
Adaptive Message Packing for Group Communication
Systems

Alberto Bartoli
�

, Cosimo Calabrese
�

, Milan Prica
�

, Etienne Antoniutti Di Muro
�

, and
Alberto Montresor

�

�

Dip. Elettrotecnica, Elettronica ed Informatica, Università di Trieste (Italy).
�

Dipartimento di Scienze dell’Informazione, Università di Bologna (Italy).

Abstract. Group communication is one of the main paradigms for implementing
replication middleware. The high run-time costs of group communication may
constitute a major performance bottleneck for modern enterprise applications. In
this paper we investigate the applicability of message packing, a technique origi-
nally proposed by Friedman and Van Renesse in 1997 for improving the perfor-
mance of group communication, to modern hardware and group communication
toolkits. Most importantly, we extend this technique with a policy for varying the
packing degree automatically, based on dynamic estimates of the optimal pack-
ing degree. The resulting system is adaptive in that it allows exploiting message
packing efficiently in a dynamic and potentially unknown run-time environment.
Several case studies are analyzed.

1 Introduction

Replication of COTS components is now a widespread way for enhancing dependabil-
ity of services. Group communication is one of the key middleware technologies for
supporting replication [7, 12, 14, 6, 2, 8, 3, 9, 10]. Mainly due to its powerful guarantees,
however, group communication usually entails a high cost that plays a decisive role in
determining the performance of a replicated application. In our test environment, for
example, a non-replicated web service running in Tomcat can sustain a throughput of
approximately 300 operations per second. On the other hand, in the same environment,
a 3-way replicated application that only multicasts and delivers 2000-byte messages
with Spread [1] (total order with safe delivery) reaches 100% CPU usage, thereby satu-
rating the system, at a throughput very close to the above. Since a replicated web service
requires at least one multicast per operation, it is easy to see that group communication
may constitute a major bottleneck for the replicated implementation.

In the attempt of shifting such bottleneck up to higher values, we are investigating
techniques for improving the efficiency of existing group communication systems. This
paper presents our results in this area. Motivation for this work can be found in the
ADAPT project (an EU-funded joined effort between several institutions across Europe
and Canada, see http://adapt.ls.fi.upm.es/adapt.htm for more details) whose aim is to
develop middleware for constructing replicated services based on the J2EE framework.

This work is supported by Microsoft Research (Cambridge, UK) and the EU IST Programme
(Project ADAPT IST-2001-37126).

This goal is part of the broader objective of ADAPT, namely the construction of virtual
enterprises out of collections of “basic services” hosted at different, potentially remote,
enterprises. In this framework, we are using replication based on group communication
as a mean for improving availability and dependability of such basic services. The group
communication infrastructure used is Spread, augmented with a thin Java layer on top
(as explained later).

The starting point of our work is the proposal by Friedman and Van Renesse [4],
in which they demonstrated that message packing can significantly improve throughput
of total-order protocols. This technique simply consists in buffering application mes-
sages for a short period of time before actually sending them as a single message, in
order to reduce the overhead caused by the ordering protocol. Their experiments are
based on 1997 hardware and, in particular, 10 Mbps Ethernet. Few experiments made it
immediately clear that message packing can be very effective even with more modern
hardware, including 100 Mbps Ethernet, and even with a group communication system
based on a client-daemon architecture (unlike the one used in the cited work).

In this work, however, we exploit message packing in a way quite different from that
in [4]. First, we buffer messages until the desired packing degree (number of buffered
messages) has been reached, irrespective of the amount of time that a message has
spent in the buffer. This approach enables us to gain deeper insight into the relationship
between throughput, CPU usage, latency and packing degree. Of course, a practical
implementation will have to introduce an upper bound to the time a message spends
in the buffer, otherwise latency could grow excessively and the system could even stop
sending messages (the trade-off between throughput and latency is discussed later in the
paper). Second, we have defined an adaptive policy for changing the packing degree at
run-time and automatically. This is a key issue because the packing degree yielding
the best performance depends on a number of factors, including characteristics of the
message source, message size, processing load associated with each message, hardware
and software platform. Not only these factors can be potentially unknown, they can
also vary dynamically at run-time. Selecting the packing degree once and for all can
hardly be effective. With our policy, the system automatically determines a packing
degree close to the value that happens to be optimal in that specific environment (at
least for the cases that we have analyzed exhaustively, detailed in the paper). Moreover,
the policy has proven to be robust against occasional variations of additional CPU load
induced by other applications.

The resulting behavior of the system is as follows: (i) When the source injects a
“low” load, message packing remains inactive. (ii) In the case of a “medium-to-high”
load, message packing starts to act leading to higher delivered throughput and decreased
CPU usage. (iii) In the case of a “very high” load, CPU usage reaches 100% anyway
but message packing leads to a higher delivered throughput. Our adaptive policy hence
helps the system to automatically increase the bottleneck point induced by group com-
munication. Although the effectiveness of our proposal will have to be evaluated within
a complete replication solution, we believe that these results are encouraging and these
features could be very important in the application domain of interest in ADAPT.

The rest of the paper is organized as follows. Section 2 introduces our system and
describes the testing methodology used later in the paper. In Section 3, our adaptive

policy for message packing is presented. Section 4 evaluates the effectiveness of the
adaptive policy, by describing several tests under various conditions, while Section 5
discusses our results and concludes the paper.

2 The System

2.1 Group Communication System

Our group communication system, called JBora, consists of an harness around Spread.
For the purpose of the present discussion, JBora supports an execution model very sim-
ilar to the Extended Virtual Synchrony model [11] of Spread. The key difference is that
JBora supports a notion of primary partition and does not make transitional views visi-
ble to applications. From the implementation point of view, JBora consists of a thin Java
layer on top of the Java interface to Spread. One JBora multicast maps to exactly one
Spread multicast and the size of the two multicasts is the same, except for a 4-byte JBora
specific header. This header is inserted without performing an additional memory-to-
memory copy beyond those already performed by the Java interface of Spread. When
Spread delivers a multicast to JBora, the multicast is immediately deliverable (except
when the multicast is delivered in a transitional view, but this condition does not oc-
cur in our experiments). One Spread daemon runs on each replica. A JBora application
running on a given node connects to the Spread daemon on that node.

Message packing has been implemented by slightly modifying the portion of JBora
that implements the operationmCast(m). Rather than invoking the multicast operation
of Spread immediately, mCast(m) inserts m in a packing buffer; then the operation
may return either immediately or after multicasting the entire packing buffer as a single
Spread multicast. The portion of JBora that implements the Receive() operation has
been modified to unpack received messages as appropriate. Transmission of the packing
buffer occurs when the number of messages in it equals the current value for the packing
degree, denoted as ������� . This value can be either defined at configuration time and kept
constant across the entire execution, or it can be adjusted dynamicaly based on observed
execution statistics (see Section 3). Of course, a practical implementation of message
packing has to include further conditions for triggering transmission of the packing
buffer. For example, if the number of buffered messages was smaller than ������� and
then the source stopped generating new messages, then the packing buffer would be
never transmitted. This topic will be discussed in Section 5.

2.2 Operating Environment

The operating environment consists of a network of Dell Optiplex GX300 (PIII 800MHz,
512 MB RAM), connected to a 100 Mbps switched Ethernet and running Sun Microsys-
tems’ JDK 1.4.0 over Windows 2000 Professional. Each node, hereinafter replica, is
equipped with JBora.

Each replica runs an application written in Java that maintains a simple replicated
logging system. The application consists of two threads: the source thread generates
messages to be multicast through JBora, while the receiver thread receives messages

from JBora and writes them into a MySQL database local to the replica. Writes on the
database are all done into the same database table. This architecture has been adopted to
emulate a simplified, yet realistic replicated three-tier application, where one member
multicasts the requests received from clients to all replicas, which execute them by
interacting with the database tier. Of course, the performance figures that have been
obtained depends on the combination of the various pieces of software present in the
system, but we have verified in all experiments below that the bottleneck is indeed the
group communication system, not the database.

Each experiment below refers to a system composed of three replicas where only
one of them generates messages. We focussed on a small number of replicas because
the use of group communication that we are pursuing in ADAPT is for improving fault-
tolerance and we believe that, in practical environments, only small replication degrees
are likely to be used. We focussed on a single replica that generates messages only for
restricting the number of parameters to investigate.

Our experiments are based on sources quite different from those in [4] and much
closer to our needs. First, we used total order with safe delivery (also called uniform
delivery). These are the strongest delivery guarantees normally offered by group com-
munication platforms, and also those that are most demanding at run-time. We intend
to design replication algorithms based on safe delivery because, without this guarantee,
coping with certain failure patterns correctly would require complex and costly actions
(e.g., when the sender of a multicast is the only replica that receives that multicast
[5]). Second, we considered sources that generate messages continuously or at bursts
(alternating a burst with a sleeping time). That is, unlike [4], we do not constrain the
generation of new messages by the delivery of messages multicast by other replicas.
This is because in our intended application domain generation of new multicasts is trig-
gered by the arrival of operation requests from remote clients, i.e., an event that can
occur potentially at any time and usually does not depend on the arrival of multicasts
from other replicas. The resulting scenario simulates a situation in which on the sending
replica there are always new messages waiting to be multicast. We have implemented a
flow control mechanism that suspends the source thread when the load injected into the
group communication system is excessive (without this mechanism, the sending replica
takes an exception and is forcibly expelled from the group).

2.3 Measurements

For each experiment we have measured throughput, latency and CPU usage. Through-
put has been measured as ����� , where � is the time interval between the receiving of
the last message and the receiving of the first message. This time interval has been
measured at the receiving thread of the sending replica. Quantity � is the number
of messages in the experiment run, approximately 25000 in each case. We have not
used the standard timer available in Java through the System class, because its reso-
lution (approximately 16 msec) was not sufficient for our measurements, in particular
for those of latency. Instead, we have used a publicly available timing library that ex-
ploits system-specific hooks and allows measuring time intervals with a resolution of
1 microsec [13].

Message size (bytes) Throughput (msg/sec) Latency (msec)
100 596 11.07
1000 453 7.08
10000 114 47.28

Table 1. Performance without message packing.

Message size (bytes) Optimal Throughput (msg/sec) Improvement Latency (msec)
100 28 5666 9.51 55.24
1000 11 1577 3.48 28.16
10000 3 201 1.76 29.37

Table 2. Maximum performance (throughput) obtained with message packing.

The latency for an experiment run is the average latency amongst all messages of
that run. The latency of each message has been measured at the sending replica, as
follows. The sender thread of the sending replica reads the timer immediately before
invoking the Spread multicast operation and inserts the corresponding value in the mes-
sage to be multicast. The receiver thread of the sending replica reads the timer as soon
as it has received a message. The difference between this value and the one contained
in the message is the latency value for that message. Note, the time spent in the pack-
ing buffer is taken into account for evaluating the latency of each individual message.
Average CPU usage has been estimated by visually inspecting the task manager of the
Windows 2000 operating system.

3 An Adaptive Policy for Message Packing

Our first suite of experiments used a source thread that continuously generates fixed-
size messages, putting JBora under stress. The results obtained with message pack-
ing disabled are shown in Table 1, for three different message sizes (100,1000,10000).
These results constitute the baseline for comparing the results obtained through mes-
sage packing. Then we made a number of experiments with message packing enabled.
In each experiment we kept ������� constant. The results for 1000-byte messages are in
Figure 1. It can be seen that throughput increases substantially, reaching a maximum
of 1577 msg/sec with ��������� ���

. This represents an improvement of 3,48 times over
the throughput without packing. For sake of brevity, we omit the figures for 100-byte
and 10000-byte messages: the curves have the same shape as Figure 1 with numerical
values that depend on the message size. A summary is given in Table 2. In all cases
throughput increases substantially, at the expense of latency (see also Section 5).

Although message packing may be very effective in improving throughput, a key
problem is determining the suitable value for the packing degree ������� . Our experiments
clearly show that the optimum value greatly depends on the message size. Moreover, a
realistic source will generate messages of varying sizes. Finally, and most importantly,
the effect of message packing may greatly depend on a number of factors that can

Fig. 1. Throughput (left) and latency (right) with varying packing degrees (msg size is 1000
bytes).

vary dynamically and usually cannot be predicted in advance, for example, the load
on replicas induced by other activities and the specific hardware/software environment.
Determining one single value for ������� once and for all can hardly be effective.

We have implemented a simple and inexpensive mechanism for varying ������� dy-
namically. Each replica measures the throughput with respect to multicasts generated by
that replica at regular intervals, every ��� seconds (the throughput is averaged over this
interval). Based on these observed statistics, each replica may vary ������� dynamically,
trying to adapt to the features of the operating environment. In all of the experiments
reported here we set ��� ��� sec and we updated the packing degree based on the last
two measures, i.e., every 10 sec. The problem, of course, is determining an effective
policy for exploiting this mechanism.

We experimented with policies that implement the following basic rules (���	��
���	� �������
denotes the � -th throughput measurement, �������	� denotes the � -th packing degree):

1. Initially, ������� � � (i.e., no packing enabled);
2. ������� may only be incremented by 1 or decremented by 1;
3. ����������� ��� ��������� ���	� ;
4. ���	��
���	� ����� � �����	��
���	� ����� �! � �#" ������� � $ �&% � ������� � (steady state);

The issue is defining the update rule that varies ������� so as to improve throughput. From
the shape of the curves throughput vs. ������� , it would appear that defining such rule is
simple: one could simply increase ������� when throughput increases and decrease �������
otherwise:

– ���	��
���	� ����� �(' ���	��
���	� ����� �! � �#" ������� � $ �&% � ������� ��) �
– ���	��
���	� �����*�(+,���	��
���	� �����*�! � �#" �������-� $ � % � ���������/. �

The resulting simple policy indeed converges quickly to the value for ������� that is op-
timal for the specific message size that characterizes the source. By optimal value we
mean the one that we have determined previously, by exhaustive testing (e.g., for 1000-
byte messages the optimum value is 11). This is a valuable result because, of course, the
system does not know that value but finds it automatically. The quickness in reaching
this value depends on how frequently the throughput measurements are taken.

Unfortunately, this policy is not sufficiently robust against occasional throughput
variations, induced for example by short additional loads. In many executions, �������
falls back to its minimum value 1. The reason is as follows. Suppose the optimal
value has not been reached yet and ���	��
���	� ������� is lower than ���	��
���	� �����*�! � be-
cause of a transient phenomenon out of control of the group communication system. In
this case, the packing degree would be lowered. At this point it is very likely that the
next measurement will show an even lower throughput, thereby ending up quickly with
������� � � .

It is also possible that throughput collapses because ������� oscillates around exces-
sively high values. To realize this, consider Figure 2. Suppose the system be character-
ized by curve B and the packing degree has reached its optimal value ��� . Next suppose
that, due to some additional load, the system be characterized by curve A. The next
measure will show that throughput has decreased, thus ������� will be decremented to
����. � . The next measure will then show that throughput has increased, thus ������� will
be incremented again at ��� . Since this increment will cause throughput to decrease, at
this point the value of ������� will keep on oscillating around ��� , a value that may be
largely suboptimal in curve A. Note, phenomena similar to those just discussed could
occur even if the source changed the message size during the run.

For these reasons, we experimented with a simple refinement of the above update
rule. The basic idea is this: one has to make sure that when ������� starts to decrease, it
may continue decreasing only if throughput grows — i.e., only when ������� is indeed
greater than the optimal value corresponding to the peak throughput. Otherwise, �������
should no longer decrease and should increase instead. We implement this idea with the
following update rule:

– �������-��� ���������! � �#" // Increase ������� when ���	��
���	� ����� increases� ���	��
���	� �����*� ' ���	��
���	� �����*�! � �#" �������-� $ � % � �������-�) ���� ���	��
���	� �����*�(+,���	��
���	� �����*�! � �#" �������-� $ � % � �������-�/. ���
– �������-� + ���������! � �#" // Decrease ������� when ���	��
���	� ����� increases� ���	��
���	� ����� �(' ���	��
���	� ����� �! � �#" ������� � $ �&% � ������� � . ���� ���	��
���	� �����*�(+,���	��
���	� �����*�! � �#" �������-� $ � % � �������-�) ���

It is simple to realize that, as confirmed by our experiments, this policy prevents the
instability behaviors described above. Short transient loads may provoke a decrease of
the packing degree, but not its collapsing to the minimum value. Once the additional
load has disappeared, the packing degree converges again to its previous value. Simi-
larly, the packing degree does not oscillate around excessively high values. The policy
is thus quite robust. All the results presented later are based on this policy.

4 Evaluation of the Adaptive Policy

4.1 Continuous Source

The most demanding test for a group communication system is given by a source thread
that continuously generates new multicasts. We have evaluated this scenario with both

Fig. 2. Throughput vs. Packing degree for different loads: curve A corresponds to an higher load
than curve B (curves for differing message sizes and/or additional load have the same shape).

messages of fixed size, and with messages of variable size. All the results in this section
corresponds to a CPU usage close to 100%. That is, nearly all of the CPU time on the
sending replica is spent for propagating messages (recall that each message is logged
on a MySQL database, though).

Messages with Fixed Size With the policy enabled and 1000-byte messages, the pack-
ing degree oscillates between 10 and 12 and the average throughput is 1338 msg/sec.
This corresponds to 85% of the throughput obtained with the packing degree statically
set to its optimal value 11. It also corresponds to almost a 300% throughput improve-
ment over the system without packing enabled. Latency is 19.58 ms.

The time it takes to ������� for reaching the 10-12 range from its initial value 1 is
approximately 100 seconds. The reason is, we update the packing degree every 10 sec-
onds and we can only change it by 1 at every step. We did not experiment with more
aggressive policies attempting to shorten this interval. This could be done with shorter
update intervals, e.g., 2-3 seconds. We believe that altering the packing degree by more
than one unit could make the policy less stable with more realistic sources and environ-
ments. We leave this topic open for further investigation and will not mention this issue
any further here.

The reason why the packing degree ������� does not remain constant but oscillates
around the optimal value is because consecutive throughput measures, in practice, will
never show exactly the same result. We could filter this effect out by updating �������
only when the difference between consecutive measures falls outside some threshold.
Although this approach could increase the average throughput further, it would also
introduce another parameter to define and to possibly tune. We preferred to avoid this
in the attempt to make a system that requires no magic constants and can tune itself
automatically, albeit in a slightly sub-optimal way.

Messages with Variable Size We have performed experiments with a source that in-
jects messages continuously, but with differing sizes. Below we present results for the
case in which the source generates 300.000 1000-byte messages followed by 300.000
3000-byte messages and then repeats this pattern indefinitely.

Fig. 3. Average throughput and “instantaneous” throughput over time (left). Packing degree over
time (right).

First we have performed a set of experiments for measuring the throughput as a
function of ������� , by keeping the packing degree constant in each run. We have found
that throughput without packing is 269 msg/sec, that the maximum throughput is ob-
tained with ������� ��� and corresponds to 901 msg/sec. Then we have exercised the
system with our policy enabled. Figure 3-left shows the throughput measurements. The
flat line shows the average throughput, averaged since the beginning of the experiment.
The other line shows the “instantaneous” throughput, i.e., averaged over the last 5 sec-
onds. It can be seen that the average throughput reaches a value close to 800 msg/sec in
less than 1 minute and then remains stable despite the variations of the source at around
810 msg/sec. This value corresponds to approximately 90% of the maximum through-
put, obtained with ������� immutable and fixed a priori to 6. It also corresponds to an
almost 300% throughput improvement over the system without packing. Figure 3-right
shows the variations of ������� over a short time interval.

4.2 Bursty Sources

We have performed experiments with a bursty source. The source thread generates a
burst of 15 1000-byte messages, sleeps for 20 msecs and then repeats this pattern in-
definitely. These experiments are important not only because the source is less extreme
than the continuous source discussed above, but also because in this case the CPU us-
age is smaller than 100%. This scenario should be closer to practical applications where
substantial resources are required beyond those consumed by group communication, for
example, replication of J2EE components.

These experiments shows an important finding: CPU usage varies with the packing
degree ������� in a way that is roughly opposite to throughput. That is, the packing de-
gree resulting in peak throughput also results in minimum CPU usage. It follows that
message packing may greatly help in improving the overall performance of a complete
application, because it contributes to decrease the CPU time required by the replication
infrastructure. Another important finding is that our policy for adapting the packing de-
gree automatically works also in this case and indeed decreases significantly the CPU
usage.

First we have performed a set of experiment runs by keeping the packing degree
constant in each run. The results are in Figure 4. Without packing enabled, CPU usage
is 85% and throughput is approximately 260 msgs/sec. With packing enabled, the max-
imum average throughput is obtained with ������� ��� and corresponds to 660 msg/sec.
Note that in this situation CPU usage has dropped to 65%.

Then we have run the system with our automatic policy enabled. The average through-
put reaches a value close to 430 msg/sec in slightly more than 1 minute. The CPU usage
remains below 60%. The packing degree remains stable around two values: 6 for some
time intervals and 10 for some others. This behavior is probably due to the fact that
the curve throughput vs. packing (Figure 4-right) does not exhibit a single peak and is
more irregular than the curves analyzed in the previous section. In summary, the policy
increases the throughput by 165% and lets the CPU usage drop from 85% to less than
60%.

Fig. 4. Average CPU usage (left) and average throughput (right) over packing degree. Bursty
source: 15 messages and then 20 msecs sleeping time.

4.3 Short Bursts

Finally, we have investigated the behavior of the system with very short bursts of 1000-
byte messages. We made a number of experiments varying the number of messages in
each burst and the sleeping time between bursts. Roughly, we have found that as long
as the rate of generation of new messages is above 250 msgs/sec, our automatic policy
still increases throughput and decreases CPU usage. Below such rate our policy has no
effect. Two of the combinations burst length/sleeping time where the policy has effect
are given in Table 3.

It is not surprising that when the throughput injected into the system is sufficiently
low, message packing has effect neither on throughput nor on CPU usage — it can
only increase latency. However, the overall result is significant: when the injected load
is sufficiently low, the system is capable of sustaining such load autonomously; when
the injected load is not so low, our adaptive policy automatically helps the system in
sustaining that load, by shifting the group communication bottleneck to higher loads.

Source Scenario Throughput (msg/sec) Latency (msec)) CPU usage
5 msgs every 20 msec No packing 154 10 60%

Policy enabled 236 18 45%
2 msgs every 5 msec No packing 285 5.9 65%

Policy enabled 319 11 45%

Table 3. Results with bursty source, very short bursts.

Indeed, these experiments allowed us to identify an issue where our policy needs
some refinement. The curve throughput vs. packing degree shows a step when �������
becomes greater than 1 and then remains more or less flat for a wide range of values
of ������� . It follows that, with the current policy, the packing degree exhibits fairly wide
oscillations. Although the resulting behavior is still satisfactory, it seems that a smarter
policy is required.

5 Concluding remarks

Friedman and Van Renesse demonstrated in 1997 that message packing can be very
effective in improving throughput of group communication systems. Our experiments
show that this argument still holds with more modern hardware (including 100 Mbps
Ethernet) and when safe delivery is required. Most importantly, we have shown that one
can exploit message packing adaptively, by means of a simple policy that dynamically
matches the packing degree to the specific and potentially unknown characteristics of
the message source. Our proposed policy is based on a simple and inexpensive mech-
anism and has proven to be robust against dynamic and unpredictable changes in the
run-time environment.

Of course, message packing is most effective when the source is demanding. In this
respect, the best results are obtained when the source injects a very high load for a very
long time. However, we have seen that message packing is effective even with sources
that inject relatively short message bursts.

We have investigated the effects of message packing even in scenarios when the
CPU usage is well below 100%, to simulate a situation in which the group commu-
nication system is part of a complex and demanding application based on replication,
e.g., replication of J2EE components. We have observed that even in this case message
packing can improve throughput substantially and, most importantly, while decreasing
CPU usage. The main drawback of message packing is that it tends to increase latency,
presenting an important trade-off between this quantity and throughput. While our pro-
posed mechanism and policy for message packing are certainly to be evaluated in the
context of a complete replication solution, we believe they constitute indeed a promis-
ing approach.

To put this claim in perspective, we report data collected from a prototype of a
replicated web service that we have developed on top of JBora. The service implements
a counter private of each client. Updates to the counter are multicast to each replica.
The service implementation does not support message packing yet. Clients access the

service through SOAP over HTTP. We simulated a varying number of clients with a
publicly-available tool (http://grinder.sourceforge.net/).Each client ex-
ecutes an endless loop in which it sends a request and parses the matching response. The
data below refer to the same environment used previously, 3 replicas, clients and repli-
cas are on the same Ethernet and all operations are updates. In the range 80-120 clients,
throughput grows linearly from 80 to 225 operations/s whereas latency decreases from
900 ms to 416 ms. In the range up 200 clients, throughput remains in the range 200-250
operations/s whereas latency remains in the range 400-550 ms.

We instrumented this replicated web service so as to record the time instants at
which each multicast operation is invoked. Then we analyzed off-line these data to
obtain a rough indication of whether message packing can realistically be exploited or
not. Figure 5-left shows the average time it would take to collect a number of multicasts
equal to the (hypothetical) packing degree, as a function of the packing degree. For
example, with 100 clients one could collect 8 messages in 83 msec, on the average. By
comparing these data with the previous results and having observed that in this case the
message size is 810 byte (slightly smaller than 1000 bytes, the size used in the previous
experiments), we note that insisting on achieving the optimal packing degree could not
be realistic, because the time spent in the packing buffer could grow excessively — well
beyond 100 ms. On the other hand, it also appears that message packing can indeed be
applied significantly.

Fig. 5. Average time for filling a specified packing degree (left) and average number of multicasts
as a function of the packing interval (right). Times are in ms.

JBora is being extended in order to trigger transmission when either the current
packing degree ������� has been reached or one of the messages has been in the packing
buffer for a time larger than a predefined packing interval ��������������� . The duration of
the packing interval is defined statically, depending on the latency requirements of the
application (see also below). This additional condition is capable to handle very irreg-
ular sources without introducing unacceptably high delays within the packing buffer
(as well as sources that could not even fill the packing buffer). To gain insights into
this issue, we analyzed the above data as if the packing interval was the only condition
that triggers the transmission. The results are in Figure 5-right, that shows the aver-
age number of multicasts in each (hypothetical) packing interval. The average has been

done with respect to the packing intervals that contain at least one multicast. For ex-
ample, with ������� ������� set to 70 ms and 100 clients, each non-empty packing interval
would contain 9 multicasts, on the average. Figure 6-right shows the maximum number
of multicasts rather than the average, whereas Figure 6-left shows the percentage of
non-empty packing intervals. These data indeed confirm that message packing can be
realistically exploited, albeit probably in a sub-optimal way.

Fig. 6. Percentage of non-empty packing intervals (left) and maximum number of multicasts
(right) as a function of the packing interval. Times are in ms.

As future work, we intend to complete the implementation of message packing in
order to fully evaluate its effectiveness in the above replicated web service. We are also
going to investigate whether allowing the length of the packing interval to vary dy-
namically and automatically between two or three predefined values is both simple and
desirbale. A further issue that deserves more investigation is whether a more aggressive
policy that follows more quickly dynamic variations in the run-time environment is re-
ally required and can be implemented without detailed, a-priori knowledge about the
environment itself.

References

1. Y. Amir and J. Stanton. The spread wide-area group communication system. Technical
Report CNDS 98-4, Johns Hopkins University, 1998. http://www.spread.org.

2. Y. Amir and C. Tutu. From total order to database replication. In Proc. of the Int. Conf. on
Distributed Computing Systems (ICDCS), Vienna, Austria, 2002.

3. R. Friedman and E. Hadad. A group object adaptor-based approach to CORBA fault-
tolerance. IEEE Distributed Systems Online, 2(7), November 2001.

4. R. Friedman and R. van Renesse. Packing messages as a tool for boosting the performance
of total ordering protocols. In Proc. of the 6th IEEE International Symposium on High
Performance Distributed Computing (HPDC ’97), 1997.

5. C. Karamanolis and J. Magee. Client-access protocols for replicated services. IEEE Trans-
actions on Software Engineering, 25(1), January/February 1999.

6. B. Kemme and G. Alonso. A new approach to developing and implementing eager database
replication protocols. ACM Transactions on Database Systems, 25(3):333 – 379, 2000.

7. P. M. Melliar-Smith L. E. Moser and P. Narasimhan. Consistent object replication in the
Eternal system. Theory and Practice of Object Systems, 4(2):81–92, 1998.

8. S. Labourey and B. Burke. JBoss clustering. Technical report, The JBoss Groups, 2002.
9. S. Mishra, L. Fei, X. Lin, and G. Xing. On group communication support in CORBA. IEEE

Transactions on Parallel and Distributed Systems, 12(2), February 2001.
10. G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little. Design and implementation of a

CORBA fault-tolerant object group service. In Proceedings of the 2nd IFIP International
Working Conference on Distributed Applications and Interoperable Systems, 1999.

11. L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual synchrony.
In Proc. of the Int. Conf. on Distributed Computing Systems (ICDCS), pages 56–65, 1994.

12. Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr, P. Ruble, C. Sabnis, W. Sanders,
R. Schantz, and M. Seri. AQuA: An adaptive architecture that provides dependable dis-
tributed objects. IEEE Transactions on Computers, 52(1):31–49, January 2003.

13. V. Roubtsov. My kingdom for a good timer! Javaworld, January 2003.
http://www.javaworld.com.

14. S. Bagchi Z. Kalbarczyk, I. Ravishankar and K. Whisnant. Chameleon: A software infras-
tructure for adaptive fault-tolerance. IEEE Transactions on Parallel and Distributed Systems,
10(6):560–579, June 1999.

