Mathematical Logic - 2017

Exercises: DPLL and First Order Logics (FOL)

Orriginally by Alessandro Agostini and Fausto Giunchiglia
Modified by Fausto Giunchiglia, Rui Zhang, Vincenzo Maltese and Mattia Fumagalli

DPLL

CNF

o A literal is either a propositional variable or the negation of a
propositional variable.

P, 7q

o A clause is a disjunction of literals.

(@V bV

o A formula is in conjunctive normal form, if it is a conjunction of
clauses.

P VagVr)A@Vr)A(pVagAr

CNF

o A literal is either a propositional variable or the negation of a
propositional variable.

P, 7q

o A clause is a disjunction of literals.

(@V bV

o A formula is in conjunctive normal form, if it is a conjunction of
clauses.

P VagVr)A@Vr)A(pVagAr

Reduction to CNF

Definition (the function)

The function CNF, which transforms a propositional formula in its CNF is
recursively defined as follows:

CNF(p) = p ifpeP
CNF(—-p) = -pifpeP
CNF(p —) = CNF(—¢)® CNF(y)
CNF(p Aw) = CNF(p) ACNF(y)
CNF(p Vy) = CNF(p) ® CNF(y)
CNFlp=y) = CNF(p— w) ACNF(y — ¢)
CNF(——¢) = CNF(p)

CNF(—=(p — v)) = CNF(p) ACNF(—y)
CNF(=(p Ay)) = CNF(—9¢)® CNF(—y)
CNF(=(p Vy)) = CNF(—¢) ACNF(=y)
CNF(=(p=y)) = CNF(p A—y)®CNF(y A —g)

where (C1 A ---ACn) ® (D1 A ---ADm) is defined as
(C1vD1)) A---A(C1VDm) A+--A(ChVD1) A---A(ChVDm)

|

DPLL Procedure: Main Steps

|. It identifies all literal in the input proposition P

BACABV-AVC)A(mBvVD)

2. It assigns a truth-value to each variable to satisfy them
BACABV-AVC)A(mBvVD) v(B) =T; v(C)=F

3. It simplifies P by removing all clauses in P which become true under the truth-
assighments at step 2 and all literals in P that become false from the

remaining clauses (this may generate empty clauses)
D

4. It recursively checks if the simplified proposition obtained in step 3 is
satisfiable; if this is the case then P is satisfiable, otherwise the same
recursive checking is done assuming the opposite truth value (*).

D YES, it is satisfiable for v(D) =T. NOTE: v(A) can be T/F

DPLL algorithm

O Input: a proposition P in CNF
0 Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {
if consistent(P) then return true;
if hasEmptyClause(P) then return false;
foreach unit clause C in P do
P = unit-propagate(C, P);
foreach pure-literal L in P do
P = pure-literal-assign(L, P);
L = choose-literal(P);
return DPLL(P A L) OR DPLL(P A —L);

DPLL algorithm

O Input: a proposition P in CNF
0 Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) { It tests the formula P for
consistency, namely it
does not contain
contradictions

foreach unit clause C in P do (e.g.A A —A) and all
clauses are unit clauses.

if consistent(P) then return true;

if hasEmptyClause(P) then return false;

P = unit-propagate(C, P);
foreach pure-literal L in P do

P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P A L) OR DPLL(P A —L);

DPLL algorithm

O Input: a proposition P in CNF

0 Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) { An empty clause does
if consistent(P) then return true; not contain literals.

if hasEmptyClause(P) then return false;

It can be due to

foreach unit clause C in P do previous iterations of
P = unit-propagate(C, P); the algorithm where
, . some simplifications has
foreach pure-literal L in P do b
een done.
P= pure-literal-assign(L, P); If any of them exists
L = choose_literal(P); then P is UnsatiSﬁable.

return DPLL(P A L) OR DPLL(P A —L);

DPLL algorithm

O Input: a proposition P in CNF

0 Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;

if hasEmptyClause(P) then return false;

foreach unit clause C in P do

P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);
L = choose-literal(P);
return DPLL(P A L) OR DPLL(P A —L);

(@) It assigns the right
truth value to each
literal (true for positives
and false for negatives).
(b) It simplifies P by
removing all clauses in P
which become true
under the truth-
assighment and all
literals in P that become
false from the remaining
clauses.

DPLL algorithm

O Input: a proposition P in CNF
0 Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) { For all literals which

if consistent(P) then return true; appear pure in the
formula (i.e. with only

one polarity) assign the
foreach unit clause C in P do corresponding value:

if hasEmptyClause(P) then return false;

P = unit-propagate(C, P);

- true if positive literal
- false if negative

foreach pure-literal L in P do

P = pure-literal-assign(L, P);

L = choose-literal (P); Not all DPLL versions
f this step.
return DPLL(P A L) OR DPLL(P A —L); perform this step

DPLL algorithm

O Input: a proposition P in CNF
0 Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) { The splitting rule:
if consistent(P) then return true; el e wh
t

if hasEmptyClause(P) then return false; eiee .a varia .e WIOSE
value is not assigned yet.

foreach unit clause C in P do
Recursively call DPLL
for the cases in which

the literal is true or
P = pure-literal-assign(L, P); false.

P = unit-propagate(C, P);

foreach pure-literal L in P do

L = choose-literal(P);
return DPLL(P A L) OR DPLL(P A —L);

DPLL Procedure: Example 1
P=A /A (AV -A) AB

O There are still variables and clauses to analyze, go ahead

O P does not contain empty clauses, go ahead

O It assigns the right truth-value to A and B: v(A) =T,v(B) =T

3 It simplifies P by removing all clauses in P which become true under V(A) =
TandVv(B) =T
This causes the removal of all the clauses in P

0 It simplifies P by removing all literals in the clauses of P that become false
from the remaining clauses: nothing to remove

O It assigns values to pure literals. nothing to assign

0 All variables are assigned: it returns true

DPLL Procedure: Example 2
P=C A (AV -A) A\ B

0 There are still variables and clauses to analyze, go ahead
O P does not contain empty clauses, go ahead
3 It assigns the right truth-value to C and B: v(C) =T, v(B) =T

0 It simplifies P by removing all clauses in P which become true under v(C) =
Tand v(B) =T.

P is then simplified to (A \V —A)

O It simplifies P by removing all literals in the clauses of P that become false
from the remaining clauses: nothing to remove

O It assigns values to pure literals: nothing to assign
O It selects A and applies the splitting rule by calling DPLL on
AN (AV =-A)AND -A N\ (A V -A)

which are both true (the first call is enough). It returns true
14

DPLL Procedure: Example 3
P=A A -B A (-AV B)

0 There are still variables and clauses to analyze, go ahead

O P does not contain empty clauses, go ahead

3 It assigns the right truth-value to A and B
V(A) =T,v(B) =F

3 It simplifies P by removing all clauses in P which become true under v(A) =
Tand v(B) = F
P is simplified to (-A \ B)

O It simplifies P by removing all literals in the clauses of P that become false
from the remaining clauses: the last clause becomes empty

O It assigns values to pure literals: nothing to assign

3 All variables are assigned but there is an empty clause: it returns false

|5

16

FOL

The need for greater expressive power

2 We need FOL for a greater expressive power. In FOL we have:
constants/individuals (e.g. 2)
variables (e.g. x)
Unary predicates (e.g. Man)
N-ary predicates (eg. Near)
functions (e.g. Sum, Exp)
quantifiers (V, 3)
equality symbol = (optional)

Alphabet of symbols in FOL

Q Variables Xis X9y «ees Yy Z

a Constants aj,ay ..., b, C

0 Predicate symbols Al AL, LAY

2 Function symbols fl,fl, ..M

0 Logical symbols A, V, = D, V,
A Auxiliary symbols ()

0 Indexes on top are used to denote the number of arguments, called arity, in
predicates and functions.

O Indexes on the bottom are used to disambiguate between symbols having
the same name.

0 Predicates of arity =1 correspond to properties or concepts

Write in FOL the following NL sentences

(11 7
2 "Einstein is a scientist

Scientist(einstein)

2 “There is a monkey”

—x Monkey(x)

0 “There exists a dog which is black”
—x (Dog(x) A Black(x))

7
0 “All persons have a name

V x (Person(x) > Jy Name(x, y))

Write in FOL the following NL sentences

0 “The sum of two odd numbers is even”
Vx Vy (Odd(x) A Odd(y) > Even(Sum(x,y)))

0 “A father is a male person having at least one child”
V x (Father(x) o Person(x) A Male(x) A Jy hasChilden(x, y))

0 “There is exactly one dog”
—x Dog(x) A Vx Vy (Dog(x) A Dog(y) ox =y)

0 “There are at least two dogs”
3Ix Jy (Dog(x) A Dog(y) A —(x =y))

20

The use of FOL in mathematics

0 Express in FOL the fact that every natural number x multiplied by |
returns x (identity):

V x (Natural(x) o (Mult(x, 1) =x))

0 Express in FOL the fact that the multiplication of two natural
numbers is commutative:

V x Vy (Natural(x) A Natural(y) o (Mult(x, y) = Mult(y, x)))

21

The use of FOL in mathematics

0 FOL has being introduced to express mathematical properties

0 The set of axioms describing the properties of equality between
natural numbers (by Peano):

Axioms about equality

L VX (X = X)) reflexivity
2. VX VX (X = XD Xy = X) symmetricity
3. VX, VX, VX3 (X] =Xy A Xy = X3 DX = X3) transitivity

4. V'x; Vxy (X = %9 2 S(X,) = S(X5)) successor

NOTE: Other axioms can be given for the properties of the successor, the
addition (+) and the multiplication (x).

22

Modeling the club of married problem

There are exactly three people in the club, Tom, Sue and Mary.
Tom and Sue are married. If a member of the club is married,
their spouse is also in the club. Mary is not married.

L = {tom, sue, mary, Club, Married}

Club(tom) A Club(sue) A Club(mary) A Vx (Club(x) D (x = tom v x = sue v X = mary))

Married(tom, sue)
Vx Vy ((Club(x) A Married(x,y)) > Club(y))

— = x Married(mary, x)

23

Modeling the club of married problem (II)

There are exactly three people in the club, Tom, Sue and Mary.
Tom and Sue are married. If a member of the club is married,
their spouse is also in the club.

. Add enough common sense FOL statements (e.g. everyone has
at most one spouse, hobody can be married to himself or
herself, Tom, Sue and Mary are different people) to make it
entail that Mary is not married in FOL.

L = {tom, sue, mary, Club, Married}

S1: Club(tom) A Club(sue) A Club(mary) A V x (Club(x) > (x = tom v x = sue Vv X = mary))
S2: Married(tom, sue)

S3: Vx Vy ((Club(x) A Married(x,y)) > Club(y))
S4: — dx Married(mary, x)

24

Modeling the club of married problem (III)

There are exactly three people in the club, Tom, Sue and Mary.
Tom and Sue are married. If a member of the club is married,
their spouse is also in the club.

. Add enough common sense FOL statements (e.g. everyone has
at most one spouse, hobody can be married to himself or
herself, Tom, Sue and Mary are different people) to make it
entail that Mary is not married in FOL.

We need to add the following:

S5: Vx Vy Vz ((Married(x,y) A Married(x,z) Dy = 2) at most one wife
S6: — dx Married(x, x) nobody is married with
himself/herself

S7: — (tom=sue) A — (tom=mary) A — (mary=sue) unique name assumption

25

Interpretation

FOL interpretation for a language L

A first order interpretation for the language

L = {(c1,¢c0,....f1,Fr,.... R, Ry, ...) is a pair (A,Z) where
@ A is a non empty set called interpretation domain
@ 7 is is a function, called interpretation function

@ Z(c;) € A (elements of the domain)
o I(f;) : A" — A (n-ary function on the domain)
@ Z(P;) € A" (n-ary relation on the domain)

where n is the arity of f; and P;.

26

Example of interpretation

Example (Of interpretation)

Symbols Constants: alice, bob, carol, robert

Function: mother-of (with arity equal to 1)
Predicate: friends (with arity equal to 2)

Domain A=1{1,2,3,4,...}

Interpretation Z(alice) =1, Z(bob) = 2, Z(carol) =

Z(robert) = 2

M(1) =3
Z(mother-of) = M %g; z le
M(n) = n+
1,2y, (2,1
Z(friends) = F = { (4,3), (4,2
4,1y, (1,4

31

27

Modeling “blocks world”

Non Logical symbols
Constants: A,B.C,.D.E.F;
Predicates: On®, Above®, Free', Red', Green'.

table

Interpretation Z;

o Il(A) = bl, Il(B) = b2, Il(C) = b3, Il(D) = b4, Il(E) — b5,
T,(F) = table
Q Il(On) — {(bl, b4>, <b4, b3>, <b3, table), <b5, bz), (bg, table)}
@ Z,(Above) = {(b1, bs), (b1, b3), (b1, table), (ba, bs), (bs, table),
(bs, table), (bs, by), (bs, table), (b,, table)}

® T.(Free) = {{b1), (bs)}, Tr(Green) = {(ba)}, T1(Red) = {(b1), (bs)}

28

Interpretation of terms

Definition (Assignment)

An assignment a is a function from the set of variables to A.

a[x/d| denotes the assignment that conincides with a on all the
variables but x, which is associated to d.

v

Interpretation of terms

The interpretation of a term t w.r.t. the assignment a, in symbols
Z(t)[a] is recursively defined as follows:

I(xi)la] = a(x)
I(ci)la] = I(a)
I(f(tr,. .., ta))a) = Z(F)(Z(t)[al, ... Z(tn)[a))

29

Interpretation of terms (example of [a])

A
I(tom)[a] = I(tom) =Tom
I(sue)[a] = I(sue) = Sue

B
I(x) [a] = a(x) = tom

I(y) [a] = a(y) = sue
1I(z) [a] = a(z) = 3

C
I(sum(z, 5))[a] = I(sum) I(1(z)[a], I(5)[a]) = sum(a(z), 5) = sum(3,5) = 8

30

Satisfiability of a formula

Definition (Satisfiability of a formula w.r.t. an assignment)

An interpretation Z satisfies a formula ¢ w.r.t. the assignment a
according to the following rules:

I T I Y I U VI T)

iff
iff
iff
iff
iff
iff
iff
iff
iff

I(t1)[a] = Z(12)[4]
I(t1)[a],...,Z(tn)[a]) € Z(P)
and 7 = ¢|4]

or 7 = [a]

B
B
a] or Z = a]
B
B

e
~
(S

NORR NN
TR
-

7 vla
there is a d € A such thatZ = ¢[a[x/d]]
forall d € A7): ()[a[x/d]]

31

Decide whether the following formula
are satisfied by 1,

1. "Ais above C, D is above F and on E.”

@1 : Above(A,C) A Above(E, F)AOn(D, E) (NO’ On)
2. "A is green while C is not.” (N O)

@9 : Green(A) A ~Green(C)
3. "Everything is on something.”

o3 : Vx3y.On(z,y) (NO’ table)
4. "Everything that is free has nothing on it.”

¢4 : Vz.(Free(x) — —-3y.0On(y,x)) (YES)

5. "Everything that is green is free.”

(NO)
o5 : Vz.(Green(z) — Free(x))

6. "There is something that is red and is not free.” (N O)
¢g : 3x.(Red(xz) A ~Free(x))

7. "Everything that is not green and is above B, is red.”
b7 : Vz.(~Green(z) A Above(z, B) — Red(z)) (YES)

32

Analogy with Databases

EMPLOYEE
NAME | GENDER | CITY SALARY
Mary Female Rome 2200
Paul Male Florence | 1800
George | Male Naples 1700
Leon Male London | 2500
Luc Male Rome 1800
Lucy Female Rome 1700

DEPARTMENT
EMPLOYEE | NAME
Mary Administration
Paul Marketing
George Customer Care
Leon Production
Luc Production
Lucy Production

33

Provide a FOL formula that retrives...
Provide the possible assignments making the formula true

FOL Tableaux

.. . for propositional connectives

dANYp (P V) —d (¢ D)
a rules o ¢ 3 ¢
?/) ﬂ’(b ﬁw
bV P X ﬁ(d)/\w) o= ﬁ((ZSE@b)
BI’U|€S ¢|¢ ﬂ(f>|’¢/) ﬂ¢|‘l1/) ¢ ﬁﬁb (.b ﬁd)
’l/) —1’(’/) ﬂ’l/} ’(/)
Vx.o(x) —3x.¢(x) Where t is a term free
v rules —20 T e
where ¢ is a new
5 rules —VXx.¢(x) 3x.4(x) constant not previ-
—¢(c) o(c) ously appearing in the
tableaux

34

FOL Tableaux

Check via tableaux the validity/satisability of the formula:
» ¢ = Vxy(P(x) 2 Q(y)) o (IxP(x) o VyQ(y))

—(Vxy(P(x) 2 Q(y)) 2 (IxP(x) 2 VyQ(y)))

(Vxy(P(x) > Q(y))
—(3xP(x) ©VyQ(y))

= xP(x)
—VyQ(y)
P(a)
—Q(b)
P(a) © Q(b)
—P(a) Q(b)
X X

35

