrolled1[s, c]
.
=int Enrolled2[s, c]

Enrolled2[s, c] ≤̇ext Enrolled1[s, c]

Tutoring
0
[t, c]

.
=int Tutoring

1
[t, c]

Tutoring
0
[t, c]

.
=int Tutoring

2
[t, c]

∃Tutoring
0
[t].c : CSCourse0

.
=int Student2

∃Enrolled1[s].c : AdvancedCSC1 ≤̇ext Student2.

The last two assertions state that the class of tutors of advanced Com-
puter Science courses is intensionally less general than the class of stu-
dents of interest for the Computer Science Department, and that the
instances of the class Student of the schema S1 that are enrolled in
some advanced Computer Science course are also instances of the class
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Student of the schema S2. Now, if we classify the query class expression
Q

Student1 ⊓ (∃Enrolled2[s].c : AdvancedCSC2)

⊓ (∃Tutoring
0
[t].c : CSCourse0)

over the interschema knowledge network, it turns out that Q is a subset
of Student2 and therefore, although the query refers to symbols in
S0, S1 and S2, it is sufficient to access only S2 in order to compute the
answer.

All the above observations show that, based on the fact that the vari-
ous nodes (except for those associated with S0-classes) correspond to classes
whose instances are located in a particular component information system,
the system can profitly take advantage of NG

Q in order to decide which are
the minimal collection of component information systems to be accessed in
order to retrieve the instances required by the query.

Other types of reasoning over NG
Q , such as deciding if accessing a given

set of component information systems is sufficient for answering Q, or re-
formulating an S0-query class expression in terms of the symbols of a given
alphabet Bi (with i 6= 0), can also be carried out by exploiting the informa-
tion provided by NG

Q .

6 Conclusions

We have presented a formal framework for representing interschema knowl-
edge in cooperative information systems. Interschema knowledge is specified
in terms of a special language, allowing for expressing several forms of seman-
tic interdependencies between the classes represented in different schemas.
One distinguishing feature of our work is to provide inference mechanisms
that allow one to reason on such assertions. We have discussed the use of
the inference procedures in various tasks related to the use of cooperative
information systems.

In this paper, we have assumed that all the schemas of interest are ex-
pressed in the same representation model, which is a class-oriented model
based on first-order logic. However, as we said in the introduction, the whole
approach can be extended to the case of multiple models.
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We believe that the framework presented in this paper constitute a sound
basis for studying the various issues related to interschema knowledge repre-
sentation and reasoning. At the same time, the work presented in this paper
makes it clear that there are several aspects that deserve more investigation.
We point out here two important aspects.

First of all, the issue of efficiency of the reasoning procedure must be ad-
dressed. As we said before, the worst case computational complexity of such
procedure is exponential. It is worth analyzing in more detail its behaviour
in practical cases, and devising several optimizations. Notice, however, that
the high complexity is concerned with the task of checking whether G log-
ically imply an assertion σ (which is necessary for building NG), whereas,
after constructing NG, we can make reasoning much more efficient. Also,
although in this paper we have focused on complete (in the logical sense)
reasoning procedures, we observe that many interesting kinds of reasoning
needed in the framework of cooperative information systems can be carried
out by incomplete, but more efficient, inference algorithms approximating
the complete answer. We believe that this direction is a promising one for
effectively using in practical settings the logic underlying our approach.

Another challenging problem to consider is related to the need of going
beyond the realm of first order logic when expressing interschema knowledge.
In particular, it would be useful for a designer of a cooperative information
system to express several forms of default assumptions on interschema as-
sertions. A simple and important example of such assumptions is the one
stating that, by default, two classes that are not explicitely linked in the
interschema knowledge network are in fact disjoint. This is a sort of closed
world assumption regarding the schema level of the cooperative informa-
tion system, that generalize the usual closed world assumption in traditional
databases. More generally, it would be interesting to study to what extent
the existing approaches to nonmonotonic reasoning developed in Artificial
Intelligence are well suited for dealing with default knowledge in cooperative
information systems.
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