
Submitted to Elsevier Science

An overview on XML similarity: background, current trends and

future directions

Joe Tekli, Richard Chbeir
*
, and Kokou Yetongnon

LE2I Laboratory UMR-CNRS, University of Bourgogne, 21078 Dijon Cedex France

ABSTRACT

In recent years, XML has been established as a major means for information management, and has been broadly utilized for complex data

representation (e.g. multimedia objects). Owing to an unparalleled increasing use of the XML standard, developing efficient techniques for

comparing XML-based documents becomes essential in the database and information retrieval communities. In this paper, we provide an

overview of XML similarity/comparison by presenting existing research related to XML similarity. We also detail the possible applications

of XML comparison processes in various fields, ranging over data warehousing, data integration, classification/clustering and XML

querying, and discuss some required and emergent future research directions.

© 2002 Elsevier Science. All rights reserved.

Keywords: XML, Semi-structured data; Structural similarity; Tree edit distance; Data warehousing; Document classification and clustering; Information

retrieval; Ranked queries.

Contents

1. Introduction .. 2

2. A Glimpse on XML .. 2

2.1. Document-centric Vs Data-centric XML ... 2

2.2. XML Data Model ... 3

3. Background .. 3

3.1. Tree Edit Distance Methods for XML Similarity .. 4

3.1.1. Basic Notions and Concepts .. 4

3.1.2. State of the Art in Tree Edit Distance Methods ... 5

3.2. Information Retrieval Methods for XML Similarity ... 7

3.2.1. Traditional Information Retrieval .. 7

3.2.2. Extending Conventional Information Retrieval to Deal with XML .. 8

3.3. Other techniques for XML Similarity .. 10

3.3.1. Structure-only XML Similarity Methods.. 10

3.3.2. Structure-and-content XML Similarity Methods .. 12

4. Applications of XML Similarity ... 14

4.1. Data Warehousing: Version Control and Change Management .. 14

4.2. XML Classification and Clustering .. 14

4.3. Data Integration ... 15

4.4. Ranked XML Querying ... 15

5. Discussions and future research directions .. 16

5.1. XML Structural Similarity ... 16

5.1.1. Undetected Sub-tree Similarities .. 16

5.1.2. The special case of single leaf node sub-trees .. 17

5.2. XML Semantic Similarity .. 18

5.3. Exploiting XML Grammars ... 18

6. Conclusion ... 19

*
 Corresponding author. Tel.: +33 3 80 39 36 55; Fax: +33 3 80 39 68 69; e-mail: richard.chbeir@u-bourgogne.fr

 Submitted to Elsevier Science 2

1. Introduction

W3C’s XML (eXtensible Mark-up Language) has recently

gained unparalleled importance as a fundamental standard

for efficient data management and exchange. Information

destined to be broadcasted over the web is henceforth

represented using XML, in order to guarantee its

interoperability. The use of XML covers data representation

and storage, database information interchange, data

filtering, as well as web services interaction.

Owing to the increasing web exploitation of XML,

XML-based similarity/comparison becomes a central issue

in the database and information retrieval communities. By

XML similarity, we underline XML document-related

similarities, i.e., document/document, document/pattern
1
, as

well as document/grammar
2
 comparison, the types of

objects being compared varying w.r.t. (with respect to) the

application scenario at hand. Applications of XML

comparison are numerous and range over: i) version

control, change management and data warehousing

(finding, scoring and browsing changes between different

versions of a document, support of temporal queries and

index maintenance), ii) semi-structured data integration

(identifying similar XML documents originating from

different data sources, to be integrated so that the user can

access more complete information), iii)

classification/clustering of XML documents gathered from

the web against a set of XML grammars declared in an

XML database (just as schemas are necessary in traditional

DBMS for the provision of efficient storage, retrieval and

indexing facilities, the same is true for XML repositories),

iv) as well as XML retrieval (finding and ranking results

according to their similarity in order to retrieve the best

results possible).

A wide range of algorithms for comparing semi-

structured data, e.g., XML-based documents, have been

proposed in the literature. These vary w.r.t. the kinds of

XML data they consider, as well as the kinds of

applications they perform. They can be classified in three

main groups: i) Edit Distance (ED) based methods, ii)

Information Retrieval (IR) based methods, and iii) other

diverse approaches exploiting different techniques to XML

comparison (e.g., edge matching, path similarity…). ED-

based methods make use of dynamic programming

techniques for finding the edit distance between tree

structures, XML documents being modeled as ordered

labeled trees. Most of these methods are designed for

document/document comparison tasks. They target

rigorously structured XML and are usually fine-grained.

They are mainly useful for applications that require

accurate (fine-grained) detection of XML document

structural similarities, i.e., version control and change

management (ED algorithms having the advantage of

1 An XML pattern is a portion of an XML document.
2
 Either a DTD or XML Schema [28].

producing edit scripts, along the similarity value itself,

which would be exploited in describing changes), data

integration, as well as XML classification/clustering

applications. IR-based approaches extend conventional

information retrieval methods, e.g., the vector space model,

so as to provide XML document/query similarity

assessment. In this context, an XML query basically comes

down to either an XML document, a pattern, or a

conjunction of patterns (cf. Section 3.2). IR-methods target

loosely structured XML data and are usually coarse-

grained, thus useful and generally exploited for fast simple

XML search and retrieval. Note that ranked XML querying

applications usually prioritize performance w.r.t. result

quality, i.e., producing good-enough results in short time

laps. The third group of methods comprises of different

approaches to XML similarity. They exploit various

techniques (e.g., tag similarity, edge matching, path

similarity, entropy…) addressing specific application

scenarios. Some provide approximations of (more complex

and accurate) existing approaches (mainly ED-based).

The goal of this study is to provide a unified view of

the problem, assessing the different aspects, techniques and

various applications related to XML similarity. The

remainder of this paper is organized as follows. Section 2

presents a glimpse on XML as a data representation model.

Section 3 reviews background in XML similarity, covering

the three main groups of methods mentioned above: ED-

based, IR-based and various application specific

approaches. Section 4 develops the main applications and

uses of XML comparison. Some ongoing motivations and

possible future research directions are covered in the

Section 5. Section 6 concludes the paper.

2. A Glimpse on XML

With the growth of the World Wide Web, there is an

increasing need to automatically process Web documents

for efficient data management, similarity clustering and

search applications. While HTML (Hyper Text Markup

Language) provides a rather visual markup, having

knowledge of the logical structure of the data is a

fundamental prerequisite for the interoperability of web-

based information systems [31]. Hence, XML was

introduced by the W3C as an efficient means for data

representation and management.

2.1. Document-centric Vs Data-centric XML

There are two different views of XML: the document-

centric view and the data-centric view.

− Document-centric design involves a liberal use of

free-form text that is marked up with elements (cf.

Figure 1.a). It focuses on XML applications for

exchanging documents in the traditional sense.

Document-centric XML is easy to render on some

 Submitted to Elsevier Science 3

sort of output device. For example, it is quite easy

to format the document in Figure 1.a. into HTML,

because it is similar to HTML in its tagging and

mark up styles.

− Data-centric XML, however, underlines well

structured information, i.e. the data is strictly

tagged (cf. Figure 1.b). The data-centric view is

usually utilized for exchanging data in a structured

form, such as classical EDI (Electronic Data

Interchange) and database applications. In

addition, data-centric documents are easier to

process with computer programs and automatic

processes, because the data is better organized.

<?XML>

 <Memo>

 Please make sure you are at the

 <Location>ninth floor</Location>by

 <MeetingTime>10:30 AM</MeetingTime>

 to<Purpose>discuss the

 budget</Purpose>

 </Memo>

a. Document-centric XML

<?XML>

 <Memo>

 <MeetingTime>10:30AM</MeetingTime>

 <Purpose>Discuss Budget</Purpose>

 <Location>ninth floor</Location>

 </Memo>

b. Data-centric XML

Fig. 1 - Sample document-centric and data-centric XML

documents.

Both data-centric and document-centric aspects of

XML have been considered in assessing XML similarity.

As mentioned previously, ED-based XML similarity

approaches are usually fine-grained and thus dedicated to

comparing well structured data-centric XML documents,

while IR-based methods are coarse-grained and target

loosely structured document-centric XML.

2.2. XML data model

XML documents represent hierarchically structured

information and are generally modeled as Ordered Labeled

Trees (OLTs)
1
. In a traditional DOM (Document Object

Model) ordered labeled tree [88], nodes represent XML

elements and are labeled with corresponding element tag

names. Element attributes mark the nodes of their

containing elements. Some studies have considered OLTs

with distinct attribute nodes, labeled with corresponding

attribute names [61], [90]. Attribute nodes appear as

children of their encompassing element nodes, sorted by

attribute name, and appearing before all sub-element

siblings [61].

Element/attribute values can be disregarded (structure-

only) or considered (structure-and-content) in the

comparison process following the application scenario at

1
 In the following, tree designates ordered labeled tree.

hand (cf. Figure 2). In general, element/attribute values are

disregarded when evaluating the structural properties of

heterogeneous XML documents, i.e., documents

originating from different data-sources and not conforming

to the same grammar (DTD/XML Schema)
2
, so as to

perform XML structural classification/clustering [23] [61]

or structural querying (i.e., querying the structure of

documents, disregarding content [6]). Nonetheless, values

are usually taken into account with methods dedicated to

XML change management [16] [20], data integration [37]

[51], and XML (structure-and-content) querying

applications [74], [90], where documents tend to have

relatively similar structures (probably conforming to the

same grammar [47], [86]). With such methods, XML text

sequences are usually decomposed into words, mapping

each word to a leaf node labeled with the respective word.

 <?XML>

 <Academy>

 <Faculty>
 <Department>

 <Professor>John Cramer </Professor>

 <Student>John Takagi </Student>

 </Department>

 </Faculty>

 </Academy>

a. XML document

b. OLT with values c. OLTs where values are disregarded

Fig. 2. A sample XML document with corresponding OLTs.

3. Background on XML Similarity

Various criterions could allow the description and

categorization of XML similarity methods, including:

i. The kind of technique being used: ED-based, IR-

based, and others (tag similarity, edge matching, …)

ii. The kind of XML data being compared:

− document/document, document/pattern or

document/grammar

− document-centric or data-centric,

− structure-only or structure-and-content

iii. The intended application domain: change

management and version control, data integration,

classification/clustering, and ranked querying.

2 It is the case of lots of XML documents on the web [61].

Student Professor

2

3

1 Academy

Faculty

Department

5

Student Professor

2

3

1 Academy

Faculty

Department

John Cramer John Takagi

4

4

5 6 7 8

 Submitted to Elsevier Science 4

In the following, for clarity of presentation, we review

XML similarity methods based on the kinds of techniques

they exploit (i.e., ED-based, IR-based and others). We

estimate this categorization provides the simplest and most

consistent unified view of the wide variety of divers

methods proposed in the literature. The kinds of XML data

being treated as well as the intended applications domains

will be discussed for each method. Catalogs summarizing

the properties and characteristics of all methods covered in

this review are depicted in Tables 1, 2 and 3 at the end of

the paper.

3.1. Tree edit distance methods for XML similarity

Various methods, for estimating the similarities between

hierarchically structured data, particularly between XML

documents, have been proposed in the literature. Most of

them derive, in one way or another, the dynamic

programming techniques for finding the edit distance

between strings [48], [83], [87]. In essence, all these

approaches aim at finding the cheapest sequence of edit

operations that can transform one tree into another, XML

documents being modelled as ordered labelled trees [88].

Below, we provide formal definitions of the common

concepts related to tree ED.

3.1.1. Basic notions and common concepts

Definition 1 - Edit script: It is a sequence of edit

operations op1, op2, …, opk. When applied to a tree T, the

resulting tree T’ is obtained by applying edit operations of

the Edit Script (ES) to T, following their order of

appearance in the script. By associating costs with each edit

operation, CostOp, the cost of an ES is defined as the sum of

the costs of its component operations: CostES = | |

i

ES

Opi=1
Cost∑ .

Definition 2 - Edit distance: The edit distance between

two trees A and B is defined as the minimum cost of all edit

scripts that transforms A to B: Dist(A, B) = Min{CostES }.

Thus, the problem of comparing two trees A and B, i.e.

evaluating the structural similarity between A and B, is

defined as the problem of computing the corresponding tree

edit distance [89].

As for tree edit operations, they differ following the

edit distance method at hand, and can be classified in two

groups: atomic tree edit operations and complex edit

operations. An atomic edit operation on a tree (i.e. rooted

ordered labeled tree) is either the deletion of an inner/leaf

node, the insertion of an inner/leaf node, or the replacement

(i.e. update) of a node by another one. A complex tree edit

operation is a set of atomic tree edit operations, treated as

one single operation. A complex tree edit operation is either

the insertion of a whole tree as a sub-tree in another tree

(which is actually a sequence of atomic node insertion

operations), the deletion of a whole tree (which consists of

a sequence of atomic node deletion operations), or moving

a sub-tree for one position into another in its containing tree

(which is a sequence of atomic node insertion/deletion

operations). The authors in [17] introduce sub-tree copying

and gluing operations. These are similar to tree

insertions/deletions respectively, but are defined in the

context of unordered tree comparison. Thus, they won’t be

further investigated hereunder.

In the following, we present the general form and

variations for each of the tree edit operations stated above.

Definition 3 – Update node: Given a node x in tree T and

a new node y, Upd(x, y) is an update operation replacing x

by y in the transformed tree (cf. Figure 3.a). Node y will

have the same parent and children as x.

Definition 4 – Insert node:

Variation 1: Given a node x and a tree T, T encompassing

node p with first level sub-trees (i.e. children) P1, …, Pm,

Ins(x, p, {Pi, …, Pj}) inserts node x in T as the i
th

 child of p

making x the parent of the consecutive subsequence of sub-

trees {Pi, …, Pj} of p (cf., Figure 3.b).

Variation 2: The insertion operation can be restricted to

leaf nodes in some ED approaches: InsLeaf(x, p, i) inserting

leaf node x as the i
th

 child of p (cf., Figure 3.d)

a. Update node b. Insert (internal) node

c. Delete (internal) node d. Insert leaf node

e. Delete leaf node f. Move node (sub-tree)

g. Insert sub-tree h. Delete sub-tree

Fig. 3 - Tree edit operations (simplified syntaxes).

r

a

d c

InsTree(S, a, 1)

r

a

d c

e f b

S DelTree(S, a)

r

a

d c

e f b

S

r

a

d c

r

a

d c b

InsLeaf(e, a, 2)

r

a

d e c b

DelLeaf(e, a)

r

a

d e c b

r

a

d c b

Mov(f, a, 2)

r

a

e b f

c d

r

a

d c

e f b

r

a

d c

e f b

r

a

e d c b

Del(f, a)

r

a

e d c b

Ins(f, a, {c, d})

r

a

d c

e f b

r

a

e c b

Upd(a, f)

r

f

e c b

 Submitted to Elsevier Science 5

Definition 5 – Delete node:

Variation 1: Given a node x and a tree T, T encompassing

node p with first level sub-trees (i.e. children) {P1, …, Pi-1,

x, Pi+1, …, Pm}, and x having first level sub-trees {X1, …,

Xn}, Del(x, p) deletes node x in T, making the children of x

become the children of p. The children of x are inserted in

the place of x as a subsequence in the left-to-right order of

the children of p (Figure 3.c).

Variation 2: The deletion operation can be restricted to leaf

nodes in some ED methods: DelLeaf(x, p) (cf., Figure 3.e).

Definition 6 - Insert tree: Given a tree A and a tree T, T

including node p with first level sub-trees {P1, …, Pm} ,

InsTree(A, p, i) is a tree insertion applied to T, inserting A

as the i
th

 sub-tree of p (cf. Figure 3.g).

Definition 7 - Delete tree: Given a tree A and a tree T, T

encompassing node p with first level sub-trees {P1, …, Pi-1,

A, Pi+1, …, Pn}, DelTree(A, p) deletes sub-tree A in T from

among the children of p (cf. Figure 3.h).

Definition 8 – Move node: Given a node x and a tree T, T

encompassing node p, Mov(x, p, i) moves x and its children

to become the i
th

 child of node p (cf. Figure 3.f).

3.1.2. State of the art in tree edit distance methods

Tree ED algorithms can be distinguished by the set of edit

operations that are allowed as well as overall

complexity/performance and optimality/efficiency level.

Early approaches: In [78], the author introduces the

first non-exponential algorithm to compute the edit distance

between ordered labeled trees, allowing insertion, deletion

and substitution (relabeling) of inner nodes and leaf nodes.

The resulting algorithm has a complexity of O(|T1|×|T2|×

depth(T1)
2
×depth(T2)

2
) when finding the minimum edit

distance between two trees T1 and T2 (|T1| and |T2| denote

tree cardinalities while depth(T1) and depth(T2) are the

depths of the trees). Similarly, early approaches in [77] and

[89] allow insertion, deletion and relabeling of nodes

anywhere in the tree (cf. Figures 3.a, 3.b and 3.c). Yet, they

remain complex. The approach in [89] is of complexity

O(e
2
×|T1|×min(|T1|, |T2|)) (e is the weighted edit distance

1
),

while that in [77] has a time complexity of

O(|T1|×|T2|×depth(T1)×depth(T2)). Note that the

approaches in [77], [78], [89] were not mainly developed in

the XML context, and thus might yield results (i.e. edit

scripts, and consequently distances) that are not completely

appropriate to XML data. In particular, it has been recently

argued that restricting insertion and deletion operations to

leaf nodes fits better in the context of XML data, w.r.t.

insertions and deletions applied anywhere in the XML tree

1
 Let S = op1, op2, …, opn be the cheapest sequence of edit operations that

transforms tree A to B, then the weighted edit distance is given by e =

∑ 1≤ i ≤ n wi where wi, for 1≤ i ≤ n, is 1 if opi is an insert or delete

operation, and 0 otherwise.

[23]. Following [23], the latter pair of operations destroys

the membership restrictions of the XML hierarchy and thus

does not seem to be natural for XML data (e.g.,

deleting/inserting an inner node and moving its children

up/down one level, cf. Figures 3.d and 3.c). ED-based

approaches dedicated to XML-based data tend to prevent

such operations by utilizing ones that target leaf nodes (cf.

Figures 3.d and 3.e) or whole sub-trees (cf. Figures 3.g and

3.h). Hence, the deletion of an internal node in an XML

document tree would require deletions of all nodes in its

path, starting from the leaf node and going up to the

internal node itself, which could also be performed via one

single tree deletion operation. Likewise, the insertion of an

inner node must be performed before the insertion of any of

its descendents, which could be undertaken via one tree

insertion operation.

Trading quality for performance: In [16], [20], the

authors restrict insertion and deletion operations to leaf

nodes and add a move operator that can relocate a sub-tree,

as a single edit operation, from one parent to another (cf.

Figures 3.a, 3.d, 3.e and 3.f). Note that a move operation

can be seen as a succession of insert and delete operations.

Yet, it is different in its cost (the authors in [16], [20]

consider that the cost of moving a sub-tree is much lesser

than the sum of the costs of deleting the same sub-tree,

node by node, from its current position and inserting it in

its new location). However, algorithms in [16], [20] do not

guaranty optimal results.

On one hand, the algorithm in [16] runs in five phases:

update, align, insert, move and delete. Each of them, to the

exception of the align phase, corresponds to the application

of the best possible combinations of the corresponding edit

operation, so as to match the compared trees. As for the

align phase, the authors make use of a variation of the

Longest Common Subsequence algorithms (LCS) [59] in

determining the set of misaligned children nodes
2
 of a

given inner node (repeated for each tree node throughout

the matching process). Those misalignments are exploited

in the subsequent move phase in determining the set of

move operations to be performed. Nonetheless, XML

documents being compared should abide two main

assumptions without which the algorithm would yield

suboptimal results (i.e., overlooking the minimum cost edit

script): i) node labels have to follow a certain predefined

ordering w.r.t. a given schema, and ii) given any leaf node

in the first document, there is at most one leaf node in the

second document that matches the first and vice versa.

Algorithm complexity simplifies to O(n×e + e
2
), where n is

the total number of leaf nodes in the trees being compared.

On the other hand, the algorithm in [20] tries to detect

large sub-trees that were left unchanged between the two

XML trees being compared. These are matched.

Consequently, it tries to match more nodes by considering

ancestors and descendants of matched nodes, taking labels

2 These are nodes bearing the same labels/values but having different

 ordering positions w.r.t. their parent nodes.

 Submitted to Elsevier Science 6

into account. It also considers ID attributes in matching

corresponding nodes (nodes with identical IDs are

matched). The algorithm however trades some quality to

get an algorithm which runs in average linear time: no more

than O(N×log(N)) where N is the maximum number of

nodes in the trees being compared. In other words, the

distance attained when comparing two trees is not always

minimal, some sets of move operations not being optimal

(i.e., the produced edit script is not of minimal cost).

Both methods in [16] and [20] were developed in the

context of change management and version control. They

are designed for document/document comparison and

consider XML element/attribute values (cf. Figure 2.b) in

their computations, in contrast with remaining methods in

this section which specifically target the structural

properties of XML documents (cf. Figure 2.c).

Combining efficiency and performance: Work

provided in [18] has been considered as a reference point in

recent tree edit distance literature and has provided the

basis for various XML related structural comparison

studies [61], [23], [79]. Chawathe’s approach restricts

insertion and deletion operations to leaf nodes (which are

viewed as natural operations in the XML context) and

allows the relabeling of nodes anywhere in the tree, while

disregarding the move operation (cf. Figures 3.a, 3.d and

3.e). The proposed algorithm is a direct application of the

famous Wagner-Fisher algorithm [83] which optimality has

been accredited in a broad variety of computational

applications [2], [87]. It is also among the fastest tree ED

algorithms available. In short, the author transforms trees

into special sequences called ld-pairs. The ld-pair

representation of a tree comes down to the list, in preorder,

of the ld-pair representations of its nodes. The ld-pair

representation of a tree node is the pair (l, d) where l is the

node’s label and d its depth in the tree (e.g., the ld-pair

representation of the XML tree in Figure 2.c is (Academy,

0), (Faculty, 1), (Department, 2), (Professor, 3), (Student,

3)). Consequently, the author simplifies the problem of

comparing two document trees to that of comparing the

corresponding ld-pair representations, using a

specialization of the Wagner-Fisher algorithm [83]. He also

extends his algorithm for external-memory computations

and identifies respective I/O, RAM and CPU costs. Note

that this is the only algorithm that has been extended to

efficiently calculate edit distances in external memory

(without any loss of computation quality/efficiency).

The overall complexity of Chawathe’s algorithm is of

O(N
2
), its performance and efficiency being recognized in

[61] as well as [23] (recall that N is the maximum number

of nodes in the trees being compared).

Sub-tree similarity: While it might be considered as a

starting point for recent XML tree edit distance approaches,

the approach in [18] overlooks certain sub-tree similarities

while comparing XML documents. For instance, computing

edit distance between XML trees A, B and C in Figure 4

yields Dist(A, B) = Dist(A, C) = 3, which corresponds to

the cost of three consecutive insert operations (unit costs

are usually used) introducing nodes b, c and d (e, f and g) in

tree A transforming it into B (C). Nonetheless, one can

realize that tree A is structurally more similar to B, than to

C, the sub-tree A1, made up of nodes b, c and d, appearing

twice in B (B1 and B2) and only once in C (C1). Such sub-

tree structural similarities are also left unaddressed by other

existing approaches.

Fig. 4 - Sample XML trees.

In [61], the authors stress the importance of identifying

sub-tree structural similarities in an XML tree comparison

context, due to the frequent presence of repeated and

optional elements in XML documents. Repeating elements

often induce multiple occurrences of similar

element/attribute sub-trees (presence of optional

elements/attributes) or identical sub-trees in the same XML

document (such as the sub-trees B1 and B2 in XML tree B,

cf. Figure 4) which reflects the need to take these sub-tree

resemblances into consideration while comparing

documents. The authors in [61] extend the approach of

Chawathe [18] by adding two new operations: insert tree

and delete tree (cf. Figures 3.g and 3.h) to discover sub-tree

similarities, by making use of the contained in relation

between trees/sub-trees. A tree T1 is said to be contained in

a tree T2 if all nodes of T1 occur in T2, with the same parent/

child edge relationship and node order. Additional nodes

may occur in T2 between nodes in the embedding of T1.

Following [61], a tree A may be inserted in T only if A is

already contained in the source tree T. Similarly, a tree A

may be deleted only if A is already contained in the

destination tree T. Therefore, the proposed approach

captures the sub-tree structural similarities between XML

trees A/B in Figure 5, transforming A to B in a single edit

operation: (inserting sub-tree B2 in A, B2 occurring in A as

A1), whereas transforming A to C would always need three

consecutive insert operations (inserting nodes e, f and g).

The overall complexity of their algorithm simplifies to

O(N
2
). Structural clustering experiments in [61] show that

the proposed algorithm outperforms, in quality, that of

Chawathe [18], which in turn yields better results than

Zhang and Shasha’s algorithm [89]. However, the authors

in [61] show that their algorithm is conceptually more

complex than its predecessor, requiring a pre-computation

phase for determining the costs of tree insert and delete

operations (which complexity is of O(2×N + N
2
)).

a

b

d c
A1

Tree A

a

b

d c

e

g f

Tree C a

b

c

b

d c d

Tree B

B1 B2 C1 C2

 Submitted to Elsevier Science 7

Structural summaries: The authors in [23] provide an

edit distance algorithm combining features from both [18],

[61] and propose to apply it on XML tree structural

summaries, instead of whole document trees, in order to

gain in performance. Structural summaries are produced

using a dedicated repetition/nesting reduction process. The

structural summary of an XML tree comes down to a

modified tree in which the redundancies due to nested-

repeated and repeated XML nodes are eliminated (e.g., the

structural summary of tree B in Figure 4 is tree A, the

repeated sub-tree B2 being omitted). Their algorithm can be

viewed as a special case of [61]’s algorithm where insert

and delete tree operations costs are computed as the sum of

the costs of inserting/deleting all individual nodes in the

considered sub-trees. The algorithm is of O(N
2
)

complexity. Experimental results in [23] showed improved

document clustering quality w.r.t. [18]’s algorithm.

XML/DTD similarity: In [80], the authors propose an

ED-based approach that is slightly different in scope w.r.t.

existing methods. The authors provide an algorithm

dedicated to comparing an XML document and a DTD

grammar. They introduce an algorithm based on the tree

edit distance concept, as an effective and efficient means

for comparing tree structures, XML documents and DTDs

being modeled as ordered labeled trees (element/attribute

values in elements are disregarded). The proposed method

extends the algorithm in [61] by considering the various

DTD constraints on the existence, repeatability and

alternativeness of XML elements/attributes. The approach

is of polynomial complexity (O(N
3
) where N is the

maximum number of nodes in the XML/DTD trees being

compared), in comparison with existing exponential

methods, i.e., [6], presented in the following section.

Classification experiments on sets of real and synthetic

XML documents, underline the approach’s effectiveness,

and its applicability to large XML repositories.

Comparing tree edit distance approaches, to identify

the best XML structural similarity methods, is not a trivial

task. Each method is developed in a specific context and

might thus yield inappropriate results when applied in a

different framework. Nonetheless, w.r.t. the two major

criterions that roughly characterize tree edit distance

methods: efficiency (quality) and performance

(complexity), the approach in [61] seems to be one of the

most sophisticated ED-based XML structural similarity

methods to date. Regarding quality, Nierman and

Jagadish’s approach [61] was proven to be more accurate

in detecting XML structural resemblances, particularly sub-

tree related similarities, in comparison with some of its

famous predecessors (i.e. [18], [89]). It was consequently

adopted as the basis for more recent studies, particularly

[23], [80]. Regarding performance, the authors in [61] were

able to maintain quadratic time complexity in developing

their algorithm, which is typical to ED-based approaches.

Table 1 depicts the various ED-based XML similarity

approaches developed in the literature.

3.2. Information retrieval methods for XML similarity

While a lot of work has been undertaken in edit distance

related research, for comparing XML data, XML similarity

is also becoming one of the central topics in the

information retrieval field. Recall that ED-based

approaches focus on rigorously structured data-centric

XML and target change management, data integration and

structural classification/clustering applications, whereas IR-

based methods treat loosely structured document-centric

XML and mainly target ranked XML querying.

Since documents are flat with conventional

information retrieval, i.e. they represent unstructured data,

traditional IR methods for searching and querying

information are no longer adequate with semi-structured

data such as XML [36]. As stated earlier, XML documents

represent hierarchically structured information (cf. Figure

2). In other words, content is distributed at different levels

of the document tree. Therefore, it is to be treated

differently w.r.t. flat content so as to improve retrieval

precision [75]. First, information placed near the root node

of an XML document tends to be more important than

information further down in the hierarchy [6] [90].

Intuitively, as one descends in the XML tree hierarchy,

information becomes increasingly specific, consisting of

finer and finer details, its affect on the meaning of the

whole document tree decreasing accordingly. This is

orthogonal to traditional flat documents where information

is placed at one single level and is of the same relevance.

Second, users in turn would like to refer to document

structure when searching for relevant information in XML

documents [36]. To do so, they pose so called content-and-

structure queries, in comparison with the content-only

queries in conventional IR [69], by restricting the context of

interest to some XML elements in the documents being

searched [36]. Therefore, various attempts to extend

existing IR methods in order to account for the structure of

XML documents, in the document/query comparison

process, have been undertaken (a query, in the IR context,

underlining a whole XML document, an XML document

fragment or a conjunction of fragments).

In the following subsection, we start by presenting an

overall view of traditional IR concepts, the vector space

model in particular. Thereafter, we cover IR methods

extended for XML data.

3.2.1. Traditional information retrieval

Information retrieval (IR) is a branch of informatics

concerned with the acquisition, organization, storage,

search and selection of information [69]. While it is used to

deal with flat textual data (i.e. classical free text

documents), IR is being extended, since the last two

decades, so as to treat complex information such as

structured/semi-structured data (e.g. XML, SGML, HTML,

etc.), images, graphics, sounds and videos.

In essence, the goal of IR is to efficiently

identify/retrieve, in a data collection, information that is

 Submitted to Elsevier Science 8

relevant w.r.t. the user’s needs [7]. While relevance in IR is

a broad and imprecise notion, the abstract concept of

relevance is generally concretized by the notion of

similarity [65]. With conventional IR, documents and user

queries usually consist of sets of keywords. Thus,

identifying documents that are relevant (similar) to a given

query comes down to:

− Comparing the keywords of each document in

the document collection to those of the query,

− Ranking the documents w.r.t. their keyword

similarities with the query (document selection is

undertaken by defining a similarity threshold,

e.g. range queries [1] or KNN queries [68]).

Keywords are commonly weighted in order to reflect

their relative importance in the query/document at hand.

The underlying idea is that terms that are of more

importance in describing a given query/document are

assigned a higher weight. As a weighting scheme, the

standard TF-IDF (Term Frequency – Inverse Document

Frequency) approach (and its variants) of the vector space

model [69] [70] is usually used.

Note that various IR models, other than the vector

space model, have been proposed in the literature, among

which the Boolean model [46], the probabilistic model

[30], the LSI (Latent Semantic Indexing) model [24], the

DFR (Divergence From Randomness) model [3], etc.

However, in this chapter, we restrict ourselves to the vector

space model since it is the most commonly used, its

performance being accredited in a broad variety of

applications and scenarios (e.g., [19], [21], [27]).

Most attempts to extend IR techniques, so as to

account for XML data, focus on TF-IDF and the vector

space model. Therefore, we briefly review those notions

prior to discussing XML IR approaches. In the standard

vector space model, documents and queries are indexed in a

similar manner, producing vectors in a space which

dimensions represent, each, a distinct indexing unit ti. An

indexing unit usually stands for a single term, i.e. a

keyword
1
. The coordinate of a given document D on

dimension ti, is noted wD(ti) and stands for the weight of ti

in document D within a document collection. wD(ti) is

computed using a score of the TF-IDF family, taking into

consideration both document and collection statistics.

Consequently, the relevance of a document D to a query Q,

designated as Sim(Q, D), is evaluated using a measure of

similarity between vectors such as the inner product, the

cosine measure, the Jaccard measure, the Dice coefficient,

etc., [7], [32], [52]. For instance, the cosine measure, which

is one of the most commonly used in the IR literature, is

expressed as follows:

[],

M

Q r D r
r=1

M n2 2

Q r D r
r=1 r=1

(n) × w (n)

Cos(

w (n) w (n)

)
w

0, 1

×

Q D
∑

∈

∑ ∑

=

ur ur

 (1)

1
 A keyword can also consist of multiple words (phrase units).

As for the TF-IDF score, different variations have been

proposed [69], [70], [71]. We give below the standard

definition. The TF-IDF score, making up weight wD(ti),

comprises of two factors [69]:

− The TF (Term Frequency) factor which designates the

number of times a term ti occurs in document D

(document statistics). The underlying idea is that the

importance of a given term ti in describing a document

D increases with the frequent use of ti in D.

− The IDF (Inverse Document Frequency) factor,

emphasizing the fraction of documents that contain

term ti (collection statistics). The underlying idea is

that the importance of a given term ti in describing a

document D decreases with the frequent use of ti in the

document collection.

A common TF-IDF mathematical formulation [70], [71]

would be as follows. wD(ti) = TF × IDF having:

− TF = tf(ti , D) underlining the number of times term ti

occurs in D

− IDF = log
(,)i

N

df t D

where N is the total number of

documents in the document collection, and df(ti, D) is

the number of documents containing term ti

The TF-IDF score could also be normalized as detailed in

[69], for example:

2

(,) log
()

()

(,) log
()

i

i

i
D i

t i

i

N
tf t D

df t
w t

N
tf t D

df t

×

=

×∑
 
 
 

(2)

Because of its well known efficiency when dealing

with flat textual data, various studies have focused on

extending the vector retrieval TF-IDF based approaches so

as to treat semi-structured data, i.e. XML. We cover those

main approaches in the following section.

3.2.2. Extending conventional information retrieval to deal

with XML

A number of techniques extending the vector space model

towards effective XML information retrieval have been

designed, namely [13], [31], [36], [75], [62]. Note that

various other techniques, e.g. [4], [56] …, have also been

proposed. Nonetheless, we limit our presentation here to

the most basic studies, remaining approaches being covered

in the applications’ section.

Indexing nodes: In [31], Fuhr and Großjohann define

so-called indexing nodes. These are atomic units in the

XML document, basically XML elements, which

encompass disjoint sub-trees. Given these nodes, TF-IDF

weights can be computed locally, instead of being

 Submitted to Elsevier Science 9

evaluated w.r.t. to the whole document. The weights would

then be augmented, down-weighting the statistics (TF-IDF

values) when the terms are propagated upwards in the

document tree, thus taking into account the hierarchical

aspect of XML. The underlying idea is that: the larger the

distance between a node and its ancestor, the lesser that

node should contribute to the relevance of its ancestor’s

content [31]. Following Fuhr and Großjohann, the indexing

nodes are to be identified explicitly in a dedicated XML

grammar definition (that the authors identify as an extended

DTD) corresponding to the XML document at hand (for

instance, the following hypothetical element declaration

<!ELEMENT Professor (#INDEX)> could designate that

Professor elements in the XML document of Figure 5 are

indexing nodes).

For example, in Figure 5, nodes Professor and Student are

considered as indexing nodes. Thus, TF-IDF scores are

computed for these nodes based on their textual content

(e.g. for node Professor, scores for “John” and “Cramer”

are computed). Then, these scores are propagated to upper

nodes in the document tree, multiplying them by

corresponding augmentation weights (e.g. for node

Professor, TF-IDF scores are roughly multiplied by a

factor of 0.6 when propagated to node Department, thus

decreasing their relevance w.r.t. Department).

Fig. 5 - XML document tree with predefined augmentation

weights.

Note that while it employs TF-IDF scoring, the approach in

[31] is also built on concepts of the probabilistic IR model,

using facts and rules to map the XML content and

structure. Nonetheless, it constitutes the building blocks for

a well known vector retrieval technique, i.e. [36].

Single/multi-category retrieval: In [36], Grabs and

Schek build on Fuhr and Großjohann’s approach [31] by

introducing the notion of category. Following Grabs and

Schek, users may want to refer to a given part (category) of

the XML document in isolation, requesting only content

that is relevant to that category, i.e. single category

retrieval (e.g. in Figure 5, the user might be interested in

professors that only work in laboratories. Thus, only the

contents of nodes Professor corresponding to category

Laboratory should be considered when computing term

statistics. In other words, the score for term “John” –

corresponding to Professor John Peterson – should not be

affected by occurrences of “John” in elements outside the

category Laboratory). Likewise, in other cases, users may

request information from several categories, or they do not

care to which category the requested content belongs, i.e.

multi-category retrieval (e.g. in Figure 5, the user might be

interested in all professors. Thus term statistics should be

assessed taking into account all corresponding categories).

To solve the category problem, the authors propose to keep

the indexes for basic nodes (indexing nodes [31]) and to

derive required indexes and statistics from the underlying

basic ones on-the-fly, i.e. at query runtime. In other words,

the vector space is generated dynamically following user

information requests. That is what the authors identify as

flexible retrieval, i.e. the users can dynamically – at query

time – define the scope of their queries.

Indexing based on term context: In an attempt to

further account for the XML structure in IR, Carmel et al.

[13] propose to extend the vector space model by replacing

the basic indexing units, i.e. terms ti, by pairs of the form

(ti, ci) where each term ti is qualified by the context in

which it appears. The context of appearance of a term is the

path for navigating the hierarchical structure of the XML

document, from the root node to the node in which term ti

occurs (e.g. in Figure 5, the first occurrence of term John

will be associated with the path

/Academy/Faculty/Department/Professor as its context).

The authors propose to compute weights of the form wD(ti,

ci) and to extend query/document vectors accordingly. In

addition, they suggest relaxing the query/document cosine

similarity measure (more precisely the scalar product part)

by accounting not only for exact “term in context”

matching but also for context resemblance. They make use

of a dynamic programming LCS (Longest Common

Subsequence) algorithm [41] to compute similarity values

between contexts (paths), which are subsequently

integrated in the cosine measure.

Structural term indexing: Another approach,

extending the vector space model to incorporate XML

document structure, is provided by Schlieder and Meuss in

[75]. The authors extend the standard notion of term ti to

structural term Ti, a structural term being a labeled tree.

Note that in [75], queries are represented as labeled trees

(thus including structural terms) and the query model is

based on tree matching (the unordered tree inclusion

variant is adopted [57]) as a simple means for formulating

queries without knowing the exact structure of the XML

data. Subsequently, the authors adapt the notions of term

frequency (TF) and inverse document frequency (IDF) to

the structural terms: a structural term T occurs in an XML

document D if it matches D following the unordered tree

inclusion matching operator (e.g., structural term

Professor/John occurs two times in the XML document in

Figure 5. Its TF score w.r.t. to the document at hand is

equal to 2. IDF scores are computed in the same manner).

Student Professor

Academy

Faculty

Department

John Cramer John Takagi

Student

James Tailor

0.6

0.4

0.5

0.6 0.4

Professor

Laboratory

John Peterson

0.5

0.4

 Submitted to Elsevier Science 10

Flexible retrieval: In addition, as in [36], Schlieder

and Meuss enable flexible querying in [75] by introducing

the notion of logical XML document. A logical XML

document in a document collection is none other than a

sub-tree of that collection (e.g. in Figure 5, not only the

sub-tree rooted at the Academy node is a logical document,

but also all its sub-trees, that is the sub-trees rooted at

Faculty, Department and Laboratory, as well as each of the

Professor and Student nodes). As a result, the user defines,

via her query, the kind of logical documents to be retrieved.

These are the documents having roots identical to that of

the query. Similarly to [36], TF-IDF scores are all

computed at query time. The authors in [75] also

demonstrate that, by adjusting parameters of the retrieval

process, their method can model both the classical vector

space model (i.e. use of classical terms ti and TF-IDF

statistics) and the original tree matching approach

(unordered tree inclusion).

Matrix model: In [62], Pokorny and Rejlek consider

that previous XML IR methods, such as [13], [31], [36], do

not sufficiently consider the structure of XML documents

in the retrieval process. In their study, Pokorny and Rejlek

represent XML documents as matrices instead of simple

vectors. In the vector space model, a weight wD(ti) is

expressed by a real number (e.g. TF-IDF score) specifying

the distribution of a term ti for the entire document. In the

matrix model [62], the weight of a term is expressed by a

vector wD(ti)1…k. Such a weight should reflect the

distribution of the term ti in the XML structure of the

document collection, w.r.t. to each path k occurring in the

collection. Note that for simple path representations, the

authors rely on a known DataGuide technique [34], since

the main idea of a DataGuide is to provide a summary of

the structure of a document collection. As documents and

queries are represented as matrixes, the similarity between

a query and a document is evaluated as the correlation

between corresponding matrixes, providing the basis for an

enhanced structure-aware query system [62].

Due to its novelty and relevance, XML IR is still very

much in flux, new approaches being proposed regularly,

which makes it obviously difficult to compare the various

methods. The criterions needed to conduct the comparison,

as well as the corresponding experimental framework, are

continuously debated, namely in the INEX
1
 campaigns

dedicated to XML retrieval. Consequently, while it might

seem early to survey XML IR at this point in time, we feel

that a simple presentation of the proposed studies and their

applications would motivate further innovations in the

field.

Table 2 covers the central IR-based XML similarity

methods developed in the literature.

1
 INitiative for the Evaluation of XML Retrieval,

http://inex.is.informatik.uni-duisburg.de/.

3.3. Other techniques for XML similarity

While ED and IR-based XML comparisons cover a wide

array of studies in the literature, several other approaches

for evaluating XML similarity have been developed. Each

of those exploits a different kind of technique (e.g., tag

similarity, edge matching, path similarity…) and is

dedicated to a specific application, some providing

approximations of more complex existing approaches

(mainly ED-based).

Note that due to the diversity of their underlying

techniques, it is not a trivial task to categorize the various

methods presented in this section. A classification based on

application area is both difficult and restrictive since the

same method could be exploited in various application

domains (despite being developed or tested in a specific

context). Thus, for clarity of presentation, we categorize

methods following the nature of the XML data they treat:

structure-only (disregarding XML element/attribute values)

and structure-and-content similarity methods.

3.3.1. Structure-only XML similarity methods

XML element/attribute values are generally disregarded

when evaluating the structural properties of heterogeneous

XML documents, i.e., documents originating from different

data sources and thus not conforming to the same grammar

(DTD and/or XML Schema). Such methods are generally

suitable for structural classification/clustering and XML

structural querying applications (cf. Section 2.2).

Tag similarity: Since optimal ED algorithms usually

require O(N
2
) [10] (complexity with early algorithms

reaching O(N
4
), as shown in Section 3.1.2), various

alternatives and approximations of the ED computational

techniques have been developed in the literature, so as to

reduce complexity. In particular, tag similarity is

considered as the simplest measure for XML similarity, as

it only evaluates how closely the set of element/attribute

tags match between two XML documents. It was proposed

as an alternative to more complex structural similarity

methods, particularly ED-based, in the context of XML

document clustering [10], [61]. In short, it considers the

intersection of the sets of tags, between the documents

being compared, over the union. Nonetheless, using tag

similarity, the structure of the documents is completely

ignored, thus attaining low clustering quality (i.e.,

generated clusters do not correspond to the predefined

ones) in comparison with ED-based methods [10], [61].

Edge matching: In [45], Kriegel and Schönauer

combine the simple node (tag) matching technique

(estimating similarity between two XML documents based

on their matching nodes, w.r.t. to specific node matching

criterions – basically tag equality, completely ignoring the

structure of the documents) and the ED concept. The

authors put forward the edge matching approach: matching

 Submitted to Elsevier Science 11

the edges connecting XML nodes, thus taking into account

the XML document’s structure in the comparison process.

The authors in [45] demonstrate that the edge matching

approach is a lower bound of the ED techniques (less

accurate), and that it is of O(E
3
) complexity (E is the

maximum number of edges in the documents being

compared, having E=N-1 for XML trees, where N is the

maximum number of nodes). A similar edge matching

approach is provided in [49] where authors represent XML

documents as directed graphs (i.e graphs with directed

edges) and define a distance metric that captures the

number of common edges between the graph

representations of two XML documents.

1 2

1 2

1 2

1 () ()
(,)

{ (), ()}

Edges G Edges G
Dist G G

Max Edges G Edges G

− ∩
= (3)

The authors show that the proposed metric is efficient in

clustering XML documents, with respect to ED-based

methods. The authors demonstrate that their approach is of

O(N
2
) complexity in the worst case scenario and state that it

usually comes down to O(k×N) where k is a small multiple

of N (recall that N is the maximum number of nodes in the

XML documents being compared)

Path similarity: The authors in [10], [64] describe the

structure of an XML document as a set of paths (starting

from the root node and ending in the leaf nodes of the XML

document tree, taking into account all the paths in between,

e.g. the path set of the second XML tree in Figure 3.h is

{r/a/c, r/a/d, r/a, a/c, a/d}). Subsequently, XML documents

are compared w.r.t. their corresponding sets of paths: the

more paths two XML documents share in common, the

more similar they are. The path similarity method is shown

to be of linear time complexity [64]. Its complexity can be

reduced to O(1) when coupled with the shingle technique

[9] to create constant sized representations of arbitrary

documents [10]. XML document clustering experiments in

[10] and [64] show that the path similarity method provides

fairly accurate similarity results w.r.t. tree ED comparisons.

In [42], the authors extend a variant of the set of paths

technique and consider sets of XPaths
1
. Classic paths

underline parent/child relationships in the XML document

tree, ignoring sibling information. Nonetheless, XPaths

(e.g., r[1]/a[1]/c[1], r[1]/a[1]/d[1], describing XML

document tree in Figure 3.h) incorporate some sibling

information. An XPath underlines, for a given node, how

many preceding siblings have the same label (It does not

capture sibling information about nodes whose labels are

different from the given node, which is explicitly stated by

the authors). Experimental results in [42] show that the set

of XPaths approach (describing XML documents as sets of

XPaths and consequently comparing the corresponding

sets) yields better clustering quality than the classic set of

paths variant considered in the study.

1 http://www.w3c.org/TR/xpath

Set similarity: In [11], Candillier et al. represent XML

documents as sets of attribute-values, including: the set of

parent-child relations (i.e., edges), the set of next-sibling

relations and the set of distinct paths starting from the root.

Using this representation, the authors perform XML

documents classification and clustering, applying methods

developed in [63] and [12] respectively. However, the

approach is not compared to existing methods which could

also be utilized for classification/clustering purposes (e.g.,

ED-based, tag similarity, edge matching or path similarity).

Fast Fourier Transform: An original XML similarity

approach, developed in the context of XML document

clustering, is presented in [29]. Here, Flesca et al. represent

the structure of an XML document as a time series

(disregarding OLTs), each tag occurrence of an XML

element/attribute corresponding to an impulse.

Subsequently, they determine the degree of structural

similarity between documents by analyzing the frequencies

of the Fast Fourier Transform of corresponding time series.

The overall complexity of Flesca et al.’s approach [29]

simplifies to that of the FFT: O(N×log(N)). However, the

author in [10] provides an experimental critique of Flesca

et al.’s FFT method [29]. While it runs faster than a variant

of tree ED-based approaches, Buttler in [10] concludes that

the FFT approach does not offer an accurate measure of

similarity. Clustering experiments, conducted on both real

and synthetic XML data, show that the FFT method always

yields the highest error rates (largest number of mis-

clustered documents, i.e. documents put in wrong clusters).

Structural similarity via Entropy: In [40], Helmer

introduces a method for measuring the structural similarity

between XML documents using entropy (i.e., information

distance). The method consists of two main steps. First, the

author extracts structural information (tag sequences, edges

and paths) from the documents at hand. Second, the

structural informations concerning each document X and Y

are concatenated and then compressed (obtaining C(X).

C(Y) and C(XY) as the lengths of the compressed files

corresponding to the structural informations of documents

X, Y and their concatenation respectively). The

compressions are hence exploited in computing entropy:

() { (), ()}
(,)

{ (), ()}Entropy

C XY Min C X C Y
Sim X Y

Max C X C Y

−
= (4)

The rationale behind this original method is the following:

the more overlap between documents, the better the

compression rate will be, and thus the higher the similarity.

The approach is of O(N+M) complexity, where N and M

are the respective numbers of elements in the documents

being compared. The author compared his method to one of

the main ED-based XML similarity approaches [61], to the

Fast Fourier Transform method [29] as well as to a path

similarity variant [10]. Clustering experiments show that

the proposed method produces higher document clustering

quality than [29] and [10], and that it’s on a par (and in

certain test cases better) than the ED-based method in [61].

 Submitted to Elsevier Science 12

Structural pattern matching: Alternatively to

document/document comparison methods, an approach for

document/pattern comparison is provided by Sanz et al. in

[72]. It is dedicated to structural ranked XML querying,

searching for a given XML pattern (XML tree) in a

document collection. It starts by matching an XML pattern

to sub-trees in the XML data tree, taking into account node

label similarity. Node labels l1 and l2 are considered similar

if: l1 is identical to l2, l1 is a synonym of l2 w.r.t. a given

thesaurus, or l1 is syntactically similar to l2 w.r.t. to a string

matching technique (e.g., string edit distance [48]). In a

subsequent phase, the hierarchical structure of nodes is

considered to identify, among the possible matches, those

that are structurally more similar. Dedicated indexing

structures (underlining the label, pre-order, post-order and

depth of each node) are utilized for representing patterns

and regions in the document collection. Timing results in

[72] show that performance is linearly dependent on the

size, in number of nodes, of the result set (w.r.t. the

considered pattern).

XML/DTD similarity: A method for measuring the

structural similarity between an XML document and a DTD

grammar is provided by Bertino et al. in [6]. The proposed

algorithm takes into account the level (i.e. depth) in which

the elements occur in the hierarchical structure of the XML

and DTD tree representations. Elements at higher levels are

considered more relevant, in the comparison process, than

those at lower levels. The algorithm also considers element

complexity (i.e. the cardinality of the sub-tree rooted at the

element) when computing similarity values. The authors

state that their approach is of exponential complexity. They

show that complexity becomes polynomial (O(Γ
2
× (N+M))

where M is the number of nodes – elements/attributes – in

the XML document tree, N the number of nodes –

elements/attributes as well as ?, *, +, And, Or operators – in

the DTD tree, and Γ the maximum number of edges out

coming from a node of the XML document) if the

following assumption holds: In the declaration of an

element, two sub-elements with the same tag are forbidden.

The authors also provide a detailed discussion of the

possible applications for such an approach, mainly

document classification (cf. Section 4).

3.3.2. Structure-and-content XML similarity methods

While different methods to XML similarity, disregarding

element/attribute values and focusing on the structural

properties of XML data, have been proposed in the

literature, many others consider values in their similarity

computations. Methods of the latter group target XML

documents which are less structurally disparate (they might

originate from the same data source, and might even

conform to the same grammar), and are mainly developed

in the contexts of XML change management, data

integration and structure-and-content ranked querying.

Leaf node clustering: In the context of XML data

integration (cf. Section 4), Liang and Yokota provide in

[51] an approximate XML similarity method based on leaf

nodes (leaf node values in particular), entitled LAX (Leaf-

clustering based Approximate XML join algorithm).

Following LAX, the approximate similarity between two

trees is estimated as the mean value of the similarity

between their corresponding sub-trees (an algorithm

dedicated for segmenting XML documents into

independent sub-trees, to be treated via LAX, is also

provided in [51]). The similarity degree between two sub-

trees is determined as the percentage of the number of

matched leaf nodes (pairs of leaf nodes that have the same

data value) out of the total number of leaf nodes in the sub-

trees. The approach is of overall complexity O(N
2
) where N

is the maximum number of nodes in the XML documents

being compared. Experiments in [51] show that LAX is, in

general, effective in assessing XML documents similarity,

w.r.t. to tree ED. Nonetheless, the authors state that when

large XML documents come to play, i.e. when documents

have to be fragmented to fit in main memory, similarity

results might not be optimal (Note that following LAX, the

similarity between two tree documents depends on those of

their sub-trees. As a result of fragmentation, sub-trees that

share the largest similarities – i.e. matching sub-trees –

might not be detected, each group of fragments being

treated separately. Hence suboptimal tree comparison

results are attained). Recall that the author in [18] provides

an approach (ED-based) capable of comparing XML

documents that are too large to fit in main memory, without

affecting the algorithm’s optimality. Despite the fact that

the approaches target different application domains (the

latter being primarily developed for change management

purposes), it could have been interesting to compare the

two methods.

Document List similarity: In [43], Kade and Heuser

develop a method for comparing XML documents as

documents lists. The comparison process is undertaken in

two steps. First, each and every sub-tree of the document

tree is traversed, producing for each sub-tree, a string made

of the contents (values) of all the sub-tree’s leaf nodes

merged together. The result is a set of tuples of the form

<path, content>, one for each node in the XML tree (e.g.,

the tuple corresponding to node Department in Figure 5 is

<Academy/Faculty/Department, ‘John Cramer John

Takagi James Tailer’>). This representation of the XML

document is called document list. The second step of the

comparison process consists in comparing the obtained

document lists, identifying matching nodes (tuples)

following their content and label similarities (using string

based comparison techniques, e.g., string edit distance [48],

as well as path similarities (using path-based comparison

methods such as the ones described in the Path similarity

paragraph above). Nodes having a pair-wise similarity

value above a predefined threshold are considers as

matching nodes. Note that authors only consider pairs of

matching nodes to be significant in computing overall

 Submitted to Elsevier Science 13

XML document similarity (Document similarity is

computed as the average of all similarity scores between

matching nodes). However, in discussing their

experimental results, they suggest to relax this criterion so

as to decrease document similarity w.r.t. to the number of

unmatched nodes, to get more accurate comparison results.

Ranking experiments are conducted on (only) synthetically

generated documents. The authors explain that they could

not find real XML data suitable for their experiments.

Object Description similarity: Weis and Naumann in

[86] put forward a method entitled Dogmatix for comparing

XML elements (and consequently documents) based on

their direct values, as well as corresponding parent and

children similarities. It is developed in the context of

duplicate element detection, i.e., identifying elements that

represent the same real world entity, and is geared toward

data integration. The method consists of three main steps: i)

candidate detection, ii) object description and ii) similarity

computation. The first step identifies, in the XML

documents being compared, which elements are relevant

for comparison, i.e., elements that might describe the same

real world entity. Hence, a predefined mapping between the

elements of grammars describing the XML documents at

hand, and real world entities, is provided as input to the

process. The second step comes down to defining the

descriptions of those elements, entitled object descriptions

(ODs). For a given element e0, the object description

comprises of a set of <name, value> tuples underlining e0’s

value, sibling, children and/or parent data, and are

identified using dedicated heuristics and conditions.

Heuristics are such as r-distant descendents, considering

the first r elements which depths in the document do not

differ more than radius r form element e0’s depth itself. For

example, the OD of element Department (cf. Figure 5)

following heuristic r-distance descendents at radius r=1 is

{<Professor, John Cramer>, <Student, John Takagi>,

<Student, James Tailor>}. Similar heuristics are proposed

for identifying sibling and parent data descriptions. The

third step of the comparison framework consists in

comparing XML elements based on their object

descriptions. Textual values are compared using a variation

of string edit distance [48]. Overall element similarities are

evaluated using a variation of the IDF score (Inverse

Document Frequency) [69], considering the number of

matched OD tuples (which similarity is above a given

threshold) over the total number of tuples in the two ODs

corresponding to the elements being compared. The

similarity between two XML documents is evaluated as

that of their root elements. Experimental results in [86]

show that Dogmatix is effective in identifying real and

synthetic duplicate XML elements/documents.

Bayesian Networks: Another interesting approach to

duplicate detection is developed in [47]. It considers the

complete sub-structure (children and descendents) of each

element in the documents at hand (not only the element’s

children as in [86]). It follows a probabilistic approach,

using a Bayesian network to combine the probabilities of

children and descendents being duplicates, for a given pair

of XML elements in the documents being compared. The

similarity between two XML documents corresponds to the

probabilities of their root nodes being duplicates.

Documents being compared should conform to the same

grammar so as to construct the Bayesian network. The

latter strictly follows the underlying document grammar. If

documents are not well formed w.r.t. to the same grammar,

a grammar matching phase should precede the construction

of the Bayesian network. The approach’s complexity comes

down to O(N
2
) in the worst case scenario, where N is the

maximum number of nodes in the documents being

compared. Experimental results in [47] show that the

proposed method is, in general, more effective in detecting

duplicates, in comparison with Dogmatix [86]. The authors

however stress on the need for further improvements,

particularly concerning the use of IDF (Inverse Document

Frequency), which was proven effective with Dogmatix,

particularly when the compared documents encompass

many elements with dummy or repeated values (For

instance, the actor role or production year element values,

in a given XML document describing movies, are not as

discriminating in identifying movies, as the movie’s title

value. This can be taken into account using IDF, since the

same role/year values could appear in many movies,

whereas the title value does not).

Pattern matching: An approach for document/pattern

comparison, developed in the context of data integration

and XML querying, is proposed in [26]. Dorneles et al.

model XML documents and patterns as ordered labelled

trees, and evaluate document/pattern similarity using

different metrics dedicated to atomic elements (i.e., leaf

nodes in the XML tree) and complex ones (encompassing

other elements, i.e., inner nodes in the XML tree)

respectively. On one hand, authors consider atomic element

metrics to be dependent on the domains of corresponding

values (texts, dates, numbers, …) and thus do not detail this

issue. On the other hand, they distinguish between complex

collection and tuple element metrics. Following Dorneles et

al. [26], a tuple element is made of different sub-elements

(e.g., root node a of Tree C in Figure 4) whereas a

collection element encompasses repetitions of the same

sub-element (e.g., node a of Tree B in figure 4). Metrics are

provided for both types of complex elements. These are

recursively evaluated, exploiting the atomic element

metrics, so as to quantify the similarity between the XML

pattern and document trees at hand. Note that this method

is dedicated to comparing documents and patterns which

are fairly similar. The authors state that the satisfactory

evaluation of XML element similarities, following their

method, requires the compared elements to share the same

contexts (their root paths should be identical) and have

similar children. Authors in [26] do not compare their

method’s quality levels to existing approaches, mainly

those targeting ranked XML querying (e.g., IR-based). That

is probably due to the complex nature of such a task, as

discussed in Section 3.2.2.

 Submitted to Elsevier Science 14

Table 3 depicts the various XML similarity methods

discussed above, along with their basic features and

application domains.

4. Applications of XML similarity

The use of XML similarity ranges over a wide spectrum of

applications which can be classified in four major groups:

i) data warehousing, ii) XML classification/clustering, iii)

XML data integration, and iv) ranked XML querying.

4.1. Data warehousing: version control and change

management

One of the main applications of XML comparison is to

provide support for the control of changes in a warehouse

of XML documents. In such a context, an ED-based

measure (via an edit distance algorithm, which can also be

identified in this context as a differencing algorithm, or

simply diff), i.e. a similarity measure that provides deltas

(basically edit scripts), is required. The deltas offer means

to change detection and representation between XML

documents, and constitute the building blocks for XML

versioning [16][17][18][20]. Deltas resemble traditional

logs in database systems, and similarly to databases, one

can find many applications that require access to logs [55].

Versions and querying the past [18][20][55][84]:

One may want to view or access a version of a particular

document, (part of) a Web site, or the results of a

continuous query. This is the standard use of versions,

namely recording history (i.e. obtain an old version of an

XML document). Later, one might want to ask a query

about the past (e.g. ask for the value of some XML element

at some previous time) and to query changes (e.g. ask for

the list of items recently introduced in a document/catalog).

Since the deltas can be stored as XML documents, such

queries become regular queries over documents.

Learning about changes: The edit distance algorithm

constructs a possible description of the changes. It allows to

find, mark-up, and browse changes between two or more

versions of a document and also to update the old versions

of the document. This is in the spirit, for instance, of the

Information and Content Exchange, ICE
1
 [85]. Also,

different users may modify the same XML document off-

line, and later want to synchronize their respective versions.

The edit distance algorithm could be used to detect and

describe the modifications in order to detect conflicts and

solve some of them [20].

Monitoring changes: In the Xyleme project for

instance [20], [55], [60], monitoring changes serves as the

first facet to query subscription and notification systems.

1
 In the context of electronic commerce, the ICE is a standard that

supports exchanging information about changes of a set of web pages. It

is also based on deltas and snapshots of the data [85].

The authors implement a subscription system [60] that

allows detecting changes of interest in XML documents,

e.g. that a new product has been added to a catalogue. At

the time the delta is computed (e.g. the edit distance

algorithm is executed), the system verifies for each atomic

change whether this change is monitored by some

subscription (e.g. the insertion of a new item in the XML

document, a deletion of a given item, etc.). Note that this is

relevant to ICE which also provides a protocol for

notification.

Archiving: Archiving is straightforward in this

context. It suffices to store the sequence of deltas before a

certain date to archive corresponding XML data [55].

Mirroring: XML comparison, via edit distance

algorithms, can also be used to reduce the amount of data

transmitted over a network in mirroring applications [18].

Popular Web and FTP servers often have dozens of mirror

sites around the world. Changes made to the master server

need to be propagated to the mirror sites. Ideally, the users

or programs making changes would keep a record of

exactly what data was updated. However, in practice, due

to the autonomous and loosely organized nature of such

sites, there is no reliable record of changes [18]. Therefore,

efficient mirroring requires diff algorithms that compute

and propagate only the difference between the data version

at the server and that at a mirror site.

4.2. XML classification and clustering

Among the main uses of XML similarity/comparison are

the classification and clustering of XML documents.

XML classification: XML similarity/comparison

enables the classification of XML documents gathered

from the web against a set of XMl grammars (DTDs or

XML schemas) declared in an XML database. The scenario

provided by Bertino et al. [6] comprises a number of

heterogeneous XML databases that exchange documents

among each other, each database storing and indexing the

local documents according to a set of predefined DTDs.

Consequently, XML documents introduced in a given

database are matched, via an XML structural similarity

method, against the local DTDs. Note that matching, in

such an application, can be undertaken using an XML

document/DTD comparison method (like the one proposed

in [6] for measuring the similarity between an XML

document and a DTD definition) or via an XML

document/document comparison method (e.g., one of the

methods described previously for comparing two XML

documents). Following the latter strategy, the DTD will be

exploited as a generator of XML document structures (set

of possible document structures valid for the DTD is

considered). Then, for each document structure, algorithms

for measuring the structural similarity between XML

documents, e.g. [18], [23], [61], can be applied. The

matching resulting in the highest similarity value can be

 Submitted to Elsevier Science 15

considered as the best candidate, the corresponding

similarity value being considered as the structural similarity

score between the document and the DTD). In such an

application, a similarity threshold should be identified (by

the user or the system), underlining the minimal degree of

similarity required to bind an XML document to a DTD

[6]. The DTD, for which the similarity degree is highest,

and above the specified threshold, is selected. Thus, the

XML document at hand is accepted as valid for that DTD.

When the similarity degree is below the threshold, for all

DTDs in the XML database, the XML document is

considered unclassified and is stored in a repository of

unclassified documents. As a result, none of the protection,

indexing and retrieval facilities specified at DTD level can

be applied to such documents [6].

XML clustering: Grouping similar XML documents

together can improve data storage indexing [76], and thus

positively affect the retrieval process. For instance, if two

documents/elements are similar, it is likely that they both

either satisfy or not a given query. Therefore, when

grouped together, similar documents/elements would be

much easier to retrieve than when scattered at different

locations in the storage device [49].

XML clustering can also play a major role in effective

DTD extraction [33]. A lot of XML documents found on

the web are heterogeneous and lack predefined grammars

(DTDs or schemas). Nonetheless, having knowledge of the

grammar, for a set of XML documents, can be valuable for

the protection, indexing, querying and retrieval of these

documents [6], [61]. Just as schemas are necessary in

traditional DBMS, the same is true for DTDs and XML

databases. Given a collection of heterogeneous XML

documents, constructing a single DTD for all these

documents would lead to a far too general definition, which

would not be of much of use. However, when structurally

similar documents are clustered together before the DTD

extraction process, a more accurate and specific DTD will

be constructed for documents in each cluster [61].

Clustering can also be critical in information

extraction. Current information extraction methods either

implicitly or explicitly depend on the structural features of

documents [10]. Based on structural clustering, it would be

much easier to automatically identify the sets of XML

documents that are useful to information extraction

algorithms, and that would produce meaningful results.

4.3. Data integration

XML similarity/comparison is also a central issue in data

integration. One of the main features of XML is that it can

represent different kinds of data from different data

sources, mainly on the web. Nonetheless, XML documents

from different data sources might contain nearly or exactly

the same information but might be constructed using

different structures. In addition, even if two documents

express similar contents, each of them may have some extra

information w.r.t. to the other. Thus, one needs an effective

XML similarity measure in order to integrate such data

sources, so that the user can conveniently access and

acquire more complete information [38], [50], [51].

More precisely, the problem of integrating two XML

data sources, from a similarity/comparison point of view,

comes down to performing an approximate join between

these sources using a predefined XML similarity measure

(most likely a tree edit distance based measure). Given two

XML sources, S1 and S2, a similarity threshold s, and a

function Sim(d1, d2) that assesses the similarity between

two documents d1 ∈ S1 and d2 ∈ S2, the approximate join

between data sources S1 and S2 reports in the output all

pairs of documents (d1, d2) ∈ S1 × S2 such that Sim(d1, d2)

≥ s [37][38]. Subsequently, integrating the identified pairs

of documents to form unified views of the data can be

undertaken.

4.4. Ranked XML querying

With the increasing use of XML, specifically on the web,

efficient retrieval of XML documents becomes more and

more important [31]. The database community has

proposed several languages for querying XML, including

XML-QL [25], XQL [67] and XQuery [15]. However,

these languages are based on exact matching and do not

support ranked queries via textual/structural similarity.

Therefore, several attempts have been made to extend these

query languages in order to support ranked results, which is

where XML similarity techniques come to play.

While most approaches in this framework are based on

extensions of the vector space model, the query model used

varies with each approach. In [31], the authors extend

XQL, introducing the query language XIRQL which

incorporates the notions of term weights and vague

predicates. In [13], Carmel et al. avoid defining a new

XML query language and allow the users to express their

information needs as simple XML fragments (i.e. parts of

XML documents). The underlying idea is to give less

control to the user when formulating queries, and to focus

most of the logic in the ranking mechanism in order to best

meet the user’s needs (similarly to free text query

mechanisms in traditional IR). In [75], Schlieder and Meuss

support structured queries, i.e. queries are labeled trees, and

thus give further attention to XML structure in the retrieval

process. Another study by Schlieder [74] introduces a

simple query language entitled approXQL that supports

hierarchical Boolean-connected query patterns. The

interpretation of approXQL queries is founded on cost-

based query transformations where queries/documents are

modeled as labeled trees. Thus, a tree edit distance

(approximate tree matching) variation is used to compute

the cost of a sequence of transformations between a query

and the data and is used to rank the results. Approaches

comparable to [74] are provided in [4], [56]. In these more

recent works, the authors make use of structural relaxation

on XPath queries, defining specific relaxation operations

(edge generalization – i.e. transforming a parent/child edge

to an ancestor/descendent one, leaf node deletion …) and

 Submitted to Elsevier Science 16

dedicated scoring functions to enable ranked query

answering. An approximate answer to the original XPath

user query is none other than an exact match to one of its

relaxed queries, its score accounting for the corresponding

relaxation process (i.e. the score resulting form applying

the relaxation operations to obtain the relaxed query at

hand). For instance, the document tree in Figure 5 is an

approximate answer to the XPath query

//Academy[./Faculty[./Section]] with a score corresponding

to deleting leaf node Section so as to obtain the relaxed

query // Academy [/Faculty]. Various scoring and ranking

schemes are proposed.

In [19], Chinenyanga and Kushmerick try to adapt

existing ranking capabilities in relational database systems

to XML retrieval. The authors put forward ELIXIR, a

language for XML information retrieval that extends XML-

QL with a textual similarity operator. The corresponding

query answering algorithm rewrites the original ELIXIR

queries into a series of intermediate relational data, and

makes use of WHIRL
1
 [21], [22] to efficiently evaluate the

similarity operator on this intermediate data, subsequently

yielding ranked XML results. Similarly to [19], Theobald

and Weikum [81] introduce an XML query language, XXL,

extending XML-QL with a similarity operator. Note that

XXL’s similarity operator can be applied to

element/attribute names as well as to element/attribute

values whereas ELIXIR [19] is bound to element/attribute

values. The corresponding query processor makes use of

the Oracle Inter-Media thesaurus while computing

similarity. In [8], Bremer and Gertz motivate the

introduction of a rank operator in the XQuery syntax (the

resulting query language is identified as XQuery/IR)

enabling the user to choose the similarity/comparison

method to be utilized in the process (the authors do not

specify the underlying IR technique to be used).

On one hand, XML data warehousing, data integration

and classification/clustering applications require relatively

accurate XML similarity methods so as to produce better

results (more accurate change detection, more complete

data integration and higher quality classification/clustering

respectively). Hence, approaches in these application areas

are generally ED-based (fined-grained). Domain specific

methods (e.g., edge matching, path similarity…, some

trying to approximate more complex ED-based methods)

have been proposed (cf. Section 3.3). On the other hand,

most ranked XML querying studies tend to favour

performance on accuracy, aiming to produce good enough

results in reasonable time (instead of trying to generate

perfectly correct results). Therefore, most methods in this

application domain are IR-based (coarse-grained).

Nevertheless, a few ranked XML querying approaches

have tried to close this gap by exploiting variants of ED

[74] and other techniques based on path similarity [4], [56].

1
 WHIRL is an information retrieval query language dedicated to

relational data. It includes a textual similarity metric and provides

ranked similarity results [21], [22].

Thus, adapting ED-based methods (or other edge-based,

path-based, …, techniques) to search and retrieve XML

data or, on the other hand, adapting IR-based methods to

data-warehousing, data integration, classification and

clustering applications could yield interesting results (Note

that the idea of utilizing ED computations in a ranked

querying system, for instance, is not novel. It was

introduced by Shasha and Zhang in [77] in the context of

generic tree structures querying).

5. Discussions and future research directions

While substantial work has been conducted around the

XML similarity problem, various issues regarding the

efficiency, performance and potential applications of XML

comparison approaches are yet to be tackled. In the

remainder of this section, we present some of these issues.

First, we discuss several limitations of current approaches,

w.r.t. the structural characteristics of XML data, while

comparing XML documents. After, we present a glimpse

on one of the emergent problems related to XML

similarity: the combination of structural and semantic

similarity assessment while comparing XML data, which is

being investigated in both ED and IR-based approaches. To

conclude this section, we discuss the usefulness of XML

grammars (DTDs or XML schemas) in developing

improved XML comparison methods.

5.1. XML structural similarity

As shown previously, a range of algorithms for comparing

highly structured XML documents have been proposed in

the literature. A thorough investigation of the most recent

and efficient XML structural similarity approaches led us to

pinpoint certain cases where the corresponding comparison

outcome is inaccurate.

Usually, XML documents can encompass many

optional and repeated elements [61]. Such elements induce

recurring sub-trees of similar or identical structures. As a

result, algorithms for comparing XML document trees

should be aware of such repetitions/resemblances so as to

efficiently assess structural similarity.

Note that in the following, we mainly focus our

discussions on ED-based XML comparison algorithms

since they target rigorously structured data, and thus are

more fine-grained w.r.t. IR-based methods. Nonetheless,

the limitations pinpointed consequently transitively cover

IR-based XML similarity methods, and others, as well.

5.1.1. Undetected Sub-tree Similarities

Our examination of the approaches provided in [18], [61],

[23] led us to identify certain cases where sub-tree

structural similarities are disregarded (cf. Figure 6):

− Similarity between trees A/D (sub-trees A1 and D2) in

comparison with A/E.

 Submitted to Elsevier Science 17

− Similarity between trees F/G (sub-trees F1 and G2)

relatively to F/H.

− Similarity between trees F/I (sub-tree F1 and tree I) in

comparison with F/J.

Fig. 6 - Sample XML trees.

Nierman and Jagadish in [61] make use of the contained in

relation between trees to capture sub-tree similarities, such

as with the A/B and A/C case mentioned in Section 3.1.2

(repetition of sub-tree B1). Nonetheless, when the

containment relation is not fulfilled, certain structural

similarities are ignored. Consider, for instance, trees A and

D in Figure 6. Since D2 is not contained in A, it is inserted

via four edit operations instead of one (insert tree), while

transforming A to D, ignoring the fact that part of D2 (sub-

tree of nodes b, c, d) is identical to A1. Therefore, equal

distances are obtained when comparing trees A/D and A/E,

disregarding A/D’s structural resemblances (here, we

assume the general case where atomic insertion/deletion

operations are of unit costs, =1):
− Dist(A, D) = CostIns(h) + CostIns(b) + CostIns(c) +

CostIns(d) + CostIns(h) = 1 + 4 = 5

− Dist(A, E) = CostIns(h) + CostIns(e) + CostIns(f) +

CostIns(g) + CostIns(h) = 1 + 4 = 5

Likewise for the D to A transformation (tree D2 will not be

deleted via a single delete tree operation since it is not

contained in the destination tree A), achieving Dist(D, A) =

Dist(E, A) = 5. Other types of sub-tree structural

similarities that are disregarded by Nierman and Jagadish’s

approach [61] (and likewise missed in [23], [18]) can be

identified when comparing trees F/G and F/H, as well as

F/I and F/J. The F, G, H case is different than its

predecessor (the A, D, F case) in that the sub-trees sharing

structural similarities (F1 and G2) occur at different depths

(whereas with A/D, A1 and D2 are at the same depth). On

the other hand, the F, I, J case differs from the previous

ones since structural similarities occur, not only among

sub-trees, but also at the sub-tree/tree level (e.g. between

sub-tree F1 and tree I).

Note that in [23], Dalamagas et al. complement their

edit distance algorithm with a repetition/nesting reduction

process, summarizing the XML documents prior to the

comparison phase. Such a reduction pre-processing

transforms, for instance, tree B to A (repetition of sub-tree

B1) thus yielding Dist(A, B) = 0 which is not accurate (tree

A is obviously different than B). While it might be useful

for structural clustering tasks, the reduction process yields

inaccurate comparison results in the general case, which is

why it is disregarded in our discussion. As for Dalamagas

et al.’s ED algorithm [23], it yields distance values

identical to the ones returned by Nierman and Jagadish’s

process [61] in the above examples. Recall that the

algorithm in [23] is a specialized version of that developed

in [61] where tree insertion/deletion costs are computed as

the sum of the costs of inserting/deleting all individual

nodes in the considered trees.

5.1.2. The Special case of leaf node sub-trees

In addition, none of the approaches mentioned above is

able to effectively compare documents made of repeating

leaf node sub-trees. For example, following [18][23][61]

the same structural similarity value is obtained when

comparing document K, of Figure 7, to documents L and

M, Sim(K, L) = Sim(K, M) = 0.5, having Dist(K, L) =

Dist(K, M) = 1.

− Dist(K, L) = CostIns(b) = 1

− Dist(K, M) = CostIns(c) = 1

Fig. 7 - XML documents consisting of leaf node sub-trees.

a

b

c e d
F1

Tree F

a

b

d c
A1

Tree A

a

b

c

b

d c d

Tree B

B2 B1

a

b

d c

e

g f

Tree C

C1 C2

a

c b c

Tree P

a

b b c

Tree O

a

b b b

Tree N

a

c b

Tree M

a

b b

Tree L

a

b

Tree K

b

d c

b

d c

a

c d

b

H1

H2

m

j

a

c d

b

G1

G2

m

f

Tree G

a

e

g f h

b

d c h

Tree E

E1 E2

a

b

d c h

b

d c h

Tree D

D1 D2

Tree H

Tree I Tree J

 Submitted to Elsevier Science 18

However, one can realize that document trees K and L

are more similar than K and M, node b of tree K appearing

twice in tree L, and only once in M. Likewise for K/N with

respect to K/O and K/P. Identical distances are attained

when comparing document trees K/N, K/O and K/P, Dist(K,

N)=Dist(K, O)= Dist(K, P)=2, despite the fact that node b

is repeated three times in N, twice in O and only appears

once in P.

− Dist(K, N) = CostIns(b) + CostIns(b) = 2

− Dist(K, O) = CostIns(b) + CostIns(c) = 2

− Dist(K, P) = CostIns(c) + CostIns(d) = 2

We explicitly mention the case of leaf node repetitions

since:

− Leaf nodes are a special kind of sub-trees: single

node sub-trees. Therefore, the issue of sub-tree

resemblances and repetitions should logically cover

leaf nodes, so as to attain a more complete XML

similarity approach.

− Leaf node repetitions are usually as frequent as

substructure repetitions (i.e. non-leaf node sub-tree

repetitions) in XML documents.

Detecting leaf node repetitions is spontaneous in the

XML context, and would help increase the discriminative

power of XML comparison methods, as shown in the

examples of Figure 7.

5.2. Semantic similarity

Combining structural and semantic XML similarity is one

of the hot topics recently being investigated. Most

similarity approaches in the literature focus exclusively on

the structure of documents, ignoring the semantics

involved. However, in the field of Information Retrieval,

estimating semantic similarity between web pages is of key

importance to improving search results [53]. In order to

stress the need for semantic relatedness assessment in XML

document comparison, we report from [79] the examples in

Figure 8.

<?XML?>

<Academy>

 <Department>

 <Laboratory>

 <Professor></Professor>

 <Student> </Student>

 </Laboratory>

</Department>

</Academy>

 <?XML?>

 <College>

 <Department>

 <Laboratory>

 <Lecturer></Lecturer>

 </Laboratory>

 </Department>

 </College>

 <?XML?>

 <Factory>

 <Department>

 <Laboratory>

 <Supervisor></Supervisor>

 </Laboratory>

</Department>

 </Factory>

Fig. 8 - Examples of XML documents

Using classical ED computations, the same structural

similarity value is obtained when document A is compared

to documents B and C [79]. However, despite having

similar structural characteristics, one can obviously

recognize that sample document A shares more semantic

characteristics with document B than with C. For example,

in Figure 8, pairs Academy-College and Professor-

Lecturer, from documents A and B, are semantically similar

while Academy-Factory and Professor-Supervisor, from

documents A and C, are semantically different. Therefore,

taking into account the semantic factor in XML similarity

computations would obviously amend similarity results.

In recent years, there have been a few attempts to

integrate semantic and structural similarity assessment in

the XML comparison process. One of the early approaches

to propose such a method is [81]. The authors here make

use of a textual similarity operator and utilize Oracle’s

Inter-Media text retrieval system to improve XML

similarity search. In a recent extension of [81] provided in

[73], Schenkel et al. propose a generic ontological model,

built on WordNet
1
, to account for semantic similarity

(instead of utilizing Oracle Inter-Media). On the other

hand, the authors in [6], [72] identify the need to support

tag similarity (synonyms and stems
2
) instead of tag

syntactic equality while comparing XML documents. In

[79], the authors study the XML semantic similarity issue

in more detail. They consider the various semantic relations

encompassed in a given reference taxonomy/ontology (e.g.

WordNet) while comparing XML documents. They

introduce a combined structural/semantic XML similarity

approach integrating IR semantic similarity assessment in a

traditional ED algorithm [18].

Nonetheless, the semantic/structural similarity problem

is far from solved. The vast differences between the

proposed approaches suggest that semantic similarity could

be integrated in multiple ways while comparing XML data.

In addition, the semantic complexity issue, which is due to

accessing the taxonomy/ontology considered, is currently

an open problem. Experimental results in [79] confirm the

positive impact of semantic meaning on XML similarity

values, while underlining its heavy impact regarding timing

complexity. Therefore, this emergent topic is likely to be

thoroughly investigated in the following years.

5.3. Exploiting XML grammars

Another possible future research direction would be to

explore the use of existing XML similarity methods to

compare, not only the skeletons of XML documents

(element/attribute labels) but also their information content

(element/attribute values). In current approaches, when

element/attribute values are considered in the comparison

process [74], [90], they are treated as strings (i.e. of data

type String) which is not always the case. Values could be

of Decimal, Boolean, String, Date… types. For each data-

type, a different method should be utilized to compute

similarity. Therefore, in such a framework, XML Schemas

might have to be integrated in the comparison process,

1 WordNet is an online lexical reference system (taxonomy), developed at

Princeton University NJ USA, where nouns, verbs, adjectives and

adverbs are organized into synonym sets, each representing a lexical

concept [58] (http://www.cogsi.princeton.edu/cgi-bin/webwn).
2 Stems designate the morphological variants of a term: an acronym and

its expansions, a singular term and its plural, …

 Submitted to Elsevier Science 19

schemas underlining element/attribute data types
1
 which

are required to compare corresponding element/attribute

values. A direct application of such an approach would be

the development of a sophisticated XML query and retrieval

system.

It would also be interesting to tackle the

XML/Grammar comparison issue, introduced in [6]. Since

[6], [80] are (to our knowledge) the only works that cover

this problem, it seems interesting to look into that topic. As

shown in [6], measuring the structural similarity between

an XML document and a DTD has various applications,

including XML documents classification, DTD structure

evolution, the evaluation of structural queries, the selective

dissemination of XML documents as well as the protection

of documents.

6. Conclusion

In the past few years, XML has been established as the de

facto standard for web publishing [84], attracting growing

attention in database, information retrieval, and more

recently multimedia related research (XML is being

increasingly used for describing complex objects, e.g.

multimedia information, such as MPEG-7
2
, SVG

3
, X3D

4
,

etc.).

In this paper, we gave an overview of existing research

related to XML similarity. The wide range of diverse

methods proposed in the literature were roughly organized

into three major groups: i) ED-based (Edit Distance), ii) IR-

based (Information Retrieval), and iii) various other context

and application specific techniques to XML comparison

(some methods in this group are approximations of more

complex existing methods – mainly ED-based). While IR-

based methods target XML search and retrieval (especially

for loosely structured document-centric XML), ED-based

techniques seem to focus more on the structural aspect of

XML (rigorously structured data-centric view) and are

primarily utilized for classification/clustering and data

warehousing purposes. We detailed the possible

applications of XML comparison processes in various

fields, ranging over data warehousing, data integration,

classification/clustering and ranked XML querying. In

addition, we discussed some possible future research

directions, covering XML structural and semantic

similarity, as well as the exploitation of XML grammars in

developing improved XML comparison methods.

To conclude, note that ED-based methods for

comparing XML documents have been thoroughly studied

1 XML Schemas, like DTDs, provide a means for defining the grammar of

a set of XML documents. However, schemas enable a thorough

management of data-types (19 different data-types are supported, the

user being able to derive new data-types based on the ones that are built-

in), which is very restricted in DTDs. XML Schema Part 2: Datatypes

Second Edition. http://www.w3.org/TR/xmlschema-2/.
2
 Moving Pictures Experts Group, MPEG-7

 http://www.chiariglione.org/mpeg/standards/mpeg-7/.
3
 WWW Consortium, SVG, http://www.w3.org/Graphics/SVG/.

4
 Web 3D, X3D, http://www.web3d.org/x3d/.

in the past decade, exploiting and extending achievements

of the combinatorial pattern matching community in tree

ED algorithms and related processes. However, they are yet

to be further improved and perfected as shown in the

previous section. On the other hand, IR-based XML

similarity is recently gaining increasing importance,

especially through the INEX evaluation campaigns

sponsored and organized by the IR community. And since

most IR-based methods are “more or less” heuristic, they

are incessantly discussed, which presents an overwhelming

motivation to venture in the field.

We believe that the unified presentation of XML

similarity in this paper will facilitate further research on the

subject.

Submitted to Elsevier Science

Tab. 1 - Characteristics of existing ED-based XML similarity approaches

 Approach XML data targeted1 Features Complexity Applications

E
d

it
 D

is
ta

n
ce

 m
et

h
o

d
s

Tai [78] ------

− First non-exponential tree ED algorithm.

− Insert/delete node anywhere in the tree, and

update node operations.

O(|T1|×|T2|× depth(T1)
2×

depth(T2)
2) (cf. notations

in following page)

Zhang and

Shasha [89] ------
− Insert/delete node anywhere in the tree, and

update node operations.

O(e2 × |T1| × min(|T1|,

|T2|))

Shasha and

Zhang [77] ------

− Insert/delete node anywhere in the tree, and

update node operations.
O(|T1|×|T2|× depth(T1) ×

depth(T2))

Querying tree structures

(approximate tree by

example queries)

Chawathe et al.

[16]

Document/Document

Structure-and-content

− Insert/delete leaf node, update node, move

node (sub-tree).

− The algorithm should match specific

criterions and assumptions without which the

results attained would be suboptimal.

O(n×e + e2)

Version control and

change management of

semi-structured data

Cobéna et al.

[20]

Document/Document

Structure-and-content

− Insert/delete leaf node, update node, move

node (sub-tree).

− Some sets of move operations might not be

optimal.

O(N × log(N)
XML Version control

and change management

Chawathe [18]
Document/Document

Structure-only

− Insert/delete leaf node, update node.

− Algorithm extended for external-memory

computations.

O(N2)

Version control and change

management of semi-

structured data

Nierman and

Jagadish [61]

Document/Document

Structure-only

− Insert/delete leaf node, update node,

insert/delete sub-tree.

− Outperforms [Chawathe 1999]’s algorithm,

which in turn yields better structural

clustering results than [Zhang and Shasha

1989]’s algorithm.

O(N2)
XML Structural

clustering

Dalamagas et

al. [23]

Document/Document

Structure-only

− Insert/delete leaf node, update node,

insert/delete sub-tree.

− Outperforms [Chawathe 1999]’s algorithm.

O(N2) XML Structural

clustering

Tekli et al. [80]
Document/Grammar (DTD)

Structure-only
− Evaluating structural similarity between

XML documents and DTD grammars.
O(N3)

XML structural

classification

Tab. 2 - Characteristics of existing IR-based XML similarity approaches

Approach XML data targeted2 Features Applications

B
a

si
c

X
M

L
 I

n
fo

rm
a

ti
o

n
 R

et
ri

ev
a

l
m

et
h

o
d

s

Fuhr and

Großjohann

[31]

Document/Query

(i.e., Document or pattern)

Structure-and-content

− Defining indexing nodes.

− Computing TF-IDF scores locally.

− Augmenting weights w.r.t. the XML structure.

Ranked XML querying

Chinenyanga and

Kushmerick [19]

Document/Query

Structure-and-content

− Makes use of existing raking capabilities in relational

database systems using WHIRL.

− Utilizes classical TF-IDF ranking.

Ranked XML querying

Grabs and

Schek [36]

Document/Query

Structure-and-content

− Builds on [Fuhr and Großjohann 2001].

− Introducing the notions of single category retrieval and

multi-category retrieval.

− Flexible retrieval: users specify at query time the scope

of their queries.

Ranked XML querying

Carmel et al.

[13]

Document/Query

Structure-and-content

− Considers the context of appearance (the root path) of a

term in computing TF-IDF scores.

− Relaxing the cosine measure for comparing

query/document vectors by accounting for context

resemblance.

Ranked XML querying

Schlieder and

Meuss [75]

Document/Query

Structure-and-content

− Structural terms (labeled trees) are the basic indexing

units.

− Flexible retrieval: logical XML document

Ranked XML querying

Amer-Yahia et

al. [4]

Document/Query

Structure-and-content

− XPath query relaxation.

− Defining specific relaxations operations.

− Scoring answers w.r.t. query relaxation process.

Ranked XML querying

Pokorny and

Rejlek [62]

Document/Query

Structure-and-content

− Using matrixes instead of vectors to represent XML

documents and queries

− The distribution of a term is described w.r.t. its structural

distribution in the XMLdocument collection.

Ranked XML querying

1 Methods in this category target rigorously structured (data-centric) XML
2
 Methods in this category target loosely structured (document-centric) XML

 Submitted to Elsevier Science 21

Tab. 3 – Other (context and application specific) methods to XML similarity

 Approach XML data targeted Features Complexity Applications

O
th

er
 X

M
L

 s
im

il
a

ri
ty

 m
et

h
o

d
s

Buttler [10]
Document/Document

Structure-only

− Tag similarity.

− Document structure is completely

ignored.

O(N)
XML structural

clustering

Kriegel and

Schönauer

[45]

Document/Document

Structure-only

− Edge matching (matching the edges

connecting two XML nodes).

− Lower bound of the ED techniques

(less accurate).

O(N3)
XML structural

ranked querying

Lian et al. [49]
Document/Document

Structure-only

− Edge matching (matching the edges

connecting two XML nodes).

− Effective and efficient w.r.t. ED.

O(N2), simplifies to

O(k×N) where k is a

small multiple of N

XML structural

clustering

Rafiei et al.

[64]

Document/Document

Structure-only

− Path similarity (computing the

number of common paths between

two XML documents).

− Effective w.r.t. ED.

O(p×l2)
XML structural

clustering

Joshi et al.

[42]

Document/Document

Structure-only

− XPath similarity

− Effective w.r.t. classic path similarity
O(dp2)

XML structural

clustering

Flesca et al.

[29]

Document/Document

Structure-only

− XML documents represented as time.

series and compared via FFT

− Less accurate than ED [Buttler 04].

O(N × log(N))
XML structural

clustering

Helmer [40]
Document/Document

Structure-only

− Concatenation and compression of

XML document structural properties

− Comparison using Entropy

O(2×N)
XML structural

clustering

Sanz et al. [72]
Document/Pattern

Structure-only
− Exploits dedicated indexing structures

to compare XML tree patterns.
O(K×P×Tr)

XML structural

ranked querying

Bertino et al.

[6]

Document/Grammar (DTD)

Structure-only

− Evaluating structural similarity

between XML documents and DTD

grammars.

O(Γ2 × (M+R))
XML classification,

query processing

Liang and

Yokota [51]

Document/Document

Structure-and-content

− Leaf node similarity.

− Yields suboptimal results when

XML documents are too large to fit

in main memory.

O(N2) XML data integration

Kade and

Heuser [43]

Document/Document

Structure-and-content

− Documents are transformed into lists

of path/content tuples

− Comparing document lists via string

and path similarity techniques

------ XML data integration

Weis and

Naumann [86]

Document/Document

Structure-and-content

− Comparing elements describing the

same real world entities

− Exploits heuristics in identifying

element descriptions

------ XML data integration

Leiyao et al. [47]
Document/Document

Structure-and-content

− Exploits a Bayesian network to

combine the probabilities of children

and descendents being duplicates

(similarity higher than threshold)

O(N2) XML data integration

Dorneles et al.

[26]

Document/Pattern

Structure-and-content

− Metrics for comparing tuple and

collection complex elements

− Comparing elements of the same

context (same root path)

XML data integration

and XML ranked

querying

|T1|, |T2|: cardinalities of trees T1 and T2

e: weighted edit distance (cf. Section 3.1.2)

N: maximum number of nodes in the trees being compared

n: is the total number of leaf nodes in the trees being compared

p: number of paths

dp: number of distinct paths

l: length of the longest path in an XML document (in number of nodes)

P: cardinality of XML tree pattern

K: maximum size (number of vertices) of a level in the pattern P

Tr: cardinality of the target XML tree

M: is the number of nodes – elements/attributes – in the XML document tree

R: the number of nodes – elements/attributes as well as ?, *, +, And, Or operators – in the DTD tree

Γ: the maximum number of edges out coming from a node of the XML document

Fig. 9 – Notations corresponding to the complexity formulations in Tables 1, 2 and 3.

Submitted to Elsevier Science

REFERENCES

[1] R. Agrawal, C. Faloutsos and A.N. Swami. Efficient

Similarity Search in Sequence Databases. In Proceedings of

the 4th International Conference on the Foundations of Data

Organization and Algorithms (FODO’93), Springer Verlag,

(1993) pp. 69-165.

[2] A. Aho, D. Hirschberg, and J. Ullman. Bounds on the

Complexity of the Longest Common Subsequence Problem.

Association for Computing Machinery, 23, 1, (1976) pp.1-12.

[3] G. Amati and C. J. Van Rijsbergen. Probabilistic models of

information retrieval based on measuring the divergence

from randomness. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002),

pp. 357-389.

[4] S. Amer-Yahia, L.K.S. Lakshmanan and S. Pandit. FleXPath:

Flexible Structure and Full-Text Querying for XML. In

Proceedings of ACM SIGMOD, (2004) pp. 83-94.

[5] V.N. Anh and A. Moffat. Compression and an IR Approach

to XML Retrieval. In Proceedings of the Workshop of the

Initiative for the Evaluation of XML Retrieval (INEX’02),

Germany, (2002) pp. 99-104.

[6] E. Bertino, G. Guerrini and M. Mesiti. A Matching

Algorithm for Measuring the Structural Similarity between

an XML Documents and a DTD and its Applications,

Elsevier Computer Science, 29, (2004) pp. 23-46.

[7] M. Boughanem. Introduction to Information Retrieval, In

Proceedings of EARIA 06 (Ecole d’Automne en Recherche

d’Information et Application), Chapter 1 (2006).

[8] J.-M. Bremer And M. Gertz. XQuery/IR: Integrating XML

Document and Data Retrieval. In Proceedings of the 5th

ACM SIGMOD International Workshop on the Web and

Databases (WebDB’02), (2002) pp. 1-6.

[9] A. Z. Broder. On the Resemblance and Containment of

Documents. In Proceedings of Compression and Complexity

of SEQUENCES, (1997) pp. 21-29.

[10] D. Buttler. A Short Survey of Document Structure Similarity

Algorithms. In Proceedings of the 5th International

Conference on internet Computing, USA, (2004) pp. 3-9.

[11] L. Candillier, I. Tellier and F. Torre. Transforming XML

Trees for Efficient Classification and Clustering. In

Proceedings of the Workshop of the Initiative for the

Evaluation of XML Retrieval (INEX’05), (2005) pp. 469-480.

[12] L. Candillier, I. Tellier. F. Torre and O. Bouquet. SSC:

Statistical Clustering. In Perner P. and Imiya A. eds.: 4th

International Conference on Machine Learning and Data

Mining in Pattern Recognition, Volume LNAI 3587 of

LNCS, (2005) pp. 100-109.

[13] D. Carmel, N. Efraty, G.M. Landau, Y.S. Maarek and Y.

Mass. An Extension of the Vector Space Model for Querying

XML Documents via XML Fragments. In Proceedings of the

ACM SIGIR’02 Workshop on XML and Information

Retrieval, (2002) pp. 14-25.

[14] D. Chamberlin, F. Fankhauser, M. Marchiori And J. Robie.

XML Query Requirements, (2000)

http://www.w3.org/TR/xmlquery-req.

[15] D. Chamberlin, D. Florescu, J. Robie, J. Simeon and M.

Stefanescu. XQuery : A Query Language for XML (2001)

http://www.w3.org/TR/2001/WD-xquery-20010215

[16] S. Chawathe, A. Rajaraman, H. Garcia-Molina and J.

Widom. Change Detection in Hierarchically Structured

Information. In Proceedings ACM SIGMOD, Canada, (1996)

pp. 26-37.

[17] S. Chawathe and H. Garcia-Molina. Meaningful Change

Detection in Structured Data. In Proceedings of ACM

SIGMOD, (1997) pp. 26–37.

[18] S. Chawathe. Comparing Hierarchical Data in External

Memory. In Proceedings of the VLDB Conference, (1999)

pp. 90-101.

[19] T.T. Chinenyanga and N. Kushmerick. An Expressive and

Efficient Language for XML Information Retrieval. Journal

of the American Society for Information Science 53(6),

(2002) pp. 438-453.

[20] G. Cobéna, S. Abiteboul and A. Marian. Detecting Changes

in XML Documents. In Proceedings of the IEEE

International Conference on Data Engineering, (2002) pp.

41-52.

[21] W. Cohen. Integration of Heterogeneous Databases Without

Common Domains Using Queries Based on Textual

Similarity. In Proceedings of ACM SIGMOD, (1998) pp.

291-211.

[22] W. Cohen. WHIRL: A Word-Based Information

Representation Language. Journal of Artificial Intelligence,

118, (2000) pp. 163-196.

[23] T. Dalamagas, T. Cheng, K. Winkel, and T. Sellis. A

methodology for clustering XML documents by structure.

Information Systems 31, 3, (2006) pp.187-228.

[24] S. Deerwester, S. Dumais, G. Furnas, T. Landauer and R.

Harshman. Indexing by Latent Semantic Analysis. Journal of

the American Society for Information Science, 41(6), (1990)

pp. 391–407.

[25] A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D.

Suciu. XML-QL: A Query Language for XML. Computer

Networks 31(11-16), (1999) pp. 1155-1169.

[26] C.F. Dorneles, C.A. Heuser, A.E.N. Lima, A.S. da Silva and

E.S. de Moura. Measuring Similarity between Collections of

Values. In Proceedings of the ACM international Workshop

on Web Information and Data Management, USA, (2004)

pp. 56-63.
[27] A. Doucet, L. Aunimo, M. Lehtonen and R. Petit. Accurate

Retrieval of XML Document Fragments Using EXTRIP. In

Proceedings of the Workshop of the Initiative for the

Evaluation of XML Retrieval (INEX’2003).

[28] D. Fallside., P. Walmsley. XML Schema part 0: Primer

Second Edition W3C, October 2004,

http://www.w3.org/TR/xmlschema-0/

[29] S. Flesca, G. Manco, E. Masciari, L. Pontieri and A.

Pugliese. Detecting Structural Similarities Between XML

Documents. In Proceedings of the 5th International ACM

SIGMOD Workshop on The Web and Databases (WebDB),

(2002) pp. 55-60.

[30] N. Fuhr. Probabilistic models in information retrieval. The

Computer Journal 35, 3, (1992) pp. 243-255.

[31] N. Fuhr and K. Großjohann. XIRQL: A Query Language for

Information Retrieval. In: Proceedings of ACM-SIGIR, New

Orleans, (2001) pp. 172-180.

[32] P. Ganesan, H. Garcia-Molina and J. Windom. Exploiting

Hierarchical Domain Structure to Compute Similarity. ACM

Transactions on Information Systems (TOIS), Volume 21,

Issue 1, (2003) pp. 64-93.

[33] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadrt and K.

Shim. Xtract: A System for Extracting Document Type

Descriptors form XML Documents. In Proceedings of ACM

SIGMOD, (2000) pp. 165-176.

 Submitted to Elsevier Science 23

[34] R. Goldman and J. Widom. DataGuides: Enabling Query

Formulation and Optimization in Semistructured Databases.

In Proceedings of the VLDB Conference, (1997) pp. 436-

445.

[35] J. C. Gower and G. J. S. Ross. Minimum Spanning Trees and

Single Linkage Cluster Analysis, Applied Statistics, 18,

(1969) pp. 54-64.

[36] T. Grabs and H.-J. Schek. Generating Vector Spaces On-the-

fly for Flexible XML Retrieval. In Proceedings of ACM

SIGIR’02 Workshop on XML and information Retrieval,

(2002) pp.4-13.

[37] S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava and T.

Yu. Approximate XML Joins. In Proceedings of ACM

SIGMOD, (2002) pp. 287-298.

[38] S. Guha, N. Koudas, D. Srivastava and T. Yu. Index-Based

Approximate XML Joins. In Proceedings of the ICDE

Conference, (2003) pp. 708-710.

[39] M. Halkidi, Y.Batistakis and M. Vazirgiannis. Clustering

Algorithms and Validity Measures, in Proceedings of the

SSDBM Conference, USA, (2001) pp. 3-22.

[40] S. Helmer, Measuring the Structural Similarity of

Semistructured Documents Using Entropy. In Proceedings of

the VLDB’07 Conference, (2007), pp. 1022-1032.

[41] D.S. Hirschberg. A Linear Space Algorithm for Computing

Maximal Common Subsequences. In Communications of the

ACM, 18:6, (1975) pp 341-343.

[42] S. Joshi, N. Agrawal, R. Krishnapuram and S. Negi. A Bag

of Paths Model for Measuring Structural Similarity in Web

Documents. In Proceedings of the ACM SIGKKD

Conference on Knowledge Discovery and Data Mining,

USA, (2003), pp. 577-582.

[43] A.M. Kade and C.A. Heuser. Matching XML Documents in

Highly Dynamic Applications. In Proceeding of the 8th ACM

Symposium on Document Engineering (DocEng’08), Brazil,

(2008) pp.191-198.

[44] K. Kailing, H.P. Kriegle, S. Schonauer and T. Seidl. Efficient

Similarity Search for Hierarchical Data in Large Databases.

In Proceedings of the 9th International Conference on

Extending Database Technology (EDBT 04), Greece, (2004)

pp. 676-693.

[45] H.P. Kriegel and S. Schönauer. Similarity Search in

Structured Data. In Proceedings of the 5th International

Conference on Data Warehousing and Knowledge Discovery

(DaWaK 03), Czech Republic, (2003) pp. 309-319.

[46] J. H. Lee. Properties of extended Boolean models in

information retrieval. In Proceedings of the ACM SIGIR

Conference, Springer-Verlag New York, (1994) pp.182-190.

[47] L. Leitao, P. Calado and M. Weis. Structure-Based Inference

of XML Similarity for Fuzzy Duplicate Detection. In

Proceedings of the 16th ACM conference on Conference on

Information and Knowledge Management (CIKM’07),

Portugal, (2007) pp. 293-302.

[48] V. Levenshtein. Binary Codes Capable of Correcting

Deletions, Insertions and Reversals. Sov. Phys. Dokl. 6,

(1966) pp.707-710.

[49] W. Lian, D. Cheung, N. Mamoulis and S.M. Yiu. An

Efficient and Scalable Algorithm for Clustering XML

Documents by Structure. IEEE Transactions on Knowledge

and Data Engineering, Vol. 16, 1, (2004) pp. 82-96.

[50] W. Liang and H. Yokota. SLAX: An Improved Leaf-

Clustering Based Approximate XML Join Algorithm for

Integrating XML Data at Subtree Classes. Transactions of

Information Processing Society of Japan, Volume 47, (2006)

pp. 47-57.

[51] W. Liang and H. Yokota. LAX: An Efficient Approximate

XML Join Based on Clustered Leaf Nodes for XML Data

Integration. In Proceedings of BNCOD’05, Springer LNCS

3567, (2005) pp 82-97.

[52] D. Lin. An Information-Theoretic Definition of Similarity. In

Proceedings of the 15th

International Conference on Machine

Learning, (1998) pp. 296-304.

[53] A. G. Maguitman, F. Menczer, H. Roinestad and A.

Vespignani. Algorithmic Detection of Semantic Similarity.

In Proceedings of the 14th International WWW Conference,

Japan, (2005) pp.107-116.

[54] F. Mandreoli, R. Martoglia and P. Tiberio. Approximate

Query Answering for a Heterogeneous XML Document

Base. In Proceedings of the 5th WISE (Web Information

Systems Engineering) Conference, (2004) pp. 337-351.

[55] A. Marian, S. Abiteboul and L. Mignet. Change-Centric

Management of Versions in an XML Warehouse, In

Proceedings of the VLDB Conference, (2001) pp. 581-590.

[56] A. Marian, S. Amer-Yahia, N. Koudas and D. Srivastava.

Adaptive Processing of Top-k Queries in XML. In

Proceedings of the ICDE Conference, (2005) pp. 162-173.

[57] H. Meuss. Logical Tree Matching with Complete Answer

Aggregates for Retrieving Structured Documents. PhD thesis,

University of Munich, 2000.

[58] G. Miller. WordNet: An On-Line Lexical Database. Int.

Journal of Lexicography, 3, (1990) pp. 235-244.

[59] E. Myers. An O(ND) Difference Algorithm and Its

Variations. Algorithmica, 1, 2, (1986) pp. 251-266.

[60] B. Nguyen, S. Abiteboul, G. Cobena and M. Preda.

Monitoring XML Data on the Web. In Proceedings of ACM

SIGMOD, (2001) pp. 437-448.

[61] A. Nierman and H. V. Jagadish. Evaluating structural

similarity in XML documents. In Proceedings of the 5th

ACM SIGMOD International Workshop on the Web and

Databases (WebDB), (2002) pp. 61-66.

[62] J. Pokorny and V. Rejlek. A Matrix model for XML Data.

Chap. in: Databases and Information Systems, Selected

Papers from the Sixth International Baltic Conference

DB&IS´2004, V. 118 Frontiers in Artificial Intelligence and

Applications, Ed. J. Barzdins and A. Caplinskas, IOS Press,

(2005) pp. 53-64.

[63] R. Quinlan. Data mining tools see5 and c5.0, 2004..

[64] D. Rafiei, D. Moise and D. Sun. Finding Syntactic

Similarities between XML Documents. In Proceedings of the

17th International Conference on Database and Expert

Systems Applications (DEXA), (2006) pp. 512-516.

[65] C. J. Rijsbergen Van. Information Retrieval, Butterworths,

London, 1979.

[66] C. J. Rijsbergen Van. Introduction to Information Retrieval,

In Proceedings of EARIA 06 (Ecole d’Automne en Recherche

d’Information et Application), Chapter 3, 2006.

[67] J. Robie. XQL (XML Query Language).

http://metalab.unc.edu/xql/xql-proposal.xml, 1999.

[68] N. Roussopoulos, S. Kelley and F. Vincent. Nearest

Neighbor Queries. In Proceedings of ACM SIGMOD, ACM

Press, (1995) pp. 71-79.

[69] G. Salton. The SMART Retrieval System, Prentice Hall, New

Jersey, 1971.

[70] G. Salton and M.J. Mcgill. Introduction to Modern

Information Retrieval, McGraw-Hill, Tokio, 1983.

[71] G. Salton And C. Buckley. Term-Weighting Approaches in

automatic Text Retrieval. Information Processing and

Management: an International Journal, 24(5), (1988) pp.

513-523.

 Submitted to Elsevier Science 24

[72] I. Sanz, M. Mesiti, G. Guerrini and R. Berlanga Lavori.

Approximate Subtree Identification in Heterogeneous XML

Documents Collections. XML Symposium, (2005) pp. 192-

206.

[73] R. Schenkel, A. Theobald and G. Weikum. Semantic

Similarity Search on Semistructured Data with the XXL

Search Engine, Information Retrieval, 8, (2005) pp. 521-545.

[74] T. Schlieder. Similarity Search in XML Data Using Cost-

based Query Transformations. In Proceedings of the 4th

ACM SIGMOD International Workshop on the Web and

Databases (WebDB), (2001) pp. 19-24.

[75] T. Schlieder and H. Meuss. Querying and Ranking XML

Documents. Journal of the American Society for Information

Science, Spec. Top. XML/IR 53(6), (2002) pp. 489-503.

[76] H. Schöning. Tamoni – A DBMS Designed for XML. In

Proceedings of the ICDE Conference, (2001) pp. 149-154.

[77] D. Shasha and K. Zhang. Approximate Tree Pattern

Matching. In Pattern Matching in Strings, Trees and Arrays,

chapter 14, Oxford University Press, 1995.

[78] K.C. Tai. The Tree-to-Tree correction problem. In Journal of

the ACM, 26, (1979) pp. 422-433.

[79] J. Tekli, R. Chbeir and K. Yetongnon. Semantic and

Structure based XML Similarity: An Integrated Approach. In

Proceedings of the 13th Interventional Conference on

Management of Data (COMAD’06), New Delhi, India,

(2006) pp. 32- 43.

[80] J. Tekli, R. Chbeir and K. Yetongnon. Structural Similarity

Evaluation between XML Documents and DTDs. In

Proceedings of the 8th International Conference on Web

Information Systems Engineering (WISE'07), Springer-

Verlag Berlin Heidelberg (LNCS 4831), Nancy, France,

(2007) pp. 196-201.

[81] A. Theobald and G. Weikum. Adding Relevance to XML. In

Proceedings of the 3rd International Workshop on the Web

Databases (WebDB’00), USA, (2000) pp. 105-124.

[82] A. Tversky. Features of Similarity. Psychological Review,

84(4), (1977) pp. 327-352.

[83] J. Wagner and M. Fisher. The String-to-String correction

problem. Journal of the Association of Computing

Machinery, 21, 1, (1974) pp. 168-173.

[84] Y. Wang, D.J. Dewitt and J.Y. Cai. X-Diff: An Effective

Change Detection Algorithm for XML Documents. In

Proceedings of the ICDE Conference, (2003) pp. 519-530.

[85] N. Webber, C. O’connel, B. Hunt, R. Levine L., Popkin and

G. Larose. The Information and Content Exchange (ICE)

Protocol. http://www.w3.org/TR/NOTE-ice, 2000.

[86] M. Weis and F. Naumann. Dogmatix Tracks down duplicates

in XML. In Proceedings of the ACM SIGMOD Conference,

USA, (2005) pp. 431-442.

[87] C. Wong and A. Chandra. Bounds for the String Editing

Problem. Journal of the Association for Computing

Machinery, 23, 1, (1976) pp.13-16.

[88] WWW Consortium, The Document Object Model,

http://www.w3.org/DOM.

[89] K. Zhang and D. Shasha. Simple Fast Algorithms for the

Editing Distance between Trees and Related Problems. SIAM

Journal of Computing, 18(6), (1989) pp.1245-1262.

[90] Z. Zhang, R. Li, S. Cao and Y. Zhu. Similarity Metric in

XML Documents. Knowledge Management and Experience

Management Workshop. Germany, 2003.

