
System Support for Partition-Aware Network Applications

Özalp Babaoğlu Renzo Davoli Alberto Montresor Roberto Segala

Department of Computer Science
University of Bologna
40127 Bologna, Italy

Abstract

Network applications and services need to be en-
vironment-aware in order to meet non-functional require-
ments in increasingly dynamic contexts. In this paper we
consider partition awareness as an instance of environment
awareness in network applications that need to be reliable
and self-managing. Partition-aware applications dynami-
cally reconfigure themselves and adjust the quality of their
services in response to partitioning and merging of net-
works. As such, they can automatically adapt to changes in
the environment so as to remain available in multiple par-
titions without blocking, albeit with reduced or degraded
functionality. We propose a system layer consisting of group
membership and reliable multicast services that provides
systematic support for partition-aware application devel-
opment. We illustrate the effectiveness of the proposed in-
terface by solving several problems that represent different
classes of realistic network applications.

1. Introduction

Functional requirements, which define how output val-
ues are related to input values, are usually sufficient for
specifying traditional applications. For modern network
applications, however, non-functional requirements can be
just as important as their functional counterparts: the ser-
vices that these applications provide must not only be cor-
rect with respect to the functional requirements, they must
also be delivered with acceptable “quality” levels. Relia-
bility, timeliness and configurability are examples of non-
functional requirements that are of particular interest to net-
work applications.

A correct application satisfies its functional requirements
in all possible operating environments: it just may take
more or less time to do so depending on the characteristics
of the environment. On the other hand, there may be oper-
ating environments in which it is impossible to achieve non-
functional properties beyond certain levels. For this reason,

non-functional requirements of network applications define
quality intervals rather than absolute values that are consid-
ered acceptable. In order to deliver quality levels that are
both feasible and acceptable, network applications need to
be aware of the environment in which they are operating and
use this information to dynamically modify their behavior.
We call this capability of an application environment aware-
ness.

By their nature, network applications for mobile com-
puting, data sharing or collaborative work involve cooper-
ation among multiple sites. For these applications, which
are characterized by reliability and configurability require-
ments, partitionings of the communication network into
several partitions is an extremely important aspect of the en-
vironment. The nature of a partitioning will determine the
quality for the application in terms of which services are
available where, and at what performance levels. In other
words, partitionings may result in service reduction or ser-
vice degradation but need not necessarily render application
services completely unavailable. Informally, we define the
class of partition-aware applications as those that are able
to make progress in multiple concurrent partitions without
blocking.

Service reduction and degradation that are unavoidable
during partitionings depend heavily on the application se-
mantics and establishing them is beyond the scope of this
paper. For certain application classes with strong consis-
tency requirements, it may be the case that all services
have to be suspended completely in all but one parti-
tion. This situation corresponds to the so-called primary-
partition model [?, ?] that has traditionally characterized
partitioned operation of network applications. In this paper
we focus on system services that support partition aware-
ness such that continued operation of network applications
is not restricted to a single partition but may span multi-
ple concurrent partitions. The system provides the neces-
sary abstractions such that the application itself can decide
which of its services will be available in each partition and
at what quality levels.

Our methodology is based on the process group
paradigm [?, ?] suitably extended to partitionable sys-
tems. Members of a group cooperate in order to imple-
ment a given network application. The methodology uni-
fies all relevant aspects of environment awareness (pro-
cess crashes/recoveries, network partitionings/merges) in
a single abstraction: group membership. Partition-aware
applications are programmed so as to reconfigure them-
selves and adjust their behavior using the current member-
ship of the group as input. The perception that each pro-
cess has of the group’s membership needs to be constructed
with care, since otherwise, inconsistencies may compro-
mise functional requirements or result in quality levels that
are lower than what is feasible. In Section ?? we spec-
ify a partitionable group membership service (PGMS) that
forms the basis of our support layer. As illustrated in Sec-
tion ??, PGMS alone may be sufficient for programming a
small class of self-configuring network services. To sup-
port a broader class of applications that require closer co-
operation, in Section ?? we augment PGMS with a reliable
multicast communication service satisfying view synchrony
semantics.

The contributions of this paper are to argue that partition
awareness is an important attribute of future network ap-
plications and to show that the view synchrony service we
propose is indeed useful for supporting it. We do so by de-
veloping partition-aware solutions to several abstract prob-
lems. Each problem is representative of a particular class of
realistic applications. The advocated methodology not only
results in simple solutions to non-trivial applications, it also
admits simple proofs of their correctness.

2. Related Work

Numerous systems have been proposed or built recently
as infrastructures for supporting applications in partition-
able environments. Most of these systems are based on the
process group paradigm and include Horus [?], Transis [?],
Totem [?], Relacs [?], and NavTech [?] as some of the more
notable examples. There have also been several attempts at
developing realistic applications based on the services pro-
vided by these systems: Transis used to implement services
that guarantee global ordering of messages assuming that
a majority of the processes are connected and alive [?, ?];
Transis used to implement simple system management ser-
vices [?]; Horus used to implement a replicated state ma-
chine that replies to all requests in the majority partition
but replies only to a restricted class of requests in minority
partitions [?]; NavTech used to manage fault tolerance in
groupware applications [?]. In most cases, these applica-
tions are based on the primary-partition model that is cre-
ated on top of a partitionable service. As such, progress in
these applications is limited to a single partition. The only

exception to this observation is the groupware application
described in [?]. The work reported in this paper differs
from the above proposals in several important ways. First,
we consider systematic support for partition awareness in
a wide range of application areas rather than one specific
area. Second, the applications we consider take full advan-
tage of partition awareness and remain available in all par-
titions rather than only a majority-based primary partition.

3. System Model

The system comprises a set of processes that commu-
nicate by exchanging messages through a network. The
system is asynchronous in the sense that neither communi-
cation delays nor relative process speeds can be bounded.
Practical distributed systems often have to be considered
as being asynchronous since transient failures, unknown
scheduling strategies and variable loads on the computing
and communication resources make it impossible to bound
delays.

In the absence of failures, the network is logically con-
nected and each process can communicate with every other
process. Processes may fail by crashing whereby they halt
prematurely. Crashed processes may recover and resume
their execution after repairs. Communication failures may
provoke a partitioning of the network whereby processes
are split across two or more partitions.1 A partitioning is
described by a set of partitions and characterizes the global
communication state of the system. Each partition, on the
other hand, is described by a set of processes with the prop-
erty that processes within the same partition are able to
communicate while those across different partitions cannot
communicate. Upon repairs, multiple partitions may merge
to form a single larger partition.

Intuitively, partitions correspond to maximally con-
nected components of a logical graph representing the
“reachable” relation among processes. As such, they can be
defined only in the context of specific communication prim-
itives. For example, two processes may appear to belong
to two different partitions with respect to “ping” messages,
but the same two processes may appear in the same parti-
tion when communicating through email. This is because
the two communication services being considered have sig-
nificantly different message buffering, timeout and retrans-
mission properties. The support layer we propose is built
on top of the underlying communication primitives, what-
ever they may be, and exports appropriate abstractions for
contructing partition-aware applications.

1In addition to communication failures, other situations including in-
correct or inconsistent routing tables may lead to partitionings. And if the
network is not fully connected, process crashes may also result in parti-
tionings.

4. Support for Partition-Aware Applications

Our methodology is based on the process group
paradigm with suitable extensions to systems that admit par-
titioning. In this methodology, processes initiate their col-
laboration towards a given application by joining as mem-
bers a named group. Later on, a process may decide to ter-
minate its collaboration by explicitly leaving the group. In
the absence of failures, the membership of a group com-
prises those processes that have joined but have not left the
group. In addition to explicit joins and leaves, a group’s
membership will vary also due to failures and repairs. A
partitionable group membership service (PGMS), specified
in the next section, tracks all changes in the group’s mem-
bership and installs them as views at processes through
vchg() upcalls. Installed views are abstractions of the envi-
ronment with respect to process crashes/recoveries and net-
work partitionings/merges. Ideally, there should be a com-
mon view of the group’s membership that is shared by all
of its members and this view should include exactly those
members that are currently operational. This is clearly not
feasible in a partitionable system where processes in differ-
ent partitions will have different perceptions of the member-
ship for a given group. Nevertheless, the PGMS we specify
is useful and guarantees that each installed view is shared by
all of its components and corresponds to an actual partition
of a partitioning.

Group members communicate through reliable multi-
casts by invoking the primitive mcast(). Multicast mes-
sages are delivered to processes through dlvr () upcalls. The
relationship between multicast message deliveries and the
sequence of installed views is formalized as view synchrony
in Section ??. Views and multicast messages are labeled in
order to be globally unique. Given a view v, we write v to
denote its composition as a set of process names. The cur-
rent view of process p at time t is the last view to have been
installed at p before time t. Events are said to occur in the
view that is current. View w is called the immediate succes-
sor of v at p if p installs w in view v. View w is called an
immediate successor of v if w happens to be the immedi-
ate successor of v at some process p. The transitive closure
of the immediate successor relation is called the successor
relation. Two views that are unrelated through successor
relation are called concurrent.

4.1. Partitionable Group Membership Service

The first layer of our support architecture governs view
installations and view compositions related to group mem-
bership. Installed views represent the perception of the
group’s membership that is shared by all processes in the
view’s composition. In other words, there is agreement
among processes on the composition of the view that they

will install. Furthermore, processes that install a given view
are exactly those within a given partition. We have formal-
ized these ideas leading to a specification for partitionable
group membership in asynchronous systems [?]. For sake
of brevity, we state our specification informally, omitting
the discussions that motivate it. For the same reason, the
specification considers group membership changes due to
failures and repairs, omitting those due to joins and leaves.

GM1 (View Agreement) (i) If process p installs view v

and its immediate successor w, both containing q, then p

installs view w only after q has installed v. (ii) Suppose
correct process p installs view v containing some process
q. If the current view of q after some time becomes perma-
nently distinct from v, then p will eventually install a new
view as an immediate successor to v.

GM2 (View Accuracy) If there is a time after which pro-
cess q remains reachable from some correct process p, then
eventually the current view of p will always include q.

GM3 (View Completeness) If there is a time after which
all processes in some partition Θ cannot communicate with
the rest of the group, then eventually the current view of ev-
ery correct process not in Θ will never include any process
in Θ.

GM4 (View Integrity) Every view installed by a process
includes the process itself.

GM5 (View Order) The order in which processes install
views is such that the successor relation is a partial order.

Properties GM??–GM?? together define a partitionable
group membership service in asynchronous systems.

4.2. View Synchrony Service

The class of partition-aware applications that can be pro-
grammed using PGMS alone can be characterized as con-
figuration management. In general, network applications
require closer cooperation that is facilitated through com-
munication among group members. In this Section we ex-
tend the group membership service of the previous Section
with a reliable multicast primitive. The resulting service is
called view synchrony and integrates delivery of multicast
messages with the installation of views. Informally, all pro-
cesses that survive together from one view to another deliver
the same set of messages. In other words, there is agree-
ment among the processes on the set of messages that they
should deliver in a view before they can install a common
next view.

VS1 (Message Agreement) Given two views v and w

such that w is an immediate successor of v, all processes
belonging to both views deliver the same set of multicast
messages in view v.

VS2 (Uniqueness) Each multicast message, if delivered
at all, is delivered in exactly one view.

VS3 (Merging Rule) Two views that merge to a single
view must have disjoint compositions. 2

VS4 (Message Integrity) Each process delivers a mes-
sage at most once and only if some process actually multi-
cast it earlier.

VS5 (Local FIFO Order) If a process p multicasts mes-
sage m before it multicasts message m′, then p does not
deliver m′ unless it has delivered m.

VS6 (Liveness) (i) A correct process always delivers its
own multicast messages. (ii) Let p be a correct process that
delivers message m in view v that includes some other pro-
cess q. If q never delivers m, then p will eventually install
view w that excludes q as immediate successor to v.

VS7 (Immediate Local Delivery) Messages multicast by
a correct process p while handling the upcall vchg(v) are
delivered by p in view v.

Properties GM??–GM?? together with VS??–VS?? de-
fine a view synchrony service in asynchronous systems.
Note that our specification of view synchrony is similar to
extended virtual synchrony (EVS) [?], although there are
some important differences. EVS distinguishes between
two types of view changes: transitional configurations and
regular ones. Transitional configurations are used to handle
scenarios in which configurations corresponding to merging
partitions have non empty intersections. Our specification
has a single, unified notion of a view and ensures that no
two merging views have overlapping compositions through
Merging Rule. Furthermore, our specification excludes triv-
ial solutions by including non-triviality properties that are
not considered in EVS.

5. Programming Partition-Aware Applications

In this section, we first illustrate how group membership
alone can be sufficient to program simple network appli-
cations that require no communication. We then consider
more realistic applications that require cooperation through
communication and show how view synchrony can be used
to program them. The problems are stated abstractly in or-
der to hide irrelevant details, and can be instantiated as nu-
merous realistic partition-aware applications. The solutions
we present deliberately avoid optimizations that are often

2At first sight, this property might appear relevant for specifying PGMS
rather than view synchrony since it concerns only view compositions. Yet,
its consequences are relevant only if there is communication among the
group members [?].

1 procedure PartitionableServiceActivator ()
2 server at ← p

3 ActivateService()
4
5 while true do
6 wait-for vchg(v)
7 if server at = p and Min(v) 6= p then
8 DeactivateService ()
9 if server at 6= p and Min(v) = p then
10 ActivateService ()
11 server at ← Min(v)
12 od

Figure 1. Partitionable Service Activator.

possible but would only complicate their presentations. A
more detailed description of the algorithms along with their
proofs of correctness can be found in the extended version
of this work [?].

5.1. Partitionable Service Activator Application

We describe a simple network application for which
PGMS alone is sufficient as the support layer. Consider a
network service for diffusing a continuous stream of data
(e.g., audio, video, stock quotes, news headlines) to a col-
lection of subscribers. The diffusion can be provided by any
one of a set of servers that have access to the data source.
The service should be available in every partition that con-
tains at least one server; furthermore, to minimize wasted
resources, multiple active servers within the same partition
should be avoided. New servers may be added and existing
ones removed at will by an administrator. The goal is to de-
vise a service activator algorithm such that a server can de-
cide when it should be active and when it should be passive.
A solution must activate a new server if the current one is re-
moved from the system, if it crashes or if it ends in another
partition. And when a new server is added, a crashed server
recovers or when partitions merge, redundant instances of
active servers should be deactivated. During transition peri-
ods, it is possible that some partitions contain zero or more
than one active server. However, such periods should have
bounded duration.

Figure ?? illustrates a partition-aware solution to the ser-
vice activator problem based on PGMS. The collection of
servers form a group. In this way, all relevant events for
service activation/deactivation are transformed into view
changes. Thus, the algorithm reduces to the management of
vchg() upcalls for the group. We assume there is a total or-
dering among server names such that the function Min(S)
returns the smallest name among the set S. At server p, lo-
cal variable server at identifies the server that p believes to
be active. A server starts out in the active state and blocks
waiting for view change upcalls. This choice for the initial

1 procedure PartitionableChat ()
2 view comp ← {p} % Current view composition
3 threadset ← ∅ % Set of open threads
4 nthread ← 0 % Number of open threads
5
6 while true do
7 wait-for event

8 case event of
9
10 vchg(v):
11 if (v 6⊆ view comp) then
12 foreach id ∈ threadset do
13 mcast(〈UPDATE, p, id , thread [id].vc〉)
14 output(“Old participants:”, v ∩ view comp)
15 output(“New participants:”, v)
16 view comp ← v

17 foreach id ∈ threadset do
18 thread [id].msg ← ∅
19
20 dlvr(〈UPDATE, q, id , ts〉):
21 CheckNewId(id)
22 foreach (q ∈ view comp − {p}) do
23 if ts [q] > thread [id].vc[q] then
24 thread [id].vc[q]← ts [q]
25 CausalDelivery(id)
26
27 newthread (m):
28 nthread ← nthread + 1
29 id ← CreateNewId (p,nthread)
30 CheckNewId(id)
31 thread [id].lsent ← 1
32 ts ← thread [id].vc
33 ts [p]← thread [id].lsent

34 mcast(〈MESSAGE, id , m, ts , p〉)
35
36 shout (id , m):
37 if id ∈ threadset then
38 thread [id].lsent ← thread [id].lsent + 1
39 ts ← thread [id].vc
40 ts [p]← thread [id].lsent

41 mcast (〈MESSAGE, id , m, ts , p〉)
42 fi
43
44 dlvr(〈MESSAGE, id , m, ts , q〉):
45 CheckNewId(id)
46 thread [id].msg ← thread [id].msg ∪ {(m, ts, q)}
47 CausalDelivery(id)
48 esac
49 od
50
51 procedure CheckNewId(id)
52 if id 6∈ threadset then
53 threadset ← threadset ∪ {id}
54 thread [id].vc ← (0, . . . , 0)
55 thread [id].lsent ← 0
56 thread [id].msg ← ∅
57 fi

Figure 2. Partitionable Chat (Part a).

state is arbitrary since it will last only until the first view
change reporting the current membership of the group. To
handle a view change, the smallest server in the view com-
position is chosen as the new active server. If p results as
the new active server while it had been passive in the previ-
ous view, it is activated through ActivateService(). If, on
the other hand, p had been active in the previous view but
some other server is designated to be active in the new one,
then p is made passive through DeactivateService(). In all
other cases, the state of p remains unchanged with respect
to being active or passive.

Given the simplicity of the algorithm and the properties
of PGMS, it is easy to argue that under stable conditions,
each partition containing at least one server will eventually
have exactly one active server.

5.2. Partitionable Chat

Consider a service, not unlike Internet Relay Chat (IRC),
for holding a discussion among a collection of users. Users
may contribute to the discussion by creating a new thread
or by shouting messages in an existing thread. Messages
are potentially addressed to every user who has joined the
discussion. Upon a partitioning, the discussion may con-
tinue among users in each of the partitions. Users are in-
formed about others with whom they are currently chatting.
In some sense, this application extends the notion of par-
tition awareness all the way up to the user level. Shouted
messages have to satisfy agreement, integrity, uniqueness
and liveness properties of view synchrony messages. Fur-
thermore, messages shouted within the same partition and
belonging to the same discussion thread should be seen in
an order that is consistent with causal precedence. No re-
quirements are placed on message threads that span multi-
ple partitions. In other words, upon merging, a user may
miss some messages that were shouted in other partitions.
For this application, we consider it unreasonable to require
causal order at a global level since this would force a user
returning to the discussion after having been isolated to lis-
ten to the entire discussion that occurred during his absence
before being able to resume.

Figures ??-?? contain the code of our partitionable chat
algorithm. A user invokes the primitive newthread(m) to
start a new thread of discussion whose first message is m,
and the primitive shout(id , m) to shout message m rela-
tive to the thread identified by id . Users receive messages
shouted by others and control information from the system
through output() events. In order to distinguish between
messages related to distinct threads, all multicast messages
are tagged with a thread identifier; moreover, each user
maintains a different set of variables for each known thread.
Causal delivery within each thread is guaranteed through
a system of vector clocks [?]. User u maintains a sepa-

58 function Deliverable(vc, ts , q)
59 return (vc[q] = ts [q]− 1) and
60 (∀r ∈ view comp, r 6= q : vc[r] ≥ ts [r])
61
62 procedure CausalDelivery(id)
63 foreach (m, ts , q) ∈ thread [id].msg do
64 if Deliverable(thread [id].vc, ts , q) then
65 output(id , m)
66 thread [id].msg ← thread [id].msg − {(m, ts , q)}
67 thread [id].vc[q]← ts [q]
68 fi

Figure 3. Partitionable Chat (Part b).

rate vector clock for each thread and increments its local
component whenever u delivers one of its own messages in
that thread. Each multicast message is timestamped with
the current vector clock of the sender, except that the entry
corresponding to the sender is replaced by the total number
of messages the sender has multicast. This is motivated by
the fact that the sender of a message will itself output the
message not immediately after the multicast, but only after
having delivered it (otherwise messages could be output in
different views, due to the fact that messages are not guar-
anteed to be delivered in the view in which they have been
multicast).

When a message is delivered, it is stored in a buffer
until it can be output so as to maintain causal precedence
within the discussion. Upon a view change, the user is in-
formed about others that are currently in the discussion and
those with which the communication is impossible. Two
types of view changes need to be considered: if the new
view is a contraction of the previous one, no further ac-
tion is needed; users that survived from the previous view
to the new one have delivered and output the same set of
messages, and thus maintain the same vector clock values
for each other user in the new view. If the view change
represents an expansion, an additional merging protocol is
needed: two merging partitions may have different sets of
active threads, or may have output different messages for
the same thread. For these reasons, upon a view expansion,
users multicast for each known thread a message contain-
ing the thread identifier and the corresponding vector clock.
When a user delivers such a message, the thread is added to
the local list of threads (if unknown) and the vector clock is
updated. In this manner, users will know exactly the same
set of threads, and will be able to output all messages deliv-
ered during the new view without incurring in causal incon-
sistencies due to some past partitioning.

We outline how our solution exploits view synchrony.
Properties GM??, GM?? and VS?? guarantee that each user
will be informed of other users with whom discussion is im-
possible. And Property GM?? ensures that this will happen
only for those users who are effectively partitioned. Prop-

erties VS?? and VS?? are used in the vector clock merging
protocol. Users surviving from one view to the same next
view obtain identical vector clocks after the installation of
the new view. Without this guarantee, it would be complex
to reconstruct the new vector clocks necessary for users to
deliver new messages. Furthermore, Property VS?? guar-
antees that surviving users will deliver (and consequently
output) the same set of messages during the first view. By
Property VS??, all output messages have been previously
multicast. Property VS??, combined with Property GM??,
is used to avoid scenarios in which different overlapping
views merge to a single common view. If such scenarios
were admitted, two users p and q could output different sets
of messages even though user q always installed views in-
cluding p.

5.3. Partitionable Parallel Computation

Consider a time-intensive computation such as ray trac-
ing, prime factorization or weather forecasting. The com-
putation can be decomposed into a number of jobs that can
be carried out independently by a collection of workers.
New workers may be added and existing ones removed at
will. The computation and all relevant input data are known
ahead of time to all possible workers. The goal of the par-
allel computation problem is to conclude the computation
in as short a time as possible despite crashes, recoveries,
partitionings and merges.

Our solution to the problem is illustrated in Figures ??
and ??. Workers that will perform a job on behalf of the
computation form a group. Within each view, the total work
is equally distributed among the workers. During normal
operation, each worker carries out the jobs assigned to it and
diffuses the results through multicast messages. There are
two types of view changes that need to be considered. If the
new view represents a contraction of the previous one due
to partitionings or process crashes, and the workers in the
previous view know the same set of results, view synchrony
guarantees that at the beginning of the new view all workers
know the same set of results as well. Thus, it is sufficient
to perform a redistribution of the uncompleted work. If, on
the other hand, the new view represents an expansion due
to network merges or process recoveries, then a “reconcili-
ation” protocol is needed so as not to repeat jobs that may
have already been completed by other workers. The rec-
onciliation protocol may also be necessary in case workers
disagree on the set of completed results due to an incom-
plete execution of a previous reconciliation protocol. Upon
a view expansion, each worker p locally assigns the remain-
ing work among other workers that know the same set of
results as itself (note that work cannot be reassigned among
all workers of the new group membership since some of
them may know different sets of results, leading to incon-

1 procedure PartitionableParallelComputation(total)
2 my work ← total % Subcomputations assigned to p

3 view comp ← {p} % Current view composition
4 lset ← {p} % Proc. that know less results
5 mset ← {p} % Proc. that know more results
6 res ← (∅, . . . , ∅) % Array of known results
7 new res ← ∅ % Results delivered in this view
8 dist res ← ∅ % Results merged in this view
9
10 cobegin
11
12 || Task 1:
13 while true do
14
15 wait-for event

16 case event of
17
18 vchg(v):
19 foreach q ∈ view comp ∩ v do
20 res [q]← res [q] ∪ (new res ∪ dist res)
21 view comp ← v

22 new res ← ∅
23 dist res ← ∅
24 lset ← lset ∩ v

25 mset ← mset ∩ v

26 my work ← Redist(ToDo(total , res [p]),
27 lset ∩mset , p)
28 if mset 6= v and Min(mset) = p then
29 mcast(〈UPDATE,

⋃
r∈v

(res [p] − res [r]), lset〉)
30
31 dlvr(〈UPDATE, rset , pset 〉):
32 foreach q ∈ pset do
33 res [q]← res [q] ∪ rset

34 dist res ← dist res ∪ rset

35 lset ← lset ∪ pset

36 if p ∈ pset then
37 mset ← view comp

38 if mset = lset = view comp then
39 my work ← Redist(ToDo(total ,
40 res [p] ∪ dist res), view comp, p)
41
42 dlvr(〈RESULT, w, r〉):
43 new res ← new res ∪ {(w, r)}
44
45 esac
46 od
47
48 || Task 2:
49 ComputeResults ()
50 coend
51
52 function ToDo(T, C)
53 return {w|w ∈ T∧ 6 ∃r : (w, r) ∈ C}

Figure 4. Partitionable Parallel Computation (Part a).

54 procedure ComputeResults()
55 R← new res ∪ dist res

56 while ToDo(total , res [p] ∪ S) 6= ∅ do
57 w ← Min(ToDo(my work , res [p] ∪ S))
58 my work ← my work − {w}
59 if w 6= null then
60 mcast(〈RESULT, w, PerformWork (w)〉)
61 od
62 res [p]← res [p] ∪ S

Figure 5. Partitionable Parallel Computation (Part b).

sistencies). Then, each worker p elects a leader c among
the set of all workers that know a superset of the results
known to p itself. Leader c acts as a representative for all
workers that know a subset of the results known to itself,
and multicasts a message containing the results that could
be unknown to other workers in the view. The choice of
electing a leader is motived by efficiency: only one worker
from each merging partition performs reconciliation. When
the reconciliation protocol is concluded (each worker has
delivered one message for each of the partitions that have
merged in the new view), a new reassignment of the un-
completed work is performed among all workers in the new
membership. Otherwise, in case of further failures (a leader
crashes or ends in a different partition before multicasting
the reconciliation message), the reconciliation protocol may
have to continue in subsequent views.

We conclude by sketching how our solution exploits
properties of view synchrony. Property GM?? guarantees
that work is always distributed among all workers within
a given partition, thus achieving the maximum possible
speedup. Properties GM??, VS??, VS?? and VS?? allow a
worker to reason locally about other workers that know the
same set of results as itself. In particular, Property VS??
guarantees that two workers surviving from a view to the
same next view will deliver the same set of messages (i.e.,
both new results and results exchanged during the reconcil-
iation protocol). Property VS?? ensures that each reconcil-
iation message will be delivered in the same view in which
it has been multicast, simplifying the algorithm since work-
ers do not have to worry about obsolete messages multicast
during previous views. Properties GM??, GM?? and VS??
guarantee that a worker will eventually deliver the results
of all jobs assigned to other workers, or it will install a new
view and thus reassign the work. Finally, Property VS??
guarantees that no spurious messages will be delivered.

6. Conclusions

Specifications for services in asynchronous distributed
systems require a delicate balance between two conflicting
goals: they must be strong enough to be useful and exclude

trivial solutions, yet they must be weak enough to be imple-
mentable [?]. The support layer we have specified in this
paper has benefited from extended reflection and several re-
visions. The main objective of the current work has been
to argue that realistic and interesting partition-aware appli-
cations can indeed be developed with ease on top of such a
layer. The question of how our specification can be imple-
mented on top of a typical operating system and an unreli-
able datagram communication service is treated in another
work [?].

Information about group compositions conveyed through
views and view changes happens to be appropriate for
achieving partition awareness in network applications.
Through a single mechanism (view change), we are able
to abstract a large number of environment characteristics
resulting from complex scenarios due to administrative in-
tervention, crashes, recoveries, partitionings and merges.
Group membership services alone are sufficient for only the
simplest of network applications. More realistic network
applications typically require closer cooperation among
their components through communication. For this pur-
pose, we have extended PGMS with a communication ser-
vice based on view synchrony. The strong semantics pro-
vided by view synchrony regarding the composition and
installation of views, delivery of messages, and most im-
portantly, the integration between them, allow sophisticated
global reasoning to be accomplished through local informa-
tion alone and without having to resort to complex commu-
nication protocols.

The partition-aware applications we have developed re-
configure themselves in order to provide the “best” quality
that is possible for their services in each partition. Obvi-
ously, no support layer can accomplish miracles and guar-
antee services at constant quality levels despite partition-
ings. Partition-aware applications we have considered have
the simplifying characteristic that it is always possible to
restore a consistent global state after recoveries or merges.
In general, applications that admit conflicting operations
(e.g., updates to replicated data) in concurrent partitions
will require additional system support for restoring a mean-
ingful global state (if at all possible) after recoveries and
merges [?].

References

[1] O. Amir, Y. Amir, and D. Dolev. A highly available appli-
cation in the transis environment. In Proc. of the Hardware
and Software Architectures for Fault Tolerance Workshop,
Le Mont Saint-Michel, France, June 1993.

[2] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group
communication as an infrastructure for distributed system
management. In Proc. of the 3rd Int. Workshop on Services
in Distributed and Networked Environments, Macau, June
1996.

[3] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On
the formal specification of group membership services. Tech.
Rep. TR95-1534, Dept. of Computer Science, Cornell Univ.,
Aug. 1995.

[4] Ö. Babaoğlu, A. Bartoli, and G. Dini. Enriched view syn-
chrony: A programming paradigm for partitionable asyn-
chronous distributed systems. IEEE Trans. on Computers,
46(6):642–658, June 1997.

[5] Ö. Babaoğlu, R. Davoli, L. Giachini, and M. Baker. Relacs:
A communications infrastructure for constructing reliable
applications in large-scale distributed systems. In Proc. of
the 28th Hawaii Int. Conf. on System Sciences, pages 612–
621, Maui, Hawaii, Jan. 1995.

[6] Ö. Babaoğlu, R. Davoli, and A. Montresor. Group mem-
bership and view synchrony in partitionable asynchronous
systems: Specification and algorithms. Tech. Rep. UBLCS-
98-1, Dept. of Computer Science, Univ. of Bologna, Mar.
1998.

[7] Ö. Babaoğlu, R. Davoli, A. Montresor, and R. Segala. Sys-
tem support for partition-aware network applications. Tech.
Rep. UBLCS-97-8, Dept. of Computer Science, Univ. of
Bologna, Oct. 1997.

[8] K. Birman. The process group approach to reliable dis-
tributed computing. Commun. ACM, 36(12):36–53, Dec.
1993.

[9] F. Cosquer, P. Antunes, and P. Verissimo. Enhancing depend-
ability of cooperative applications in partitionable environ-
ments. In Proc. of the 2nd European Dependable Computing
Conf., Taormina, Italy, Oct. 1996.

[10] F. Cosquer and P. Verissimo. Large scale distribution sup-
port for cooperative applications. In Proc. of the European
Reasearch Seminar on Advances in Distributed Systems (ER-
SADS), L’Alpe d’Houez, France, Apr. 1995.

[11] D. Dolev, D. Malki, and R. Strong. A framework for par-
titionable membership service. Tech. Rep. CS95-4, Institute
of Computer Science, The Hebrew Univ. of Jerusalem, 1995.

[12] R. Friedman and A. Vaysburd. Implementing replicated state
machines over partitionable networks. Tech. Rep. TR96-
1581, Dept. of Computer Science, Cornell Univ., 1996.

[13] F. Kaashoek and A. Tanenbaum. Group communication in
the Amoeba distributed operating system. In Proc. of the
12th IEEE Symp. on Reliable Distributed Systems, pages
222–230, Arlington, TX, May 1991.

[14] I. Keidar and D. Dolev. Efficient message ordering in dy-
namic networks. In Proc. of the 15th ACM Symp. on Princi-
ples of Distributed Computing, Philadelphia, PA, May 1996.

[15] F. Mattern. Virtual time and global states of distributed sys-
tems. In M. C. et. al., editor, Proc. of the Int. Workshop on
Parallel and Distributed Algorithms, pages 215–226. North-
Holland, Oct. 1989.

[16] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Ex-
tended virtual synchrony. In Proc. of the 14th Int. Conf. on
Distributed Computing Systems, Poznan, Pol, June 1994.

[17] A. Ricciardi and K. Birman. Using process groups to im-
plement failure detection in asynchronous environments. In
Proc. of the 10th ACM Symp. on Principles of Distributed
Computing, pages 341–352, Aug. 1991.

[18] R. van Renesse, K. Birman, R. Cooper, B. Glade, and
P. Stephenson. The horus system. In K. Birman and R. van
Renesse, editors, Reliable Distributed Computing with the
Isis Toolkit, pages 133–147. IEEE Computer Society Press,
1993.

