
Peer-to-peer Optimization in Large Unreliable Networks

with Branch-and-Bound and Particle Swarms⋆

Balázs Bánhelyi1, Marco Biazzini2, Alberto Montresor2, and Márk Jelasity3

1 University of Szeged, Hungary, banhelyi@inf.u-szeged.hu
2 University of Trento, Italy, biazzini,montreso@dit.unitn.it

3 University of Szeged and HAS, Hungary, jelasity@inf.u-szeged.hu

Abstract. Decentralized peer-to-peer (P2P) networks (lacking a GRID-style re-

source management and scheduling infrastructure) are an increasingly important

computing platform. So far, little is known about the scaling and reliability of

optimization algorithms in P2P environments. In this paper we present empirical

results comparing two P2P algorithms for real-valued search spaces in large-scale

and unreliable networks. Some interesting, and perhaps counter-intuitive findings

are presented: for example, failures in the network can in fact significantly im-

prove performance under some conditions. The two algorithms that are compared

are a known distributed particle swarm optimization (PSO) algorithm and a novel

P2P branch-and-bound (B&B) algorithm based on interval arithmetic. Although

our B&B algorithm is not a black-box heuristic, the PSO algorithm is competitive

in certain cases, in particular, in larger networks. Comparing two rather different

paradigms for solving the same problem gives a better characterization of the

limits and possibilities of optimization in P2P networks.

1 Introduction

Whereas large scale parallel computing is normally performed using GRID technolo-

gies, it is an emerging area of research to apply peer-to-peer algorithms in distributed

global optimization. P2P algorithms can replace some of the centralized mechanisms of

GRIDs that include monitoring and control functions. For example, network nodes can

distribute information via “gossiping” with each other and they can collectively com-

pute aggregates of distributed data (average, variance, count, etc) to be used to guide

the search process [1]. This in turn increases robustness and communication efficiency,

allows for a more fine-grained control over the parallel optimization process, and makes

it possible to utilize large-scale resources without a full GRID control layer and without

reliable central servers.

The interacting effects of problem difficulty, network size, and failure patterns on

optimization performance and scaling behavior are still poorly understood in P2P global

⋆ This work was supported by the European Space Agency through Ariadna Project “Gossip-

based strategies in global optimization” (21257/07/NL/CB). M. Jelasity was supported by

the Bolyai Scholarship of the Hungarian Academy of Sciences. B. Bánhelyi was supported

by the Ferenc Deák Scholarship No. DFÖ 19/2007, Aktion Österreich-Ungarn 70öu1, and

OTKA T 048377.

optimization. In this paper we present empirical results comparing two P2P algorithms

for real-valued search spaces in large-scale and unreliable networks: a distributed parti-

cle swarm optimization (PSO) algorithm [2] and a novel P2P branch-and-bound (B&B)

algorithm based on interval arithmetic. Although our B&B algorithm is not a black-box

heuristic, the PSO algorithm is competitive in certain cases, in particular, in larger net-

works. Some interesting, and perhaps counter-intuitive findings are presented as well:

for example, failures in the network can in fact significantly improve the performance

of P2P PSO under some conditions.

Other P2P heuristic optimization algorithms include [3, 4, 2]. They all build on

gossip-based techniques [1, 5] to spread and process information, as well as to imple-

ment algorithmic components such as selection and population size control. Our focus

is somewhat different from [3, 4] where it was assumed that population size is a fixed

parameter that needs to be maintained in a distributed way. Instead, we assume that the

network size is given, and should be exploited as fully as possible to optimize speed.

In this context we are interested in understanding the effect of network size on perfor-

mance, typical patterns of behavior, and related scaling issues.

In the case of B&B, we are not aware of any fully P2P implementations. The closest

approach is [6], where some components, such as broadcasting the upper bound, are

indeed fully distributed, however, some key centralized aspects of control remain, such

as the branching step and the distribution of work. In unreliable environments we focus

on, this poses a critical problem for robustness.

2 The Algorithms

Our target networking environment consists of independent nodes that are connected

via an error-free message passing service: each node can pass a message to any target

node, provided the address of the target node is known. We assume that node failures

are possible. Nodes can leave and new nodes can join the network at any time as well.

In our P2P algorithms all nodes have identical roles running identical algorithms.

Joining and failing nodes are tolerated automatically via the inherent (or explicit) redun-

dancy of the algorithm design. This is made possible via a randomized communication

substrate, the peer sampling service both algorithms are based on.

The peer sampling service enables all the nodes to send a message to a random node

from the network at any time. This very simple communication primitive is called the

peer sampling service that has a wide range of applications [7]. In this paper we will

use this service as an abstraction, without referring to its implementation; lightweight,

robust, fully distributed implementations exist based on the analogy of gossip [7]. The

algorithms below will rely on two particular applications of the peer sampling service.

The first is gossip-based broadcasting where, nodes periodically communicate pieces of

information they consider “interesting” to random other nodes. This way, information

spreads exponentially fast. The second is diffusion-based load balancing, where nodes

periodically test random other nodes to see whether those have more load or less load,

and then perform a balancing step accordingly. This process models the diffusion of the

load over a random network.

Algorithm 1 P2P B&B

1: loop ⊲ main loop

2: I ← priorityQ.getFirst() ⊲ most promising interval; if queue empty, blocks

3: (I1, I2)← branch(I) ⊲ cut the interval in two along longest side

4: min1 ← upperBound(I1) ⊲ minimum of 8 random samples from interval

5: min2 ← upperBound(I2)

6: min← min(min,min1 ,min2) ⊲ current best value known locally

7: b1 ← lowerBound(I1) ⊲ calculates bound using interval arithmetic

8: b2 ← lowerBound(I2)

9: priorityQ.add(I1, b1) ⊲ queue is ordered based on lower bound

10: priorityQ.add(I2, b2)

11: priorityQ.prune(min) ⊲ remove entries with a higher lower bound than min

12: p← getRandomPeer() ⊲ calls the peer sampling service

13: sendMin(p, min) ⊲ gossips current minimum

14: if p has empty queue or local second best interval is better than p’s best then

15: sendInterval(p, priorityQ.removeSecond()) ⊲ gossip-based load balancing step

16: procedure ONRECEIVEINTERVAL(I(⊆ D), b)

17: priorityQ.add(I, b) ⊲ D ⊆ IRd is the search space, b is lower bound of I

18: procedure ONRECEIVEMIN(minp)

19: min← min(minp ,min)

Based on gossip-based broadcasting, a distributed implementation of a PSO algo-

rithm was proposed [2]. Here we will use a special case of this algorithm, where parti-

cles are mapped to nodes: one particle per node. The current best solution, a key guiding

information in PSO, is spread using gossip-based broadcast. This means we have a stan-

dard PSO algorithm where the number of particles equals the network size and where

the neighborhood structure is a dynamically changing random network.

We now move on to the discussion of P2P B&B. Various parallel implementations

of the B&B paradigm are well-known [8]. Our approach is closest to the work presented

in [9] where the bounding technique is based on interval-arithmetic [10]. The important

differences stem from the fact that our approach is targeted at the P2P network model

described above, and it is based on gossip instead of shared memory. The basic idea

is that, instead of storing it in shared memory, the lowest known upper bound of the

global minimum is broadcast using gossip. In addition, the intervals to be processed are

distributed over the network using gossip-based load balancing. The algorithm that is

run at all nodes is shown in Algorithm 1. The lower bound for an interval is calculated

using interval arithmetic [10], which guarantees that the calculated bound is indeed a

lower bound. We start the algorithm by sending the search domain D with lower bound

b =∞ to a random node.

3 Experimental Results

The algorithms described above were compared empirically using the P2P network

simulator PeerSim [11].We selected well-known test functions as shown in Table 1.

We included Sphere2 and Sphere10 as easy unimodal functions. Griewank10 is similar

to Sphere10 with high frequency sinusoidal “bumps” superimposed on it. Schaffer10

is a sphere-symmetric function where the global minimum is surrounded by deceptive

spheres. These two functions were designed to mislead local optimizers. Finally, Levy4

is not unlike Griewank10, but more asymmetric, and involves higher amplitude noise as

Function f(x) D f(x∗) K

Sphere2 x2
1 + x2

2 [−5.12, 5.12]2 0 1

Sphere10
∑

10

i=1
x2

i [−5.12, 5.12]10 0 1

Griewank10
∑10

i=1

x
2

i

4000
−

∏10

i=1
cos

(

xi√
i

)

+ 1 [−600, 600]10 0 ≈ 1019

Schaffer10 0.5 + (sin2(

√

∑

10

i=1
x2

i
) − 0.5)/ [−100, 100]10 0 ≈ 63

(1 + (
∑

10

i=1
x2

1)/1000)
2 spheres

Levy4 sin2(3πx1)+ [−10, 10]4 −21.502356 71000
∑

3

i=1
(xi − 1)2(1 + sin2(3πxi+1))+

(x4 − 1)(1 + sin2(2πx4))

Table 1. Test functions. D: search space; f(x∗): global minimum value; K : # local minima.

well. Levy4 is in fact specifically designed to be difficult for interval arithmetic-based

approaches.

We considered the following parameters, and examined their interconnection during

the experiments: network size (N): the number of nodes in the network; running time

(t): the duration while the network is running (note that it is is not the sum of the running

time of the nodes), the unit of time is one function evaluation; function evaluations

(E): the number of overall function evaluations performed in the network; quality (ǫ):

the difference of the fitness of the best solution found in the entire network and the

optimal fitness. For example, if t = 10 and N = 10 then we know that E = 100
evaluations are performed.

Messages are delayed by a uniform random delay drawn from [0, teval/2] where

teval is the time for one function evaluation. In fact, teval is considerable in realistic

problems, so our model of message delay is rather pessimistic. To simulate churn, in

some of the experiments 1% of nodes are replaced during a time interval taken by 20

function evaluations. The actual wall-clock time of one function evaluation has a large

effect on how realistic this setting is. We assume that the startup of the protocol is

synchronous, that is, all nodes in the network are informed at a certain point in time

that the optimization process should begin.

We focus on two key properties: (i) scaling with the constraint of a fixed amount of

available function evaluations, and (ii) with the constraint of having to reach a certain

solution quality. Our first set of experiments involves running the two algorithms with

and without churn until 220 function evaluations are consumed.4

Solution quality is illustrated in Figure 1. Due to severe length restrictions we com-

ment on the plots very briefly: we can see that (1) P2P B&B has the good property of

refusing to utilize all resources if the function is too easy, eg Sphere; (2) B&B can never

benefit from larger network sizes w.r.t. quality by definition, whereas PSO can; (3) on

Levy4 PSO outperforms the more “sophisticated” B&B; (4) churn is always harmful

for B&B by definition whereas it can be beneficial for PSO!

As of running time, P2P PSO always fully utilizes the network by definition, as-

suming a synchronous startup of the protocol, so its running time is 220/N . In the case

4 We note here that for B&B, one cycle of Algorithm 1 was considered to take 20 evaluations,

that is, in addition to the 2 · 8 = 16 normal evaluations, the interval-evaluation was considered

to be equivalent to 4 evaluations (based on empirical tests on our test functions).

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 2 4 6 8 10 12 14 16

qu
ali

ty
(lo

g 10
)

network size (log2)

Sphere10

PSO with churn
PSO

B&B with churn
B&B

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 2 4 6 8 10 12 14 16

qu
ali

ty
(lo

g 10
)

network size (log2)

Schaffer10

PSO with churn
PSO

B&B with churn
B&B

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 2 4 6 8 10 12 14 16

qu
ali

ty
(lo

g 10
)

network size (log2)

Griewank10

PSO with churn
PSO

B&B with churn
B&B

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 2 4 6 8 10 12 14 16

qu
ali

ty
(lo

g 10
)

network size (log2)

Levy4

PSO with churn
PSO

B&B with churn
B&B

101

102

103

104

105

 0 2 4 6 8 10

ru
nn

ing
 tim

e

network size (log2)

Sphere10, until quality < 10-10

slope of linear scaling
PSO
B&B

101

102

103

104

105

 0 2 4 6 8 10

ru
nn

ing
 tim

e

network size (log2)

Schaffer10, until quality < 0.1

slope of linear scaling
PSO
B&B

101

102

103

104

105

 0 2 4 6 8 10

ru
nn

ing
 tim

e

network size (log2)

Griewank10, until quality < 0.1

slope of linear scaling
PSO
B&B

102

103

104

105

106

 0 2 4 6 8 10

ru
nn

ing
 tim

e

network size (log2)

Levy4, until quality < 10-5

slope of linear scaling
PSO
B&B

Fig. 1. For quality plots the average digits of precision, for running time plots the median is

plotted, for both cases with error bars indicating the 10% and 90% percentiles of 10 experiments

(100 experiments for the more unstable Levy4). Note that lower values for quality are better

(indicate more precise digits). Missing error bars or line points indicate that not enough runs

reached the quality threshold within 220 evaluations (when the runs were terminated).

of P2P B&B, the situation is more complex, as illustrated by Figure 2: running time is

sensitive to problem difficulty and churn.

Running time results in Figure 1 illustrate our second question on scaling: the time

needed to reach a certain quality. The most remarkable fact that we observe is that on

problems that are easy for B&B, it is extremely fast (and also extremely efficient, as we

have seen) on smaller networks, but this effect does not scale up to larger networks. In

fact, the additional nodes (as we increase network size) seem only to add unnecessary

overhead. On Levy4, however, we observe scaling behavior similar to that of PSO.

Finally, to conclude the paper, we note that unlike in small-scale controlled environ-

ments, in P2P networks system parameters (like network size and churn rate) effectively

play the role of algorithm parameters, but are non-trivial to observe and exploit. An ex-

Fig. 2. Running time of P2P

B&B to reach 220 evaluations.

Average is shown with er-

ror bars indicating the 10%

and 90% percentiles of 10

experiments

102

103

104

105

106

 0 2 4 6 8 10 12 14 16

run
nin

g t
im

e

network size (log2)

B&B, until 220 function evaluations

linear scaling (PSO)
Sphere2

Sphere2 with churn
Sphere10

Sphere10 with churn

citing research direction is to monitor these parameters (as well as the performance of

the algorithm) in a fully-distributed way, and to design distributed algorithms that can

adapt automatically.

References

1. Kermarrec, A.M., van Steen, M., eds.: ACM SIGOPS Operating Systems Review 41. (Oc-

tober 2007) Special issue on Gossip-Based Networking.

2. Biazzini, M., Montresor, A., Brunato, M.: Towards a decentralized architecture for optimiza-

tion. In: Proc. of IEEE IPDPS, Miami, FL, USA (April 2008)

3. Wickramasinghe, W.R.M.U.K., van Steen, M., Eiben, A.E.: Peer-to-peer evolutionary algo-

rithms with adaptive autonomous selection. In: Proc. of GECCO, ACM Press New York,

NY, USA (2007) 1460–1467

4. Laredo, J.L.J., Eiben, E.A., van Steen, M., Castillo, P.A., Mora, A.M., Merelo, J.J.: P2P evo-

lutionary algorithms: A suitable approach for tackling large instances in hard optimization

problems. In: Proc. of Euro-Par. Volume 5168 of LNCS., Springer-Verlag (2008) 622–631

5. Jelasity, M., Montresor, A., Babaoglu, O.: A modular paradigm for building self-organizing

peer-to-peer applications. In Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zam-

bonelli, F., eds.: Engineering Self-Organising Systems. Volume 2977 of LNAI., Springer

(2004) 265–282 invited paper.

6. Bendjoudi, A., Melab, N., Talbi, E.G.: A parallel P2P branch-and-bound algorithm for com-

putational grids. In: Proc. of IEEE CCGRID, Rio de Janeiro, Brazil (2007) 749–754

7. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based

peer sampling. ACM Transactions on Computer Systems 25(3) (August 2007) 8

8. Talbi, E.G., ed.: Parallel Combinatorial Optimization. Wiley (2006)

9. Casado, L.G., Martinez, J.A., Garcia, I., Hendrix, E.M.T.: Branch-and-bound interval global

optimization on shared memory multiprocessors. Optimization Methods and Software 23(5)

(2008) 689–701

10. Ratschek, H., Rokne, J.: Interval methods. In Horst, R., Pardalos, P.M., eds.: Handbook of

Global Optimization. Kluwer (1995)

11. PeerSim: http://peersim.sourceforge.net/

