Intelligent Gossip

Alberto Montresor!

University of Trento, Italy
alberto.montresor@unitn.it

Summary. The gossip paradigm made its first appearance in distributed systems
in 1987, when it was applied to disseminate updates in replicated databases. Two
decades later, gossip-based protocols have gone far beyond dissemination, solving a
large and diverse collection of problems. We believe that the story is not over: while
gossip is not the panacea for distributed systems, there are still virgin research areas
where it could be profitably exploited. In this paper, we briefly discuss a gossip-
based “construction set” for distributed systems and we illustrate how intelligent
distributed computing could benefit by the application of its building blocks. Simple
examples are provided to back up our claim.

1 Introduction to Gossip

Since the seminal paper of Demers et al. [3], the idea of epidemiological (or
gossip) algorithms has gained considerable popularity within the distributed
systems and algorithms communities.

In a recent workshop on the future of gossip (summarized on a special issue
of Operating System Review [12]), there has been a failed attempt to precisely
define the concept of gossip. The reason for this failure is twofold: either
the proposed definitions were too broad (including almost any message-based
protocol ever conceived), or they were too strict (ruling out many interesting
gossip solutions, some of them discussed in the next section).

While a formal definition seems out of reach, it is possible to describe a
prototypical gossip scheme that seems to entirely cover the intuition behind
gossip. The scheme is presented in Figure 1.

In this scheme, nodes regularly exchange information in periodic, pairwise
interactions. The protocol can be modeled by means of two separate threads
executed at each node: an active one that takes the initiative to communicate,
and a passive one accepting incoming exchange requests.

In the active thread, a node periodically (every A time units, the cy-
cle length) selects a peer node p from the system population through func-
tion selectPeer(); it extracts a summary of the local state through function

2 Alberto Montresor

1: loop 1: loop
2: wait(A) 2: receive (t, sp) from all
3: p« selectPeer() 3 if t = REQUEST then
4: s = prepareMessage() 4: s = prepareMessage()
5 send (REQUEST, s) to p 5: send (REPLY, s) to p
6: end loop 6 end if

7 update(sp)

8: end loop

(a) active thread (b) passive thread

Fig. 1. The generic gossip scheme.

prepareMessage(); and finally, it sends this summary to p. This set of opera-
tions is repeated forever. The other thread passively waits for incoming mes-
sages, replies in case of active requests, and modifies the local state through
function update().

The scheme is still too generic and can be used to mimic protocols that
are not gossip; as an example, we can map the client-server paradigm to this
scheme by simply having all nodes selecting the same peer. For this reason,
this scheme must be associated with a list of “rules of thumb” to distinguish
gossip from non-gossip protocols:

peer selection must be random, or at least guarantee enough peer diversity
only local information is available at all nodes

communication is round-based (periodic)

transmission and processing capacity per round is limited

all nodes run the same protocol

These features are intentionally left fuzzy: for example “limited”, “local” or
“random” is not defined any further.

With this informal introduction behind, we can focus on what makes gossip
protocols so “cool” these days. The main reason is robustness: node failures
do not cause any major havoc to the system, and can be tolerated in large
quantity; message losses often cause just a speed reduction rather than safety
issues. Low-cost is another plus: load is equally distributed among all nodes,
in a way such that overhead may be reduced to few bytes per second per node.

The cause of such robustness and efficiency can be traced back to the
inherently probabilistic nature of gossip protocols. They represent a certain
“laid-back” approach, where individual nodes do not take much responsibility
for the outcome. Nodes perform a simple set of operations periodically, they
are not aware of the state of the entire system, only a very small (constant)
proportion of it, and act based on completely local knowledge. Yet, in a prob-
abilistic sense, the system as a whole achieves very high levels of robustness
to benign failures and a favorable (typically logarithmic) convergence time.

Intelligent Gossip 3

We claim that if adopted, the gossip approach can open intelligent dis-
tributed computing to a whole variety of autonomic and self-* behaviors,
bringing robustness to existing intelligent computing techniques. This claim
will be backed up in two steps: first, by showing that several important prob-
lems in distributed systems have a robust gossip solution; second, by showing
how these solutions can be integrated in existing computational intelligence
techniques.

2 Gossip Lego: Fundamental Bricks

Beyond the original goal of information dissemination, gossip protocols have
been used to solve a diverse collection of problems. More interestingly, it
appears now that most of these solutions can be profitably combined to solve
more complex problems. All together, these protocols start to look like a
construction set, where protocols can be combined as Lego bricks. Figure 2
lists some of these bricks; the following subsections briefly discuss each of
them.

Fig. 2. Gossip Lego: Fundamental bricks

2.1 Peer Sampling

The first piece, peer sampling, may be seen as the green Lego baseplate where
all kind of models are built. In fact, the problem it solves is at the basis
of gossip: how to keep together the population of nodes that constitute the
system, in such a way that it is possible implement function selectPeer() that
selects nodes from such population.

Instead of providing each node with a global view of the system, the peer
sampling service provides each node with continuously up-to-date random
samples of the entire population. Higher-level gossip protocols may transpar-
ently implement selectPeer() by randomly choosing a per from this sample.

4 Alberto Montresor

Locally, each node only see the random node returned by selectPeer(); glob-
ally, the nodes and their samples define an overlay topology, i.e. a directed
graph superimposed over the network. The graph is characterized by a ran-
dom structure and the presence of a single strongly connected component.

An example instantiation of the peer sampling service is the NEWSCAST
protocol [9], characterized by its low cost, extreme robustness and minimal
assumptions. The basic idea of NEwscAST is that each node maintains a local
set of random descriptors, called the (partial) view. A descriptor is a pair
(node address, timestamp). NEWSCAST is based on the same scheme as all gos-
sip protocols. Function selectPeer() returns a random member of the view;
function prepareMessage() returns the local view, plus a fresh descriptor of
itself. Function update() keeps a fixed number of freshest descriptors (based
on timestamps), selected from those locally available in the view and those
contained in the received message. Nodes belonging to the network continu-
ously inject their identifiers in the network with the current timestamp, so old
identifiers are gradually removed from the system and are replaced by newer
information. This feature allows the protocol to “repair” the overlay topology
by forgetting information about crashed neighbors, which by definition cannot
inject their identifiers.

Implementations exist in which these messages are small UDP messages
containing approximately 20-30 descriptors, each composed of an IP address,
a port and a timestamp. The cycle length A is typically long, in the range of
10s. The cost is therefore small, few tens of bytes per second, similar to that
of heartbeats in many distributed architectures. The protocol provides high
quality (i.e., sufficiently random) samples not only during normal operation
(with relatively low churn), but also during massive churn and even after
catastrophic failures (up to 70% nodes may fail), quickly removing failed nodes
from the local views of correct nodes.

2.2 Decentralized Aggregation

Aggregation is a common name for a set of functions that provide a sum-
mary of some global system property. In other words, they allow local access
to global information in order to simplify the task of controlling, monitoring
and optimizing distributed applications. Examples of aggregation functions
include network size, total free storage, maximum load, average uptime, loca-
tion and intensity of hotspots, etc.

An example of gossip-based aggregation algorithm is contained in [8]. The
algorithm assumes that each node maintains a local approximation of the value
to be aggregated, initially equal to the value of the local property. Function
selectPeer() exploit the underlying peer-sampling protocol to return a ran-
dom node. Function prepareMessage() returns the current local approximate
value, while function update() modifies the local approximate value based on
some aggregation-specific and strictly local computation based on the pre-
vious values. This local pairwise interaction is designed in such a way that

Intelligent Gossip 5

all approximate values in the system will quickly converge to the desired ag-
gregate value. For example, in case of average aggregation, at the end of an
exchange both nodes install the average of their current local approximate
values; after each exchange, the global average will not change, while variance
is reduced. It can be proved that at each cycle, the expected reduction is equal
to (2y/e) !, independently of the size of the network.

2.3 Load balancing

The aggregation protocol described above is proactive, meaning that all nodes
participating in the computation are made aware of the final results. This
suggests a simple improvement of a well-known load balancing protocol, as
well as showing how simple protocol pieces can be combined together [7].

The load balancing scheme we want to improve works as follows: [1,13]:
given a set of tasks that must be executed by a collection of nodes, nodes
periodically exchange tasks in a gossip fashion, trying to balance the load
in the same fashion as our average aggregation protocol. The problem with
this approach is that tasks may be costly moved from one overloaded node
to another overloaded node, without really improving the situation - nodes
remain overloaded.

Our idea is based on the concept that moving information about tasks is
cheaper than moving tasks. For this reason, we use our aggregation service to
compute the average load, and then later we put in contact - through a special-
ized peer sampling service - nodes that are underloaded with nodes that are
overloaded. By avoiding overloaded-to-overloaded exchanges, this algorithm
guarantees that an optimal number of transfers are performed.

2.4 Slicing

Once collected all nodes in the same basket through peer sampling, one may
want to start to differentiate among them, creating sub-groups of nodes that
are assigned to specific tasks. This functionality is provided by a slicing ser-
vice, where the population of nodes is divided into groups (slices) which are
maintained, in a decentralized way, in spite of failures.

The composition of slices may be defined based on complex conditions
based on both node and slice features; example of possible slice definitions
include the following:

nodes with at least 4GB of RAM;

not more than 10.000 machines, each of them with ADSL connection or
more;

the group composed by the 10% most performant machines;

a group of nodes whose free disk space sums up to 1PB.

Several protocols have been devised to solve these problems [4,6,14]; all
of them are based on special versions of peer sampling. For example, if only

6 Alberto Montresor

nodes with special characteristics (e.g., RAM greater than 4GB) are allowed
to insert their node descriptor in exchanged messages, we quickly obtain a sub-
population that only contains the desired nodes. By using count aggregation,
you can limit the size to a specified value; by ranking values, you can select
the top 10%; by using sum aggregation, you can obtain the desired disk space.

2.5 Topology Maintenance

Once you have your slice of nodes, it could be required to organize them in
a complex structured topology. T-MAN is a gossip-based protocol scheme for
the construction of several kinds of topologies in logarithmic time, with high
accuracy [5].

Each node maintains a partial view; as in peer sampling, views are peri-
odically updated through gossip. In a gossip step, a node contacts one of its
neighbors, and the two peers exchange a subset of their partial views. Subse-
quently both participating nodes update their lists of neighbors by merging
the the received message.

The difference form peer sampling is how to select peers for a gossip step
(function selectPeer()), and how to select the subset of neighbors to be sent
(function prepareMessage()).

In T-MAN, selectPeer() and prepareMessage() are biased by a ranking func-
tion that represents an order of preference in the partial views. The ranking
function of T-MAN is a generic function and it can capture a wide range of
topologies from rings to binary trees, to n-dimensional lattices. For example,
in an ordered ring, the preference goes to immediate successors and prede-
cessors over the ring itself. It is possible to demonstrate that several different
topologies can be achieved in a logarithmic time.

3 Towards Intelligent Gossip

The bricks presented so far are all dedicated to simple tasks, mostly related
to the management of the gossip population itself. You can keep together the
entire population though peer sampling, select a group of nodes that satisfies a
specific condition through slicing, build a particular topology through T-mAN,
and finally monitor the resulting system through aggregation.

But gossip is not limited to this. Recent results suggest a path whereby
results from the optimization community might be imported into distributed
systems and architected to operate in an autonomous manner. We briefly
illustrate some of these results.

3.1 Particle Swarm Optimization

PSO [11] is a nature-inspired method for finding global optima of a function
f of continuous variables. Search is performed iteratively updating a small

Intelligent Gossip 7

number n of random “particles”, whose status information includes the current
position vector x;, the current speed vector v;, together with the optimum
point p,; and its fitness value f(p;), which is the “best” solution the particle
has achieved so far. Another “best” value that is tracked by the particle swarm
optimizer is the global best position g, i.e. the best fitness value obtained so
far by any particle in the population.

After finding the two best values, every particle updates its velocity and
position based on the memory of its current position, the best local positions
and the best global position; the rationale is to search around positions that
have proven to be good solutions, avoiding at the same time that all particles
ends up in exactly the same positions.

Nothing prevents the particle swarm to be distributed among a collection
of nodes [2]. At each node p, a sub-swarm of size k is maintained; slightly
departing from the standard PSO terminology, we say that each swarm of a
node p is associated to a swarm optimum gP, selected among the particles
local optima. Clearly, different nodes may know different swarm optima; we
identify the best optimum among all of them with the term global optimum,
denoted g.

Swarms in different nodes are coordinated through gossip as follows: peri-
odically, each node p sends the pair (gP, f(gP)) to a peer node ¢, i.e. its current
swarm optimum and its evaluation. When ¢ receives such a message, it com-
pares the swarm optimum of p with its local optimum; if f(g?) < f(g?), then g
updates its swarm optimum with the received optimum (g9 = gP); otherwise,
it replies to p by sending (g9, f(g?)).

Simulations results [2] show that this distributed gossip algorithm is ef-
fective in balancing the particles load among nodes; furthermore, the system
is characterized by extreme robustness, as the failure of nodes has the only
effect of reducing the speed of the system.

3.2 Intelligent heuristics

Many heuristic techniques can be used to approximately solve complex prob-
lems in a distributed way. For example, in [10] the problem of placing servers
and other sorts of superpeers is considered. The particular goal of this paper
is to situate a superpeer close to each client, and create enough superpeers to
balance the load. The scheme works in a gossip way, as follows. Nodes ran-
domly take the role of superpeers, and clients are associated to them; then,
nodes dissatisfied with the service their receive, start to gossip, trying to elect
superpeers that could provide better service. Dissatisfaction could be moti-
vated by the overload of the superpeer, of by the excessive distance between
the client and the server. While this heuristics scheme could be stuck in local
optima, stills it reasonably improve the overall satisfaction of nodes, especially
considering that nodes work in the absence of complete data.

8

Alberto Montresor

Acknowledgments

Work supported by the project CASCADAS (IST-027807) funded by the FET
Program of the European Commission.

References

1.

2.

10.

11.

12.

13.

14.

A. Barak and A. Shiloh. A Distributed Load Balancing Policy for a Multicom-
puter. Software Practice and Experience, 15(9):901-913, Sept. 1985.

M. Biazzini, A. Montresor, and M. Brunato. Towards a decentralized architec-
ture for optimization. In Proc. of the 22nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS’08), Miami, FL, USA, Apr. 2008.
A. Demers et al. Epidemic Algorithms for Replicated Database Management. In
Proc. of 6th ACM Symp. on Principles of Dist. Comp. (PODC’87), Vancouver,
August 1987.

A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Kermarrec, and M. Raynal. Dis-
tributed slicing in dynamic systems. In Proceedings of the 27th International
Conference on Distributed Computing Systems (ICDCS ’07), page 66, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology manage-
ment. In S. A. Brueckner, G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,
editors, Engineering Self-Organising Systems: Third International Workshop
(ESOA 2005), Revised Selected Papers, volume 3910 of Lecture Notes in Com-
puter Science, pages 1-15. Springer-Verlag, 2006.

M. Jelasity and A.-M. Kermarrec. Ordered slicing of very large-scale overlay
networks. In Peer-to-Peer Computing, pages 117-124, 2006.

M. Jelasity, A. Montresor, and O. Babaoglu. A Modular Paradigm for Build-
ing Self-Organizing P2P Applications. In Engineering Self-Organising Systems:
Nature-Inspired Approaches to Software Engineering, number 2977 in Lecture
Notes in Artificial Intelligence, pages 265-282. Springer-Verlag, Apr. 2004.

M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst., 23(1):219-252, 2005.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
Gossip-based peer sampling. ACM Transactions on Computer Systems, 25(3):8,
Aug. 2007.

G. P. Jesi, A. Montresor, and O. Babaoglu. Proximity-aware superpeer overlay
topologies. IEEE Transactions on Network and Service Management, 4(2):74—
83, Sept. 2007.

J. Kennedy and R. Eberhart. Particle swarm optimization. Neural Networks,
1995. Proceedings., IEEE International Conference on, 4, 1995.

A.-M. Kermarrec and M. van Steen. Gossiping in distributed systems. Operating
Systems Review, 41(5):2-7, 2007.

P. Kok, K. Loh, W. J. Hsu, C. Wentong, and N. Sriskanthan. How Network
Topology Affects Dynamic Load Balancing. IEEE Parallel & Distributed Tech-
nology, 4(3), Sept. 1996.

A. Montresor and R. Zandonati. Absolute slicing in peer-to-peer systems. In
Proc. of the 5th International Workshop on Hot Topics in Peer-to-Peer Systems
(HotP2P’08), Miami, FL, USA, Apr. 2008.

