
Towards Robust Peer Counting

Alberto Montresor

University of Trento, Italy

alberto.montresor@unitn.it

Ali Ghodsi

Royal Institute of Technology, Sweden

aligh@kth.se

Abstract—This paper describes T-SIZE, a peer counting pro-
tocol that is based on gossip-based aggregation. Peer counting
has become increasingly important as the size of the network is
often a crucial parameter used to guarantee robustness, small
diameter, load-balance, or to generally optimize the system. Our
work improves the previous work by providing a protocol that
is eventually accurate, i.e. the estimate will eventually converge
to the true peer count in absence of churn. The protocol can
handle extreme levels of churn, and automatically ensures that
all participating nodes learn the outcome of the peer counting.

I. INTRODUCTION

Overlay networks have received much attention in the past

decade due to their ability to scale and handle dynamism. As

these systems have been refined and become more sophisti-

cated, it has become more common to use the peer count, n,

as a key parameter in many of the protocols.

For example, the number of routing pointers are sometimes

set to a function f(n) of the peer count, to guarantee a maxi-

mum hop count [1], or to provide churn resilience [2]. Others

let each node assume f(n) identities to balance load [3], [4].

The performance of gossip-based broadcast protocols [5] can

be optimized if n is known; groups of specified size can be

built on the fly, using slicing protocols [6], [7]. In all above

cases, n represents the peer count, which is to be accurately

estimated at runtime.

In this short paper, we present T-SIZE, a simple gossip-based

peer counting algorithm that has three advantages compared to

previous work on the subject. First, it is eventually accurate,

i.e. the estimate converges to the number of nodes in absence

of churn. Second, the estimate is available on every node.

Third, it can handle extreme levels of churn, which to our

knowledge has not been possible previously.

A. Related work

A number of peer counting algorithms have appeared for

overlay networks. Le Merrer et al. [8] provide an extensive

comparative study of most of them by identifying three

main classes of approaches: probabilistic polling [9], random

walks [10], gossip-based [11]. Their comparison shows that

the gossip approach based on aggregation [11] is the most

accurate. Our approach is most similar to aggregation [11], but

substantially improves its accuracy and resilience to failure as

follows. The original aggregation approach, which is based

on averaging, prescribes one node to start with its initial

estimate set to one, and the rest setting their estimate to zero.

A. Montresor was supported by the European Commission through the
NAPA-WINE Project (Grant No. 214412).

Averaging will ensure that all nodes eventually receive 1/n
as their estimate. This approach has the disadvantage that the

estimate is initially exceedingly inaccurate, and failures in the

beginning of the averaging process can considerably impair

accuracy. Our approach does not suffer from these drawbacks.

Some related work use routing information already existing

at every node as a statistical sample, and derive the number

of nodes from it [12], [13], [14]. The advantage of these

approaches is that they do not consume, or consume little,

bandwidth, as the sample information is already present. The

estimate provided might, however, never converge to the true

peer count, even in the absence of churn. In contrast, our

approach builds on aggregation, which is known to converge

to the true statistic in absence of churn.

Certain approaches, such as Sample&Collide [10] and

HopsSampling [9] will make the estimate available at the

initiating node. If all nodes need to use the peer count, as

is the case if n is a crucial parameter used at every node,

the estimate has to be broadcast to all nodes. This bears extra

bandwidth and time costs compared to our approach.

II. THE ALGORITHM

T-SIZE is a combination of two protocols, AVERAGE [11]

and T-MAN [15]. The former allows the computation of

the average of a collection of values distributed among the

participant nodes, while the latter is capable to “bootstrap”

(build from scratch) complex topologies defined through a

distance function.

We provide a brief overview of the two protocols; for a

complete description, please refer to the original papers [11],

[15]. They are both epidemic protocols, following the generic

scheme shown in Fig. 1. Nodes regularly exchange information

in periodic, pairwise interactions. The scheme can be modeled

by means of two distinct threads executed at each node:

the active one takes the initiative to communicate, while the

passive accepts incoming exchange requests.

The active thread is repeated periodically every δc time

units (the cycle length). Each node selects a peer node q from

the system population through function getPeer(); extracts

a summary of the local state through function extract();
and finally, sends this summary to q. These operations are

repeated forever. The other thread passively waits for incoming

messages, replies in case of active requests, and modifies

the local state through function update(). Note that a typical

interaction consists of the active thread of node p sending a

message to the passive thread of another node q, which replies

with a message that is handled by the passive thread of p.

loop

wait(δc)

q = getPeer()
m = extract(sp , q)
send 〈REQ, p,m〉 to q

end loop

(a) active thread at p

on receive 〈t, q,m〉 from * do

if t = REQ then

m′ = extract(sp , q)
send 〈REP, p,m′〉 to q

end if

sp = update(sp ,m, q)

(b) passive thread at p

Fig. 1. The generic gossip scheme.

AVERAGE customizes the generic scheme as follows. The

input is represented by a numerical value possessed by each

node, which is copied in the local state at initialization. The

local state represents the current approximation of the global

average. getPeer() returns a random peer as returned by a

peer sampling service [16]; extract() returns the entire state,

i.e. the current approximation; while function update(sp ,m, q)
returns (sp +m)/2, which is the new approximated value.

After each exchange, the global average does not change,

while the empirical variance is reduced. It has been proved

that the expected variance reduction is 1/2
√

e after each cycle.

In T-MAN, the local state sp of p is composed of a

collection of neighbors. Initially, it is initialized randomly

(again, thanks to a peer sampling service). At the end, the

neighbor set is composed of the nodes closest to p w.r.t. to a

given distance function d. This goal is achieved by getPeer()
selecting one of the nodes from sp which is closest to p,

and extract(sp , q) returning the set of msgsize nodes that are

closest to q. update(sp ,m) simply merges the local state with

the received message, returning sp ∪ m. It has been proven

that this mechanism converges to the topology described by

the distance function in a logarithmic time.

Both protocols need a local method to decide when to ter-

minate. In AVERAGE, the protocol is stopped after an inactive

number of cycles has passed where the local estimate has

changed less than a precision threshold (i.e., when the esti-

mates differ for a minuscule amount). In T-MAN, the protocol

is stopped after an inactive number of cycles has passed

without adding any new node to the neighbor set (i.e., when

all the closest nodes have been discovered).

Having described our building blocks, we now introduce our

“combined” protocol. We first describe it in a static system,

with a fixed collection P of nodes, and then later discuss what

happens in case of failures.

Step 1: Each node p is assigned a random value vp taken from

the circular space I = {0, . . . ,M − 1}. For two arbitrary

identifiers x, y ∈ I, the distance from x to y is denoted

d(x, y); i.e.

d(x, y) = (y − x) mod M

Step 2: T-MAN is used to build a sorted ring over the set of

values, using the distance function d; i.e., at the end of the

execution, each node knows the identifier p and the value vp

of the successor node on the ring. q is the successor of p if

and only if there is no process r that follows p on the ring

and is closer to p than q; i.e.,

succ(p) = q ⇔ ∄r ∈ P : d(vp, vr) < d(vp, vq)

Step 3: Each node p initializes an internal variable ap with

its distance to its successor: ap = d(vp, vsucc(p)). It is easy to

see that in the absence of failures,
∑

p∈P
ap = M .

Step 4: The AVERAGE protocol is run on the ap values; at

the end of the execution, each of the n nodes knows an

approximation of the average (
∑

p∈P
ap)/n = M/n. Given

that M is known, each node can easily derive n.

Failures do not require any special handling. If a node p
disappears during the execution of the protocol, T-MAN will

still exchange the pair (p, vp). In this way, nodes will learn

about their closest neighbors anyway – irrespective of whether

they have crashed or not. In AVERAGE the initial values are

already normally distributed around the average – so the loss

of any of them will have little impact. This informal claim

will be confirmed by the experimental evaluation. Once an

execution is concluded, the protocol can be easily restarted to

get a more recent estimate of the size.

III. EVALUATION

Our protocol has been evaluated using the event-driven

version of Peersim [17], with a transport layer that emulates

end-to-end delays based on the traces of the King data set [18].

Each experiment is repeated 50 times with different random

seeds. When graphically feasible, individual experiments are

displayed as individual dots; when too many dots overlap, we

separate them with a small random translation on the x-axis

(thus creating a “cloud effect”).

The main simulation
Parameter Value Range

Size 2
16

2
10–218

δc 1s 0.1s – 1.0s

msgsize 10 2 – 20

precision 10
−5

10
−3 – 10

−8

inactive 3 2 – 8

parameters defined in

Section II are listed

here. Default values

are shown; in each

experiment, all of them

are fixed apart from one

or two which are varied in the specified range. To allow for

reproducibility of our results, code and configuration files can

be found here: http://peersim.sf.net/code/tsize.tgz.

A. Evaluation criteria

The following metrics are used to assess the protocol.

Error: The quality of the estimate, measured as the absolute

difference between the actual system size and the estimate,

reported as a percentage over the actual system size.

Convergence time: The speed to which the desired level of

error is reached, measured as the number of seconds that

passes from the beginning of the protocol to the time at which

all nodes stop sending messages.

Overhead: The total amount of traffic generated by T-MAN

and AVERAGE. The actual value is computed assuming the use

of UDP, as TCP would be overkill for sporadic gossip contacts;

we assume that each node descriptor in T-MAN is composed

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

40

50

60

70

80

90

100

110

120

E
rr

o
r

(%
)

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

Precision

Error of max estimate
Error of min estimates

Convergence time

Fig. 2. Evaluation of parameter precision .

10
-5

10
-4

10
-3

10
-2

10
-1

 1 2 3 4 5 6 7 8 9

40

50

60

70

80

90

100

110

120

E
rr

o
r

(%
)

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

Inactive

Error of max estimate
Error of min estimate

Convergence time

Fig. 3. Evaluation of parameter inactive.

of 12 bytes (64 bits for the random identifier and 32 bits for

the IP address); thus, the total size of each T-MAN message is

20+12∗msgsize bytes. Each message in AVERAGE is composed

of just one 64 bit value, so the total size is 20+8 = 28 bytes.

B. Failure-free experiments

The first set of experiments is meant to evaluate how the er-

ror can be reduced by varying precision and inactive , in order

to fix them for the subsequent simulations. In Fig. 2, precision

varies between 10−3 and 10−8, while in Fig. 3, inactive varies

between 2 and 8. As expected, the error level (shown as a

percentage on the size of the network in the figures) decreases

in correspondence of larger values of inactive and small

values of precision; unfortunately, the convergence time grows

linearly, so we fixed precision = 10−5 and inactive = 3 as

a trade-off between our metrics. Note that with these values,

the error is around 0.01%.

In the second set of experiments, we want to test how

overhead and convergence time are related to each other.

Fig. 4 has been obtained by varying two parameters, msgsize

between 2 and 20, and δc between 0.1s and 1.0s. By plotting

the convergence time on the x-axis and the overhead per node

on the y-axis, we have been able to highlight the trade-off

between these two metrics - the faster you want to go, the

larger overhead you have to pay. To match dots with their

parameter setting, the same set of experiments is plotted twice

with different gray-scale coding. On the top figure, the coding

shown on the right bar corresponds to the cycle length; the

smaller the cycle-length, the faster the speed (as expected).

But note that the smallest simulated cycle length (0.1s) is

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20
Parameter: message size

 20 25 30 35 40 45 50 55 60 65

Convergence Time (s)

 3

 4

 5

 6

 7

 8

 9

 10

O
v
e
rh

e
a
d
 p

e
r

n
o
d
e
 (

k
B

)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
Parameter: cycle length

 3

 4

 5

 6

 7

 8

 9

 10

O
v
e
rh

e
a
d
 p

e
r

n
o
d
e
 (

k
B

)

Fig. 4. Trade-off between overhead and convergence time

not shown, because none of the experiments have been able

to converge in less than 200 cycles (the time limit of our

simulations); furthermore, even 0.2s is not a good choice,

given that the associated dark dots are scattered between 35

and 45 seconds. On the bottom figure, the coding corresponds

to the message size; small message sizes tend to reduce the

total overhead, but not the very small ones. In the rest of our

experiments, we selected two fairly conservative values, i.e.

δc = 1s and msgsize = 10.

The log-log plot of Fig. 5 shows the scalability of T-SIZE

and compare it with AVERAGE. T-SIZE scales logarithmically

for sizes included in [210, 218], and the convergence time scales

better with T-SIZE rather than AVERAGE; the price to be payed

is a larger (but still reasonable) overhead.

C. Robustness

We are particularly interested in evaluating these metrics

in an environment subject to churn and message loss; our

protocol has proven to be extremely robust in these cases.

Fig. 6 show the behavior of the system under a disruptive

scenario where up to 1% of the nodes leave/crash at each

second. This corresponds to an expected lifetime of 99s –

an insane level of churn, much larger than measured churn

levels which are around 0.01%. Still, our protocol manages to

keep the error below 7%, with most of the dots below 2%.

Compared with AVERAGE, we note a strong error reduction.

Fig. 7 shows the behavior of the protocol in case of

message losses. The protocol is sensitive to high levels of

losses; this is because the loss of the reply message in an

aggregation exchange causes an asymmetric update of the local

values: one is changed, the other not. Nevertheless, for limited

amounts of message loss (less than 5%), the protocol remains

adequately accurate and its behavior is better than AVERAGE,

which performs fairly bad even with small levels of message

losses.

0.0

1.0

2.0

3.0

4.0

5.0

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

O
v
e
rh

e
a
d
 p

e
r

n
o
d
e
 (

k
B

)

Size

T-Size
Average

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

C
o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
)

T-Size
Average

Fig. 5. Scalability

IV. DISCUSSION AND CONCLUSIONS

Epidemic protocols for peer counting have been proposed

by Jelasity et al. in 2005 [11]; the idea was to use AVERAGE,

initializing all nodes to 0, apart from one node set to 1 (the

initiator). The network size n could be easily derived from the

computed average 1/n. The problem of this approach was its

sensitivity to failures; in the first phases of the computation,

the failure of the initiator or its neighbors nodes could easily

double the estimate. Furthermore, the initial estimate at the

nodes were exceedingly inaccurate. T-SIZE is more robust to

failures and the initial estimates have the same expected error.

This is because no node is more important than another.

While T-SIZE is an important improvement over state-of-the-

art, we believe that it could further be improved by making

it continuous – i.e. able to continuously provide the estimate

without periodic restarting. This is the subject of future work.

REFERENCES

[1] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient
management of DHT routing tables,” in Proceedings of the 2nd Sym-

posium on Networked Systems Design and Implementation (NSDI’05).
Boston, MA: USENIX, May 2005.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. on Networking

(TON), vol. 11, no. 1, pp. 17–32, 2003.
[3] P. B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in

Distributed Hash Tables,” in Proceedings of the 24th Joint Conf. of the

IEEE Computer and Communications Societies (INFOCOM’05), Miami,
FL, Mar. 2005, pp. 596–606.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” in Proceedings of the 2nd

International Workshop on Peer-to-Peer Systems (IPTPS’03), ser. LNCS,
vol. 2735, Berkeley, CA, 2003, pp. 68–79.

[5] A. J. Demers et al., “Epidemic algorithms for replicated database
maintenance,” in Proceedings of the 6th ACM Symposium on Principles

of Distributed Computing Systems (PODC’87), 1987, pp. 1–12.
[6] A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Kermarrec, and M. Raynal,

“Distributed slicing in dynamic systems,” in Proceedings of the 27th In-

ternational Conference on Distributed Computing Systems (ICDCS’07).
Toronto, Ontario, Canada: IEEE Computer Society, 2007.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 0.2 0.4 0.6 0.8 1

E
rr

o
r

(%
)

Failure probability per second per node (%)

T-Size
Average

Fig. 6. Accuracy under churn.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

E
rr

o
r

(%
)

Message losses (%)

T-Size
Average

Fig. 7. Accuracy under message losses.

[7] A. Montresor and R. Zandonati, “Absolute slicing in peer-to-peer sys-
tems,” in Proceedings of the 5th International Workshop on Hot Topics

in Peer-to-Peer Systems (HotP2P’08), Miami, FL, Apr. 2008.
[8] E. L. Merrer, A.-M. Kermarrec, and L. Massoulié, “Peer to peer

size estimation in large and dynamic networks: A comparative study,”
in Proceedings of the 15th IEEE International Symposium on High

Performance Distributed Computing (HPDC’06), 2006, pp. 7–17.
[9] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. J. Demers, “De-

centralized schemes for size estimation in large and dynamic groups,”
in Proceedings of the 4th IEEE International Symposium on Network

Computing and Applications (NCA’05), 2005, pp. 41–48.
[10] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. J. Ganesh, “Peer

counting and sampling in overlay networks: random walk methods,” in
Proceedings of the 25th ACM Symposium on Principles of Distributed

Computing (PODC’06), 2006, pp. 123–132.
[11] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation

in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 1,
pp. 219–252, Aug. 2005.

[12] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” in Proceedings of the 21st ACM

Symposium on Principles of Distributed Computing (PODC’02). New
York, NY: ACM Press, 2002.

[13] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” in Proceedings of the ACM

SIGCOMM 2004 Symposium on Communication, Architecture, and

Protocols. Portland, OR: ACM Press, March 2004, pp. 353–366.
[14] K. Horowitz and D. Malkhi, “Estimating network size from local

information,” Inform. Process. Lett., vol. 88, pp. 237–243, 2003.
[15] M. Jelasity, A. Montresor, and O. Babaoglu, “T-Man: Gossip-based fast

overlay topology construction,” Comput. Netw., 2009, to appear.
[16] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van

Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8, 2007.

[17] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator,” http://peersim.sf.net.

[18] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary internet end hosts,” in Proceedings of the Internet

Measurement Workshop (SIGCOMM IMW), 2002.

