
Mathematical Logic - 2017

Exercises: DPLL and First Order Logics (FOL)

Originally by Alessandro Agostini and Fausto Giunchiglia
Modified by Fausto Giunchiglia, Rui Zhang, Vincenzo Maltese and Mattia Fumagalli

2

DPLL

3

CNF

4

CNF

5

Reduction to CNF

DPLL Procedure: Main Steps
1. It identifies all literal in the input proposition P

2. It assigns a truth-value to each variable to satisfy them

3. It simplifies P by removing all clauses in P which become true under the truth-
assignments at step 2 and all literals in P that become false from the
remaining clauses (this may generate empty clauses)

4. It recursively checks if the simplified proposition obtained in step 3 is
satisfiable; if this is the case then P is satisfiable, otherwise the same
recursive checking is done assuming the opposite truth value (*).

6

B Ù ¬C Ù (B Ú ¬A Ú C) Ù (¬ B Ú D)

B Ù ¬C Ù (B Ú ¬A Ú C) Ù (¬ B Ú D) ν(B) = T; ν(C) = F

D

D YES, it is satisfiable for ν(D) = T. NOTE: ν(A) can be T/F

DPLL algorithm
q Input: a proposition P in CNF

q Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;
if hasEmptyClause(P) then return false;

foreach unit clause C in P do
P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P Ù L) OR DPLL(P Ù ¬L);
}

7

DPLL algorithm
q Input: a proposition P in CNF

q Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;
if hasEmptyClause(P) then return false;

foreach unit clause C in P do
P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P Ù L) OR DPLL(P Ù ¬L);
}

8

It tests the formula P for
consistency, namely it
does not contain
contradictions
(e.g. A Ù ¬A) and all
clauses are unit clauses.

DPLL algorithm
q Input: a proposition P in CNF

q Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;
if hasEmptyClause(P) then return false;

foreach unit clause C in P do
P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P Ù L) OR DPLL(P Ù ¬L);
}

9

An empty clause does
not contain literals.

It can be due to
previous iterations of
the algorithm where
some simplifications has
been done.
If any of them exists
then P is unsatisfiable.

DPLL algorithm
q Input: a proposition P in CNF

q Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;
if hasEmptyClause(P) then return false;

foreach unit clause C in P do
P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P Ù L) OR DPLL(P Ù ¬L);
}

10

(a) It assigns the right
truth value to each
literal (true for positives
and false for negatives).
(b) It simplifies P by
removing all clauses in P
which become true
under the truth-
assignment and all
literals in P that become
false from the remaining
clauses.

DPLL algorithm
q Input: a proposition P in CNF

q Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;
if hasEmptyClause(P) then return false;

foreach unit clause C in P do
P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P Ù L) OR DPLL(P Ù ¬L);
}

11

For all literals which
appear pure in the
formula (i.e. with only
one polarity) assign the
corresponding value:

- true if positive literal
- false if negative

Not all DPLL versions
perform this step.

DPLL algorithm
q Input: a proposition P in CNF

q Output: true if "P satisfiable" or false if "P unsatisfiable"

boolean function DPLL(P) {

if consistent(P) then return true;
if hasEmptyClause(P) then return false;

foreach unit clause C in P do
P = unit-propagate(C, P);

foreach pure-literal L in P do
P = pure-literal-assign(L, P);

L = choose-literal(P);

return DPLL(P Ù L) OR DPLL(P Ù ¬L);
}

12

The splitting rule:

Select a variable whose
value is not assigned yet.

Recursively call DPLL
for the cases in which
the literal is true or
false.

DPLL Procedure: Example 1
P = A∧ (A ∨ ¬A) ∧ B

q There are still variables and clauses to analyze, go ahead
q P does not contain empty clauses, go ahead

q It assigns the right truth-value to A and B: ν(A) = T, ν(B) = T
q It simplifies P by removing all clauses in P which become true under ν(A) =

T and ν(B) = T

This causes the removal of all the clauses in P
q It simplifies P by removing all literals in the clauses of P that become false

from the remaining clauses: nothing to remove
q It assigns values to pure literals. nothing to assign
q All variables are assigned: it returns true

13

DPLL Procedure: Example 2
P = C∧ (A ∨ ¬A) ∧ B

q There are still variables and clauses to analyze, go ahead
q P does not contain empty clauses, go ahead

q It assigns the right truth-value to C and B: ν(C) = T, ν(B) = T
q It simplifies P by removing all clauses in P which become true under ν(C) =

T and ν(B) = T.

P is then simplified to (A ∨ ¬A)
q It simplifies P by removing all literals in the clauses of P that become false

from the remaining clauses: nothing to remove
q It assigns values to pure literals: nothing to assign

q It selects A and applies the splitting rule by calling DPLL on

q A ∧ (A ∨ ¬A) AND ¬A ∧ (A ∨ ¬A)
which are both true (the first call is enough). It returns true

14

DPLL Procedure: Example 3
P = A∧ ¬B ∧ (¬A ∨ B)

q There are still variables and clauses to analyze, go ahead
q P does not contain empty clauses, go ahead

q It assigns the right truth-value to A and B
ν(A) = T, ν(B) = F

q It simplifies P by removing all clauses in P which become true under ν(A) =
T and ν(B) = F.
P is simplified to (¬A ∨ B)

q It simplifies P by removing all literals in the clauses of P that become false
from the remaining clauses: the last clause becomes empty

q It assigns values to pure literals: nothing to assign

q All variables are assigned but there is an empty clause: it returns false

15

16

FOL

The need for greater expressive power
q We need FOL for a greater expressive power. In FOL we have:

q constants/individuals (e.g. 2)
q variables (e.g. x)
q Unary predicates (e.g. Man)
q N-ary predicates (eg. Near)
q functions (e.g. Sum, Exp)
q quantifiers (∀, ∃)
q equality symbol = (optional)

17

Alphabet of symbols in FOL
q Variables x1, x2, …, y, z
q Constants a1, a2, …, b, c
q Predicate symbols A1

1, A1
2, …, An

m

q Function symbols f11, f12, …, fnm

q Logical symbols ∧, ∨, ¬, É , ∀, ∃
q Auxiliary symbols ()

q Indexes on top are used to denote the number of arguments, called arity, in
predicates and functions.

q Indexes on the bottom are used to disambiguate between symbols having
the same name.

q Predicates of arity =1 correspond to properties or concepts

18

Write in FOL the following NL sentences
q “Einstein is a scientist”

Scientist(einstein)

q “There is a monkey”
∃x Monkey(x)

q “There exists a dog which is black”
∃x (Dog(x) Ù Black(x))

q “All persons have a name”
∀x (Person(x) É∃y Name(x, y))

19

Write in FOL the following NL sentences
q “The sum of two odd numbers is even”

∀x ∀y (Odd(x) Ù Odd(y) É Even(Sum(x,y)))

q “A father is a male person having at least one child”
∀x (Father(x) É Person(x) Ù Male(x) Ù∃y hasChilden(x, y))

q “There is exactly one dog”
∃x Dog(x) Ù∀x ∀y (Dog(x) Ù Dog(y) É x = y)

q “There are at least two dogs”
∃x ∃y (Dog(x) Ù Dog(y) Ù ¬(x = y))

20

The use of FOL in mathematics

21

q Express in FOL the fact that every natural number x multiplied by 1
returns x (identity):

∀x (Natural(x) É (Mult(x, 1) = x))

q Express in FOL the fact that the multiplication of two natural
numbers is commutative:

∀x∀y (Natural(x) Ù Natural(y)É (Mult(x, y) = Mult(y, x)))

The use of FOL in mathematics

22

q FOL has being introduced to express mathematical properties

q The set of axioms describing the properties of equality between
natural numbers (by Peano):

Axioms about equality
1. ∀x1 (x1 = x1) reflexivity

2. ∀x1 ∀x2 (x1 = x2 É x2 = x1) symmetricity

3. ∀x1 ∀x2 ∀x3 (x1 = x2 Ù x2 = x3 É x1 = x3) transitivity

4. ∀x1 ∀x2 (x1 = x2 É S(x1) = S(x2)) successor

NOTE: Other axioms can be given for the properties of the successor, the
addition (+) and the multiplication (x).

Modeling the club of married problem

23

L = {tom, sue, mary, Club, Married}

Club(tom) Ù Club(sue) Ù Club(mary) Ù∀x (Club(x) É (x = tom Ú x = sue Ú x = mary))

Married(tom, sue)

∀x ∀y ((Club(x) Ù Married(x, y)) É Club(y))

¬∃x Married(mary, x)

There are exactly three people in the club, Tom, Sue and Mary.
Tom and Sue are married. If a member of the club is married,
their spouse is also in the club. Mary is not married.

Modeling the club of married problem (II)

24

L = {tom, sue, mary, Club, Married}

S1: Club(tom) Ù Club(sue) Ù Club(mary) Ù∀x (Club(x) É (x = tom Ú x = sue Ú x = mary))

S2: Married(tom, sue)

S3: ∀x ∀y ((Club(x) Ù Married(x, y)) É Club(y))

S4: ¬∃x Married(mary, x)

There are exactly three people in the club, Tom, Sue and Mary.
Tom and Sue are married. If a member of the club is married,
their spouse is also in the club.

Add enough common sense FOL statements (e.g. everyone has
at most one spouse, nobody can be married to himself or
herself, Tom, Sue and Mary are different people) to make it
entail that Mary is not married in FOL.

Modeling the club of married problem (III)

25

We need to add the following:

S5: ∀x ∀y ∀z ((Married(x, y) Ù Married(x, z) É y = z) at most one wife

S6: ¬∃x Married(x, x) nobody is married with

himself/herself

S7: ¬ (tom=sue) Ù ¬ (tom=mary) Ù ¬ (mary=sue) unique name assumption

There are exactly three people in the club, Tom, Sue and Mary.
Tom and Sue are married. If a member of the club is married,
their spouse is also in the club.

Add enough common sense FOL statements (e.g. everyone has
at most one spouse, nobody can be married to himself or
herself, Tom, Sue and Mary are different people) to make it
entail that Mary is not married in FOL.

Interpretation

26

Example of interpretation

27

Modeling “blocks world”

28

Interpretation of terms

29

Interpretation of terms (example of [a])

30

A
I(tom)[a] = I(tom) = Tom

I(sue)[a] = I(sue) = Sue

B
I(x) [a] = a(x) = tom

I(y) [a] = a(y) = sue

I(z) [a] = a(z) = 3

C
I(sum(z, 5))[a] = I(sum) I(I(z)[a], I(5)[a]) = sum(a(z), 5) = sum(3,5) = 8

Satisfiability of a formula

31

Decide whether the following formula
are satisfied by I1

32

(NO, “On”)

(NO)

(NO, “table”)

(YES)

(NO)

(NO)

(YES)

Analogy with Databases

33

Provide a FOL formula that retrives…
Provide the possible assignments making the formula true

FOL Tableaux

34

FOL Tableaux
Check via tableaux the validity/satisability of the formula:
} φ = ∀xy(P(x) É Q(y)) É (∃xP(x) É∀yQ(y))

¬(∀xy(P(x) É Q(y)) É (∃xP(x) É∀yQ(y)))

35

(∀xy(P(x) É Q(y))
¬(∃xP(x) É∀yQ(y))

∃xP(x)
¬∀yQ(y)

P(a)
¬Q(b)

P(a) É Q(b)

¬P(a) Q(b)

X X

