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Mathematics is the only
instructional material that can
be presented in an entirely
undogmatic way.

The Mathematical
Intelligencer, v. 5, no. 2, 1983

MAX DEHN
Chapter 1

Introduction

The purpose of this booklet is to give you a number of exercises on proposi-

tional, first order and modal logics to complement the topics and exercises

covered during the lectures of the course on mathematical logic. The mate-

rial presented here is not a direct component of the course but is offered to

you as an incentive and a support to understand and master the concepts and

exercises presented during the course.

Symbol Difficulty

� Trivial

� Easy

� Medium

� Difficult

� Very difficult
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When you have eliminated the
impossible, what ever remains,
however improbable must be
the truth.

The Sign of Four.
SIR ARTHUR CONAN DOYLEChapter 2

Propositional Logic
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Propositional Logic

2.1 Basic Concepts

Exercise 2.1. � -

Which of the following are well formed propositional formulas?

1. ∨pq

2. (¬(p→ (q ∧ p)))

3. (¬(p→ (q = p)))

4. (¬(♦(q ∨ p)))

5. (p ∧ ¬q) ∨ (q → r)

6. p¬r

Solution.

Well formed formulas: 2. and 5.

]

Exercise 2.2. � -

Let’s consider the interpretation v where v(p) = F, v(q) = T, v(r) = T.
Does v satisfy the following propositional formulas?

1. (p→ ¬q) ∨ ¬(r ∧ q)

2. (¬p ∨ ¬q)→ (p ∨ ¬r)

3. ¬(¬p→ ¬q) ∧ r

4. ¬(¬p→ q ∧ ¬r)
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2.1 Basic Concepts

Solution.

v satisfies 1., 3. and 4.
v doesn’t satisfy 2.
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Propositional Logic

2.2 Truth Tables

Exercise 2.3. � -

Compute the truth table of (F ∨G) ∧ ¬(F ∧G).

Solution.

F G F ∨G F ∧G ¬(F ∧G) (F ∨G) ∧ ¬(F ∧G)

T T T T F F
T F T F T T
F T T F T T
F F F F T F

+ The formula models an exclusive or!

]

Exercise 2.4. � -

Use the truth tables method to determine whether (p→ q) ∨ (p→ ¬q) is valid.

Solution.

p q p→ q ¬q p→ ¬q (p→ q) ∨ (p→ ¬q)

T T T F F T
T F F T T T
F T T F T T
F F T T T T

The formula is valid since it is satisfied by every interpretation.

]
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2.2 Truth Tables

Exercise 2.5. � -

Use the truth tables method to determine whether (¬p∨q)∧(q → ¬r∧¬p)∧(p∨r)
(denoted with ϕ) is satisfiable.

Solution.

p q r ¬p ∨ q ¬r ∧ ¬p q → ¬r ∧ ¬p (p ∨ r) ϕ

T T T T F F T F
T T F T F F T F
T F T F F T T F
T F F F F T T F
F T T T F F T F
F T F T T T F F
F F T T F T T T
F F F T T T F F

There exists an interpretation satisfying ϕ, thus ϕ is satisfiable.

]

Exercise 2.6. � -

Use the truth tables method to determine whether the formula ϕ : p∧¬q → p∧q
is a logical consequence of the formula ψ : ¬p.

Solution.

p q ¬p p ∧ ¬q p ∧ q p ∧ ¬q → p ∧ q

T T F F T T
T F F T F F
F T T F F T
F F T F F T

ψ |= ϕ since each

interpretation satisfying psi satisfies also ϕ.
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Propositional Logic

]

Exercise 2.7. � -

Use the truth tables method to determine whether p → (q ∧ ¬q) and ¬p are
logically equivalent.

Solution.

p q q ∧ ¬q p→ (q ∧ ¬q) ¬p

T T F F F
T F F F F
F T F T T
F F F T T

The two formulas are equivalent since

for every possible interpretation they evaluate to tha same truth value.

]

Exercise 2.8. �

Compute the truth tables for the following propositional formulas:

• (p→ p)→ p

• p→ (p→ p)

• p ∨ q → p ∧ q

• p ∨ (q ∧ r)→ (p ∧ r) ∨ q

• p→ (q → p)

• (p ∧ ¬q) ∨ ¬(p↔ q)

10



2.2 Truth Tables

]

Exercise 2.9. �

Use the truth table method to verify whether the following formulas are valid,
satisfiable or unsatisfiable:

• (p→ q) ∧ ¬q → ¬p

• (p→ q)→ (p→ ¬q)

• (p ∨ q → r) ∨ p ∨ q

• (p ∨ q) ∧ (p→ r ∧ q) ∧ (q → ¬r ∧ p)

• (p→ (q → r))→ ((p→ q)→ (p→ r))

• (p ∨ q) ∧ (¬q ∧ ¬p)

• (¬p→ q) ∨ ((p ∧ ¬r)↔ q)

• (p→ q) ∧ (p→ ¬q)

• (p→ (q ∨ r)) ∨ (r → ¬p)

]

Exercise 2.10. �

Use the truth table method to verify whether the following logical consequences
and equivalences are correct:

• (p→ q) |= ¬p→ ¬q

• (p→ q) ∧ ¬q |= ¬p

• p→ q ∧ r |= (p→ q)→ r

11



Propositional Logic

• p ∨ (¬q ∧ r) |= q ∨ ¬r → p

• ¬(p ∧ q) ≡ ¬p ∨ ¬q

• (p ∨ q) ∧ (¬p→ ¬q) ≡ q

• (p ∧ q) ∨ r ≡ (p→ ¬q)→ r

• (p ∨ q) ∧ (¬p→ ¬q) ≡ p

• ((p→ q)→ q)→ q ≡ p→ q

12



2.3 Propositional Formalization

2.3 Propositional Formalization

2.3.1 Formalizing Simple Sentences

Exercise 2.11. � -

Let’s consider a propositional language where

• p means “Paola is happy”,

• q means “Paola paints a picture”,

• r means “Renzo is happy”.

Formalize the following sentences:

1. “if Paola is happy and paints a picture then Renzo isn’t happy”

2. “if Paola is happy, then she paints a picture”

3. “Paola is happy only if she paints a picture”

Solution.

1. p ∧ q → ¬r

2. p→ q

3. ¬(p ∧ ¬q) ..which is equivalent to p→ q

+ The precision of formal languages avoid the ambiguities of natural lan-
guages.

]
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Propositional Logic

Exercise 2.12. � -

Let’s consider a propositional language where

• p means “x is a prime number”,

• q means “x is odd”.

Formalize the following sentences:

1. “x being prime is a sufficient condition for x being odd”

2. “x being odd is a necessary condition for x being prime”

Solution. 1. and 2. p→ q

]

Exercise 2.13. � -

Let A =“Aldo is Italian” and B =“Bob is English”.
Formalize the following sentences:

1. “Aldo isn’t Italian”

2. “Aldo is Italian while Bob is English”

3. “If Aldo is Italian then Bob is not English”

4. “Aldo is Italian or if Aldo isn’t Italian then Bob is English”

5. “Either Aldo is Italian and Bob is English, or neither Aldo is Italian nor

Bob is English”

Solution.

1. ¬A

2. A ∧B

3. A→ ¬B
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2.3 Propositional Formalization

4. A ∨ (¬A→ B) logically equivalent to A ∨B

5. (A ∧B) ∨ (¬A ∧ ¬B) logically equivalent to A↔ B

]

Exercise 2.14. �

Angelo, Bruno and Carlo are three students that took the Logic exam. Let’s
consider a propositional language where

• A =“Aldo passed the exam”,

• B =“Bruno passed the exam”,

• C =“Carlo passed the exam”.

Formalize the following sentences:

1. “Carlo is the only one passing the exam”

2. “Aldo is the only one not passing the exam”

3. “Only one, among Aldo, Bruno and Carlo, passed the exam”

4. “At least one among Aldo, Bruno and Carlo passed”

5. “At least two among Aldo, Bruno and Carlo passed the exam”

6. “At most two among Aldo, Bruno and Carlo passed the exam”

7. “Exactly two, among Aldo, Bruno and Carlo passed the exam”

]

Exercise 2.15. � -

Let’s consider a propositional langiage where

• A =“Angelo comes to the party”,
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Propositional Logic

• B =“Bruno comes to the party”,

• C =“Carlo comes to the party”,

• D =“Davide comes to the party”.

Formalize the following sentences:

1. “If Davide comes to the party then Bruno and Carlo come too”

2. “Carlo comes to the party only if Angelo and Bruno do not come”

3. “Davide comes to the party if and only if Carlo comes and Angelo doesn’t

come”

4. “If Davide comes to the party, then, if Carlo doesn’t come then Angelo

comes”

5. “Carlo comes to the party provided that Davide doesn’t come, but, if

Davide comes, then Bruno doesn’t come”

6. “A necessary condition for Angelo coming to the party, is that, if Bruno

and Carlo aren’t coming, Davide comes”

7. “Angelo, Bruno and Carlo come to the party if and only if Davide doesn’t

come, but, if neither Angelo nor Bruno come, then Davide comes only if

Carlo comes”

Solution.

1. D → B ∧ C

2. C → ¬A ∧ ¬B

3. D ↔ (C ∧ ¬A)

4. D → (¬C → A)

5. (¬D → C) ∧ (D → ¬B)

6. A→ (¬B ∧ ¬C → D)

7. (A ∧B ∧ C ↔ ¬D) ∧ (¬A ∧ ¬B → (D ↔ C))

16



2.3 Propositional Formalization

]

Exercise 2.16. �

Let’s consider a propositional langiage where

• A =“Angelo comes to the party”,

• B =“Bruno comes to the party”,

• C =“Carlo comes to the party”,

• D =“Davide comes to the party”.

Formalize the following sentences:

1. “Angelo comes to the party while Bruno doesn’t”

2. “Either Carlo comes to the party, or Bruno and Davide don’t come”

3. “If Angelo and Bruno come to the party, then Carlo comes provided that

Davide doesn’t come”

4. “Carlo comes to the party if Bruno and Angelo don’t come, or if Davide

comes”

5. “If Angelo comes to the party then Bruno or Carlo come too, but if Angelo

doesn’t come to the party, then Carlo and Davide come”

]

Exercise 2.17. � -

Socrate says:

“If I’m guilty, I must be punished;

I’m guilty. Thus I must be punished.”

17



Propositional Logic

Is the argument logically correct?

Solution. The argument is logically correct: if p means “I’m guilty” and q

means “I must be punished”, then:
(p→ q) ∧ p |= q (modus ponens)

]

Exercise 2.18. � -

Socrate says:

“If I’m guilty, I must be punished;

I’m not guilty. Thus I must not be punished.”

Is the argument logically correct?

Solution. The argument is not logically correct:
(p→ q) ∧ ¬p 2 ¬q

+ consider for instance v(p) = F and v(q) = T

]

Exercise 2.19. �

Socrate says:

“If I’m guilty, I must be punished;

I must not be punished. Thus I’m not guilty.”

Is the argument logically correct?

]
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2.3 Propositional Formalization

Exercise 2.20. �

Socrate says:

“If I’m guilty, I must be punished;

I must be punished. Thus I’m guilty.”

Is the argument logically correct?

]

Exercise 2.21. �

Formalize the following arguments and verify whether they are correct:

• “If Carlo won the competition, then either Mario came second or Sergio

came third. Sergio didn’t come third. Thus, if Mario didn’t come second,

then Carlo didn’t win the competition.”

• “If Carlo won the competition, then either Mario came second or Sergio

came third. Mario didn’t come second. Thus, if Carlo won the competi-

tion, then Sergio didn’t come third.”

• “If Carlo won the competition, then Mario came second and Sergio came

third. Mario didn’t come second. Thus Carlo didn’t win the competition.”

• “If Carlo won the competition, then, if Mario came second then Sergio

came third. Mario didn’t come second. Thus, either Carlo won or Sergio

arrived third”

• “If you play and you study you’ll pass the exams, while if you play and

don’t study you won’t pass. Thus, if you play, either you study and you’ll

pass the exams, or you don’t study and you won’t pass.”

19



Propositional Logic

2.3.2 Formalizing Problems

Exercise 2.22. � -

Aladdin finds two trunks A and B in a cave. He knows that each of them either
contains a treasure or a fatal trap.

On trunk A is written: “At least one of these two trunks contains a

treasure.”

On trunk B is written: “In A there’s a fatal trap.”

Aladdin knows that either both the inscriptions are true, or they are both false.

Can Aladdin choose a trunk being sure that he will find a treasure?

If this is the case, which trunk should he open?

Solution. Let’s consider a propositional language where a =“Trunk A con-

tains the treasure” and b =“Trunk B contains the treasure”.
+ Obviously ¬a =“Trunk a contains a trap” (and similarly for ¬b), since each
trunk either contains a treasure or a trap (exclusive or).

Let’s formalize what Aladdin knows:

• Formalization of the inscriptions:
a ∨ b “At least one of these two trunks contains a treasure.”

¬a “A contains a trap”

• Formalization of the problem:
1. “either both the inscriptions are true, or they are both false”

(a ∨ b)↔ ¬a

What we can do is to verify whether there is any interpretation satisfying the
formula in 1. :

• The only interpretation satisfying 1. is:
v(a) = F and v(b) = T

• Thus Aladdin can open trunk B, being sure that it contains a treasure.

20



2.3 Propositional Formalization

]

Exercise 2.23. �

Suppose we know that:

• “if Paolo is thin, then Carlo is not blonde or Roberta is not tall”

• “if Roberta is tall then Sandra is lovely”

• “if Sandra is lovely and Carlo is blonde then Paolo is thin”

• “Carlo is blonde”

Can we deduce that “Roberta is not tall” ?

]

Exercise 2.24. � -

Three boxes are presented to you. One contains gold, the other two are empty.
Each box has imprinted on it a clue as to its contents; the clues are:

Box 1 “The gold is not here”

Box 2 “The gold is not here”

Box 3 “The gold is in Box 2”

Only one message is true; the other two are false. Which box has the gold?

Formalize the puzzle in Propositional Logic and find the solution using a truth

table.

Solution. Let Bi with i ∈ {1, 2, 3} stand for “gold is in the i-th box”. We can
formalize the statements of the problem as follows:

21



Propositional Logic

1. One box contains gold, the other two are empty.

(B1 ∧ ¬B2 ∧ ¬B3) ∨ (¬B1 ∧B2 ∧ ¬B3) ∨ (¬B1 ∧ ¬B2 ∧B3) (2.1)

2. Only one message is true; the other two are false.

(¬B1 ∧ ¬¬B2 ∧ ¬B2) ∨ (¬¬B1 ∧ ¬B2 ∧ ¬B2) ∨ (¬¬B1 ∧ ¬¬B2 ∧B2) (2.2)

(2.2) is equivalent to:
(B1 ∧ ¬B2) ∨ (B1 ∧B2) (2.3)

Let us compute the truth table for (2.1) and (2.3)

B1 B2 B3 (2.1) (2.3)

T T T F T

T T F F T

T F T F T

T F F T T

F T T F F

F T F T F

F F T T F

F F F F F

The only assignment I that verifies both (2.1) and (2.3) is the one with I(B1) =

T and I(B2) = I(B3) = F , which implies that the gold is in the first box.

]

Exercise 2.25. � -

Kyle, Neal, and Grant find themselves trapped in a dark and cold dungeon
(HOW they arrived there is another story). After a quick search the boys find
three doors, the first one red, the second one blue, and the third one green.
Behind one of the doors is a path to freedom. Behind the other two doors,
however, is an evil fire-breathing dragon. Opening a door to the dragon means
almost certain death.
On each door there is an inscription:

22



2.3 Propositional Formalization

freedom freedom

this door

is behind

the blue door

freedom

is not behindis not behind

this door

Given the fact that at LEAST ONE of the three statements on the three doors
is true and at LEAST ONE of them is false, which door would lead the boys to
safety?

Solution.

Language

• r: “freedom is behind the red door”

• b: “freedom is behind the blue door”

• g: “freedom is behind the green door”

Axioms

1. “behind one of the door is a path to freedom, behind the other two doors

is an evil dragon”

(r ∧ ¬b ∧ ¬g) ∨ (¬r ∧ b ∧ ¬g) ∨ (¬r ∧ ¬b ∧ g) (2.4)

2. “at least one of the three statements is true”

r ∨ ¬b (2.5)

3. “at least one of the three statements is false”

¬r ∨ b (2.6)

Solution

23



Propositional Logic

r b g 2.5 2.6 2.5 ∧ 2.6

T F F T F F
F T F F T F
F F T T T T

Freedom is behind the green door!

]

Exercise 2.26. � -

The Labyrinth Guardians.
You are walking in a labyrinth and all of a sudden you find yourself in front
of three possible roads: the road on your left is paved with gold, the one in
front of you is paved with marble, while the one on your right is made of small
stones. Each street is protected by a guardian. You talk to the guardians and
this is what they tell you:

• The guardian of the gold street: “This road will bring you straight to

the center. Moreover, if the stones take you to the center, then also the

marble takes you to the center.”

• The guardian of the marble street: “Neither the gold nor the stones will

take you to the center.”

• The guardian of the stone street: “Follow the gold and you’ll reach the

center, follow the marble and you will be lost.”

Given that you know that all the guardians are liars, can you choose a road
being sure that it will lead you to the center of the labyrinth? If this is the case,
which road you choose?

Provide a propositional language and a set of axioms that formalize the prob-
lem and show whether you can choose a road being sure it will lead to the
center.

Solution.
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2.3 Propositional Formalization

Language

• g: “the gold road brings to the center”

• m: “the marble road brings to the center”

• s: “the stone road brings to the center”

Axioms

1. “The guardian of the gold street is a liar”

¬(g ∧ (s→ m)) (2.7)

which can be simplified to obtain

¬g ∨ (s ∧ ¬m)

2. “The guardian of the marble street is a liar”

¬(¬g ∧ ¬s) (2.8)

which can be simplified to obtain

g ∨ s

3. “The guardian of the stone street is a liar”

¬(g ∧ ¬m) (2.9)

which can be simplified to obtain

¬g ∨m

Solution
g m s 2.7 2.8 2.9 2.7 ∧ 2.8 ∧ 2.9

1 1 1 0 1 1 0
1 1 0 0 1 1 0
1 0 1 1 1 0 0
1 0 0 0 1 0 0
0 1 1 1 1 1 1
0 1 0 1 0 1 0
0 0 1 1 1 1 1
0 0 0 1 0 1 0
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Propositional Logic

We have two possible interpretations that satisfy the axioms,

and in both of them the stone street brings to the center.

Thus I can choose the stone street being sure that it leads to the center.

]

Exercise 2.27. � -

Consider the finite set of binary strings{
(000000), (100000), (110000), (111000), (111100), (111110),

(111111), (011111), (001111), (000111), (000011), (000001)

}

Explain how it is possible to represent such a set in a propositional formula
and find the most compact representation.

Solution.

Language For each 0 ≤ i ≤ 5, bi is a proposition, which intuitively means
that the i-th bit has value 1. Obviously, ¬bi means that the i-th bit does not
have value 1, and thus it has value 0.

Axioms A possible (compact) representation of the finite set of binary strings
is given by the following formula:

5∨
k=0

((
k∧

i=0

¬bi ∧
5∧

i=k+1

bi

)
∨

(
k∧

i=0

bi ∧
5∧

i=k+1

¬bi

))
(2.10)

]

Exercise 2.28. � -

Provide a propositional language and a set of axioms that formalize the graph
coloring problem of a graph with at most n nodes, with connection degree
≤ m, and with less then k + 1 colors.

26



2.3 Propositional Formalization

• node degree: number of adjacent nodes

• connection degree of a graph: max among all the degree of its nodes

• graph coloring problem: given a non-oriented graph, associate a color to
each of its nodes in such a way that no pair of adjacent nodes have the
same color.

Solution.

Language

• For each 1 ≤ i ≤ n and 1 ≤ c ≤ k, coloric is a proposition, which intu-
itively means that “the i-th node has the c color”

• For each 1 ≤ i 6= j ≤ n, edgeij is a proposition, which intuitively means
that “the i-th node is connected with the j-th node”.

Axioms

1. for each 1 ≤ i ≤ n,
∨k

c=1 coloric

“each node has at least one color”

2. for each 1 ≤ i ≤ n and 1 ≤ c, c′ ≤ k, coloric → ¬coloric′
“every node has at most 1 color”

3. for each 1 ≤ i, j ≤ n and 1 ≤ c ≤ k, edgeij → ¬(coloric ∧ colorjc)

“adjacent nodes do not have the same color”

4. for each 1 ≤ i ≤ n, and each J ⊆ {1..n}, where |J | = m,
∧

j∈J edgeij →∧
j 6∈J ¬edgeij

“every node has at most m connected node”

]

Exercise 2.29. �

27



Propositional Logic

Anna and Barbara carpool to work. On any day, either Anna drives Barbara
or Barbara drives Anna. In the former case, Anna is the driver and Barbara
is the passenger; in the latter case Barbara is the driver and Anna is the pas-
senger.

Formalize the problem using the following propositions:

1. Anna drives Barbara

2. Barbara drives Anna

3. Anna is the driver

4. Barbara is the driver

5. Anna is the passenger

6. Barbara is the passenger

]

Exercise 2.30. � -

Define a propositional language which allows to describe the state of a traffic
light on different instants.

With the language defined above provide a (set of) formulas which expresses
the following facts:

1. the traffic light is either green, or red or orange;

2. the traffic light switches from green to orange, from orange to red, and
from red to green;

3. it can keep the same color over at most 3 successive states.

Solution.

28



2.3 Propositional Formalization

Language

• gk=“traffic light is green at instant k”

• rk=“traffic light is red at instant k”

• ok=“traffic light is orange at instant k”

Axioms

1. “the traffic light is either green, or red or orange”

(gk ↔ (¬rk ∧ ¬ok)) ∧ (rk ↔ (¬gk ∧ ¬ok)) ∧ (ok ↔ (¬rk ∧ ¬gk))

2. “the traffic light switches from green to orange, from orange to red, and

from red to green”

(gk−1 → (gk ∨ ok)) ∧ (ok−1 → (ok ∨ rk)) ∧ (rk−1 → (rk ∨ gk))

3. “it can keep the same color over at most 3 successive states”

(gk−3∧gk−2∧gk−1 → ¬gk)∧ (rk−3∧rk−2∧rk−1 → ¬rk)∧ (ok−3∧ok−2∧
ok−1 → ¬ok)

]

Exercise 2.31. � -

Sudoku is a placement puzzle. The aim of the puzzle is to enter a numeral from
1 through 9 in each cell of a grid, most frequently a 9× 9 grid made up of 3× 3

subgrids (called "regions"), starting with various numerals given in some cells
(the "givens"). Each row, column and region must contain only one instance of
each numeral. Its grid layout is like the one shown in the following schema

29



Propositional Logic

Provide a formalization in propositional logic of the Sudoku problem, so that
any truth assignment to the propositional variables that satisfy the axioms is
a solution for the puzzle.

Solution.

Language For 1 ≤ n, r, c ≤ 9, we define the proposition

in(n, r, c)

which means that the number n has been inserted in the cross between row r

and column c.

Axioms

1. “A raw contains all numbers from 1 to 9 ”

9∧
r=1

(
9∧

n=1

(
9∨

c=1

in(n, r, c)

))

2. “A column contains all numbers from 1 to 9”

9∧
c=1

(
9∧

n=1

(
9∨

r=1

in(n, r, c)

))

3. “A region (sub-grid) contains all numbers from 1 to 9”

for any 0 ≤ k, h ≤ 2

9∧
n=1

(
3∨

r=1

(
3∨

c=1

in(n, 3 ∗ k + r, 3 ∗ h+ c)

))
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2.3 Propositional Formalization

4. “A cell cannot contain two numbers”

for any 1 ≤ n, n′, c, r ≤ 9 and n 6= n′ in(n, r, c)→ ¬in(n′, r, c)
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2.4 Normal Form Reduction

Exercise 2.32. � -

Reduce to Negative Normal Form (NNF) the formula

¬(¬p ∨ q) ∨ (r → ¬s)

Solution.

1. ¬(¬p ∨ q) ∨ (¬r ∨ ¬s)

2. (¬¬p ∧ ¬q) ∨ (¬r ∨ ¬s)

3. (p ∧ ¬q) ∨ (¬r ∨ ¬s)

]

Exercise 2.33. � -

Reduce to NNF the formula

(¬p→ q)→ (q → ¬r)

Solution.

1. ¬(¬p→ q) ∨ (q → ¬r)

2. ¬(p ∨ q) ∨ (¬q ∨ ¬r)

3. (¬p ∧ ¬q) ∨ (¬q ∨ ¬r)

]

32



2.4 Normal Form Reduction

Exercise 2.34. � -

Reduce to Conjunctive Normal Form (CNF) the formula

¬(¬p ∨ q) ∨ (r → ¬s)

Solution.

1. ¬(¬p ∨ q) ∨ (¬r ∨ ¬s)

2. (¬¬p ∧ ¬q) ∨ (¬r ∨ ¬s)

3. (p ∧ ¬q) ∨ (¬r ∨ ¬s) NNF

4. (p ∨ ¬r ∨ ¬s) ∧ (¬q ∨ ¬r ∨ ¬s)

]

Exercise 2.35. � -

Reduce to CNF the formula

(¬p→ q)→ (q → ¬r)

Solution.

1. ¬(¬p→ q) ∨ (q → ¬r)

2. ¬(p ∨ q) ∨ (¬q ∨ ¬r)

3. (¬p ∧ ¬q) ∨ (¬q ∨ ¬r) NNF

4. (¬p ∨ ¬q ∨ ¬r) ∧ (¬q ∨ ¬r)

]

Exercise 2.36. �

Reduce to CNF the following formulas:
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• p→ (q ∧ r)

• (p ∨ q)→ r

• ¬(¬p ∨ q) ∨ (r → ¬s)

• ¬((p→ (q → r)))→ ((p→ q)→ (p→ r))

• p ∨ (¬q ∧ (r → ¬p))

• ¬((((a→ b))→ a)→ a)

• ¬(a ∨ (a→ b))
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2.5 Propositional Natural Deduction

2.5 Propositional Natural Deduction

Exercise 2.37. � -

Prove the validity of the following formula by using natural deduction.

A→ (B → A)

Solution.
A1

B → A
→ I

A→ (B → A)
→ I(1)

]

Exercise 2.38. � -

Prove the validity of the following formula by using natural deduction.

¬(A ∧ ¬A)

Solution.
A ∧ ¬A1

A
∧E A ∧ ¬A1

¬A ∧E
⊥ → E

¬(A ∧ ¬A)
⊥c(1)

]

Exercise 2.39. � -

Prove the validity of the following formula by using natural deduction.

¬¬A↔ A
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Solution. First part: ¬¬A→ A

¬¬A2 ¬A1

⊥ → E

A
⊥c(1)

¬¬A→ A
→ I(2)

Second part: A→ ¬¬A

A2 ¬A1

⊥ → E

¬¬A
⊥c(1)

A→ ¬¬A
→ I(2)

]

Exercise 2.40. � -

Prove the validity of the following formula by using natural deduction.

(A ∨A) ≡ (A ∨ ⊥)

Solution.
First part: (A ∨A)→ (A ∨ ⊥)

A ∨A2
A1

A ∨ ⊥ ∨I
A1

A ∨ ⊥ ∨I
A ∨ ⊥

∨E(1)

(A ∨A)→ (A ∨ ⊥)
→ I(2)

Second part: (A ∨ ⊥)→ (A ∨A)

A ∨ ⊥2
A1

A ∨A ∨I
⊥1

A ∨A ⊥c
A ∨A

∨E(1)

(A ∨ ⊥)→ (A ∨A)
→ I(2)

]
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Exercise 2.41. � -

Prove the validity of the following formula by using natural deduction.

(A ∧B) ∧ C |= A ∧ (B ∧ C)

Solution.

(A ∧B) ∧ C
A ∧B ∧E
A

∧E

(A ∧B) ∧ C
A ∧B ∧E
B

∧E
(A ∧B) ∧ C

C
∧E

B ∧ C ∧I
A ∧ (B ∧ C)

∧I

]

Exercise 2.42. � -

Prove the validity of the following formula by using natural deduction.

A ∨ ¬A

Solution.

A1

A ∨ ¬A ∨I ¬(A ∨ ¬A)2

⊥ → E

¬A
⊥c(1)

A ∨ ¬A ∨I ¬(A ∨ ¬A)2

⊥ → E

A ∨ ¬A
⊥c(2)

]

Exercise 2.43. � -

Prove the validity of the following formula by using natural deduction.

(A→ (B → C))→ ((A→ B)→ (A→ C))
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Solution.
A→ (B → C)3 A1

B → C
→ E

A→ B2 A1

B
→ E

C
→ E

A→ C
→ I(1)

(A→ B)→ (A→ C)
→ I(2)

(A→ (B → C))→ ((A→ B)→ (A→ C))
→ I(3)

]

Exercise 2.44. � -

Prove the validity of the following formula by using natural deduction.

(A→ B)↔ (¬A ∨B)

Solution.
First part: (A→ B)→ (¬A ∨B)

A→ B3 A1

B
→ E

¬A ∨B ∨I ¬(¬A ∨B)2

⊥ → E

¬A
⊥c(1)

¬A ∨B ∨I ¬(¬A ∨B)2

⊥ → E

¬A ∨B
⊥c(2)

(A→ B)→ (¬A ∨B)
→ I(3)

Second part: (¬A ∨B)→ (A→ B)

¬A ∨B3

¬A2 A1

⊥ → E

B
⊥c

A→ B
→ I(1)

B2

A→ B
→ I

A→ B
∨E(2)

(¬A ∨B)→ (A→ B)
→ I(3)

]
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Exercise 2.45. � -

Prove the validity of the following formula by using natural deduction.

A ∨ (A→ B)

Solution.

A1

A ∨ (A→ B)
∨I ¬(A ∨ (A→ B))2

⊥ → E

B
⊥c

A→ B
→ I(1)

A ∨ (A→ B)
∨I ¬(A ∨ (A→ B))2

⊥ → E

A ∨ (A→ B)
⊥c(2)

]

Exercise 2.46. � -

Prove the validity of the following formula by using natural deduction.

¬(A→ ¬B) |= (A ∧B)

Solution.

A1 ¬A2

⊥ → E

¬B ⊥c
A→ ¬B

→ I(1) ¬(A→ ¬B)

⊥ → E

A
⊥c(2)

¬B3

A→ ¬B → I ¬(A→ ¬B)

⊥
B
⊥c(3)

A ∧B ∧I

]

Exercise 2.47. � -

Prove the validity of the following formula by using natural deduction.

A→ (B → C), A ∨ C,¬B → ¬A |= C
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Solution.

A ∨ C

A→ (B → C) A2

B → C
→ E

¬B → ¬A ¬B1

¬A → E
A2

⊥ → E

B
⊥c(1)

C
→ E

C2

C
∨E(2)

]

Exercise 2.48. � -

Prove the validity of the following formula by using natural deduction.

(A ∨B) |= ¬(¬A ∧ ¬B)

Solution.

A ∨B

A3
¬A ∧ ¬B1

¬A ∧E
⊥ → E

¬(¬A ∧ ¬B)
⊥c(1)

B3
¬A ∧ ¬B2

¬B ∧E
⊥ → E

¬(¬A ∧ ¬B)
⊥c(2)

¬(¬A ∧ ¬B)
∨E(3)

]

Exercise 2.49. � -

Prove the validity of the following formula by using natural deduction.

((A→ B)→ A) |= A

Solution.

A1 ¬A3

⊥ → E

B
⊥c

A→ B
→ I(1)

(A→ B)→ A A→ B2

A
→ E ¬A3

⊥ → E

¬(A→ B)
⊥c(2)

⊥ → E

A
⊥c(3)
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2.5 Propositional Natural Deduction

]

Exercise 2.50. � -

Prove the validity of the following formula by using natural deduction.

(A→ B) |= (B → C)→ (A→ C)

Solution.
A→ B A1

B
→ E

B → C2

C
→ E

A→ C
→ I(1)

(B → C)→ (A→ C)
→ I(2)

]

Exercise 2.51. � -

Prove the validity of the following formula by using natural deduction.

(A ∧B)→ C |= A→ (B → C)

Solution.
A2 B1

A ∧B ∧I
(A ∧B)→ C

C
→ E

B → C
→ I(1)

A→ (B → C)
→ I(2)

]

Exercise 2.52. � -

Prove the validity of the following formula by using natural deduction.

|= (A→ B)→ (¬B → ¬A)
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Solution.

¬B2
A→ B3 A1

B
→ E

⊥ → E

¬A
⊥c(1)

¬B → ¬A
→ I(2)

(A→ B)→ (¬B → ¬A)
→ I(3)

]

Exercise 2.53. � -

Prove the validity of the following formula by using natural deduction or pro-
vide a countermodel.

((A→ B)→ B)→ ((B → A)→ A)

Solution.

A1 ¬A2

⊥ → E

B
⊥

A→ B
→ E(1)

(A→ B)→ B3

B
→ E

B → A4

A
→ E ¬A2

⊥ → E

A
⊥c(2)

((B → A)→ A)
→ I(4)

((A→ B)→ B)→ ((B → A)→ A)
→ I(3)

]

Exercise 2.54. � -

Prove the validity of the following formula by using natural deduction or pro-
vide a countermodel.

((A→ B)→ ¬A)→ (A→ B)

Solution. Countermodel I(A) = True and I(B) = False
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2.5 Propositional Natural Deduction

]

Exercise 2.55. � -

Prove the validity of the following formula by using natural deduction or pro-
vide a countermodel.

(A ∨B) ∨ (¬A ∧ ¬B)

Solution. Let φ be (A ∨B) ∨ (¬A ∧ ¬B)

A1

A ∨B ∨I
φ

∨I ¬φ3
⊥ → E

¬A
→ I(1)

B2

A ∨B ∨I
φ

∨I ¬φ3
⊥ → E

¬B
→ I(2)

¬A ∧ ¬B ∧I
φ

∨I ¬φ3
⊥ → E

φ
⊥c(3)

]

Exercise 2.56. � -

Prove the validity of the following formula by using natural deduction or pro-
vide a countermodel.

((P ∨Q) ∧ ¬P )→ Q

Solution.

(P ∨Q) ∧ ¬P (1)

P ∨Q ∧E
P (2)

(P ∨Q) ∧ ¬P (1)

¬P ∧E
⊥ → E

Q
⊥

Q(3)

Q
∨E disch. (2) and (3)

((P ∨Q) ∧ ¬P )→ Q
→ I disch. (1)

43



Propositional Logic

]

Exercise 2.57. � -

Prove the validity of the following formula by using natural deduction or pro-
vide a countermodel.

((A→ B)→ A)→ B

Solution. Counter-model: I(A) = true and I(B) = false .

]

Exercise 2.58. �

For each of the following formula provide eiher a proof in natural deduction
or a countermodel.

• (¬B → ¬A)→ ((¬B → A)→ A)

• A→ (B → C) ≡ (A ∧B → C)

• ((A→ B ∨ C) ∧ ¬B ∧ ¬C)→ ¬A

• ¬(A→ B)→ (B → A)

• ((A→ C) ∨ (B → D))→ ((A→ D) ∨ (B → C))

]

Exercise 2.59. �

For each of the following propositional logical consequences provide a proof in
natural deduction.

• (A ∧B) ∧ C |= A ∧ (B ∧ C)
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2.5 Propositional Natural Deduction

• (A→ B) |= (¬B → ¬A)

• (A ∨B) |= ¬(¬A ∧ ¬B)

• ((A→ B)→ A) |= A

• (A→ B) |= ((B → C)→ A→ C)

• ((A ∧B)→ C) |= (A→ (B → C))

]

45





Mathematics as a science,
commenced when first
someone, probably a Greek,
proved propositions about
"any" things or about "some"
things, without specifications
of definite particular things.

ALFRED NORTH WHITEHEAD

Chapter 3

First Order Logic
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First Order Logic

3.1 Basic Concepts

Exercise 3.1. � -

Non Logical symbols:

constants a, b; functions f1, g2; predicates p1, r2, q3.

Say whether the following strings of symbols are well formed FOL formulas or
terms:

1. q(a)

2. p(y)

3. p(g(b))

4. ¬r(x, a)

5. q(x, p(a), b)

6. p(g(f(a), g(x, f(x))))

7. q(f(a), f(f(x)), f(g(f(z), g(a, b))))

8. r(a, r(a, a))

Solution.

Well formed formulas: 2., 4., 6., and 7.

All other strings are NOT well formed FOL formulas nor terms.

]

Exercise 3.2. � -

Non Logical symbols:
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3.1 Basic Concepts

constants a, b; functions f1, g2; predicates p1, r2, q3.

Say whether the following strings of symbols are well formed FOL formulas or
terms:

1. r(a, g(a, a));

2. g(a, g(a, a));

3. ∀x.¬p(x);

4. ¬r(p(a), x);

5. ∃a.r(a, a);

6. ∃x.q(x, f(x), b)→ ∀x.r(a, x);

7. ∃x.p(r(a, x));

8. ∀r(x, a);

Solution.

Well formed formulas: 1., 3., and 6.
Well formed terms: 2.
All other strings are NOT well formed FOL formulas nor terms.

]

Exercise 3.3. � -

Non Logical symbols:

constants a, b; functions f1, g2; predicates p1, r2, q3.

Say whether the following strings of symbols are well formed FOL formulas or
terms:

1. a→ p(b);

2. r(x, b)→ ∃y.q(y, y, y);
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3. r(x, b) ∨ ¬∃y.g(y, b);

4. ¬y ∨ p(y);

5. ¬¬p(a);

6. ¬∀x.¬p(x);

7. ∀x∃y.(r(x, y)→ r(y, x));

8. ∀x∃y.(r(x, y)→ (r(y, x) ∨ (f(a) = g(a, x))));

Solution.

Well formed formulas: 2., 4., 5., 6., 7., and 8.
All other strings are NOT well formed FOL formulas nor terms.

]

Exercise 3.4. � -

Find free variables in the following formulas:

1. p(x) ∧ ¬r(y, a)

2. ∃x.r(x, y)

3. ∀x.p(x)→ ∃y.¬q(f(x), y, f(y))

4. ∀x∃y.r(x, f(y))

5. ∀x∃y.r(x, f(y))→ r(x, y)

Solution.

1. x,y free

2. y free

3. x free

4. no free variables
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5. x,y free

]

Exercise 3.5. � -

Find free variables in the following formulas:

1. ∀x.(p(x)→ ∃y.¬q(f(x), y, f(y)))

2. ∀x(∃y.r(x, f(y))→ r(x, y))

3. ∀z.(p(z)→ ∃y.(∃x.q(x, y, z) ∨ q(z, y, x)))

4. ∀z∃u∃y.(q(z, u, g(u, y)) ∨ r(u, g(z, u)))

5. ∀z∃x∃y(q(z, u, g(u, y)) ∨ r(u, g(z, u)))

Solution.

1. no free variables

2. y free

3. x free

4. no free variables

5. u free
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3.2 FOL Formalization

Exercise 3.6. � -

What is the meaning of the followinf FOL formulas?

1. bought(Frank, dvd)

2. ∃x.bought(Frank, x)

3. ∀x.(bought(Frank, x)→ bought(Susan, x))

4. ∀x.bought(Frank, x)→ ∀x.bought(Susan, x)

5. ∀x∃y.bought(x, y)

6. ∃x∀y.bought(x, y)

Solution.

1. "Frank bought a dvd."

2. "Frank bought something."

3. "Susan bought everything that Frank bought."

4. "If Frank bought everything, so did Susan."

5. "Everyone bought something."

6. "Someone bought everything."

]

Exercise 3.7. �

Which of the following formulas is a formalization of the sentence:
"There is a computer which is not used by any student"
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3.2 FOL Formalization

• ∃x.(Computer(x) ∧ ∀y.(¬Student(y) ∧ ¬Uses(y, x)))

• ∃x.(Computer(x)→ ∀y.(Student(y)→ ¬Uses(y, x)))

• ∃x.(Computer(x) ∧ ∀y.(Student(y)→ ¬Uses(y, x)))

]

Exercise 3.8. � -

Define an appropriate language and formalize the following sentences using
FOL formulas.

1. All Students are smart.

2. There exists a student.

3. There exists a smart student.

4. Every student loves some student.

5. Every student loves some other student.

6. There is a student who is loved by every other student.

7. Bill is a student.

8. Bill takes either Analysis or Geometry (but not both).

9. Bill takes Analysis and Geometry.

10. Bill doesn’t take Analysis.

11. No students love Bill.

Solution.

1. ∀x.(Student(x)→ Smart(x))

2. ∃x.Student(x)

3. ∃x.(Student(x) ∧ Smart(x))
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4. ∀x.(Student(x)→ ∃y.(Student(y) ∧ Loves(x, y)))

5. ∀x.(Student(x)→ ∃y.(Student(y) ∧ ¬(x = y) ∧ Loves(x, y)))

6. ∃x.(Student(x) ∧ ∀y.(Student(y) ∧ ¬(x = y)→ Loves(y, x)))

7. Student(Bill)

8. Takes(Bill, Analysis)↔ ¬Takes(Bill, Geometry)

9. Takes(Bill, Analysis) ∧ Takes(Bill, Geometry)

10. ¬Takes(Bill, Analysis)

11. ¬∃x.(Student(x) ∧ Loves(x,Bill))

]

Exercise 3.9. � -

Define an appropriate language and formalize the following sentences using
FOL formulas.

1. Bill has at least one sister.

2. Bill has no sister.

3. Bill has at most one sister.

4. Bill has (exactly) one sister.

5. Bill has at least two sisters.

6. Every student takes at least one course.

7. Only one student failed Geometry.

8. No student failed Geometry but at least one student failed Analysis.

9. Every student who takes Analysis also takes Geometry.

Solution.
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1. ∃x.SisterOf(x,Bill)

2. ¬∃x.SisterOf(x,Bill)

3. ∀x∀y.(SisterOf(x,Bill) ∧ SisterOf(y,Bill)→ x = y)

4. ∃x.(SisterOf(x,Bill) ∧ ∀y.(SisterOf(y,Bill)→ x = y))

5. ∃x∃y.(SisterOf(x,Bill) ∧ SisterOf(y,Bill) ∧ ¬(x = y))

6. ∀x.(Student(x)→ ∃y.(Course(y) ∧ Takes(x, y)))

7. ∃x.(Student(x)∧Failed(x,Geometry)∧∀y.(Student(y)∧Failed(y,Geometry)→
x = y))

8. ¬∃x.(Student(x)∧Failed(x,Geometry))∧∃x.(Student(x)∧Failed(x,Analysis))

9. ∀x.(Student(x) ∧ Takes(x,Analysis)→ Takes(x,Geometry))

]

Exercise 3.10. �

Define an appropriate language and formalize the following sentences in FOL:

• someone likes Mary.

• nobody likes Mary.

• nobody loves Bob but Bob loves Mary.

• if David loves someone, then he loves Mary.

• if someone loves David, then he (someone) loves also Mary.

• everybody loves David or Mary.

]
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Exercise 3.11. �

Define an appropriate language and formalize the following sentences in FOL:

• there is at least one person who loves Mary.

• there is at most one person who loves Mary.

• there is exactly one person who loves Mary.

• there are exactly two persons who love Mary.

• if Bob loves everyone that Mary loves, and Bob loves David, then Mary
doesn’t love David.

• Only Mary loves Bob.

]

Exercise 3.12. � -

Define an appropriate language and formalize the following sentences in FOL:

1. "A is above C, D is on E and above F."

2. "A is green while C is not."

3. "Everything is on something."

4. "Everything that is free has nothing on it."

5. "Everything that is green is free."

6. "There is something that is red and is not free."

7. "Everything that is not green and is above B, is red."

Solution.

Language Constants: A,B,C,D,E, F ;
Predicates: On2, Above2, F ree1, Red1, Green1.
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Axioms

1. "A is above C, D is above F and on E."
φ1 : Above(A,C) ∧Above(E,F ) ∧On(D,E)

2. "A is green while C is not."
φ2 : Green(A) ∧ ¬Green(C)

3. "Everything is on something."
φ3 : ∀x∃y.On(x, y)

4. "Everything that is free has nothing on it."
φ4 : ∀x.(Free(x)→ ¬∃y.On(y, x))

5. "Everything that is green is free."
φ5 : ∀x.(Green(x)→ Free(x))

6. "There is something that is red and is not free."
φ6 : ∃x.(Red(x) ∧ ¬Free(x))

7. "Everything that is not green and is above B, is red."
φ7 : ∀x.(¬Green(x) ∧Above(x,B)→ Red(x))

]

Exercise 3.13. � -

Language Constants: A,B,C,D,E, F ;
Predicates: On2, Above2, F ree1, Red1, Green1.

Interpretation Let interpretation I1 be the following:

• I1(A) = b1, I1(B) = b2, I1(C) = b3, I1(D) = b4, I1(E) = b5, I1(F ) = table

• I1(On) = {〈b1, b4〉, 〈b4, b3〉, 〈b3, table〉, 〈b5, b2〉, 〈b2, table〉}

• I1(Above) = {〈b1, b4〉, 〈b1, b3〉, 〈b1, table〉, 〈b4, b3〉, 〈b4, table〉,
〈b3, table〉, 〈b5, b2〉, 〈b5, table〉, 〈b2, table〉}
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• I1(Free) = {〈b1〉, 〈b5〉}, I1(Green) = {〈b4〉}, I1(Red) = {〈b1〉, 〈b5〉}

b3 b2

table

b4

b1

b5

And let interpretation I2 be:

• I2(A) = hat, I2(B) = Joe, I2(C) = bike, I2(D) = Jill, I2(E) = case,
I2(F ) = ground

• I2(On) = {〈hat, Joe〉, 〈Joe, bike〉, 〈bike, ground〉, 〈Jill, case〉, 〈case, ground〉}

• I2(Above) = {〈hat, Joe〉, 〈hat, bike〉, 〈hat, ground〉, 〈Joe, bike〉, 〈Joe, ground〉,
〈bike, ground〉, 〈Jill, case〉, 〈Jill, ground〉, 〈case, ground〉}

• I2(Free) = {〈hat〉, 〈Jill〉}, I2(Green) = {〈hat〉, 〈ground〉}, I2(Red) = {〈bike〉, 〈case〉}

For each formula in Exercise 3.12, decide whether it is satisfied by I1 and/or
I2.

Solution.

• I1 |= ¬φ1 ∧ ¬φ2 ∧ ¬φ3 ∧ φ4 ∧ ¬φ5 ∧ ¬φ6 ∧ φ7

• I2 |= φ1 ∧ φ2 ∧ ¬φ3 ∧ φ4 ∧ ¬φ5 ∧ φ6 ∧ φ7

]

58



3.2 FOL Formalization

Exercise 3.14. � -

Consider the following sentences:

1. All actors and journalists invited to the party are late.

2. There is at least a person who is on time.

3. There is at least an invited person who is neither a journalist nor an
actor.

Formalize the sentences and prove that 3. is not a logical consequence of 1.
and 2.

Solution.

1. ∀x.((a(x) ∨ j(x)) ∧ i(x)→ l(x))

2. ∃x.¬l(x)

3. ∃x.(i(x) ∧ ¬a(x) ∧ ¬j(x))

It’s sufficient to find an interpretation I for which the logical consequence does
not hold:

l(x) a(x) j(x) i(x)

Bob F T F F
Tom T T F T
Mary T F T T

]

Exercise 3.15. �

Let ∆ = {1, 3, 5, 15} and I be an interpretation on ∆ interpreting the predicate
symbols E1 as ’being even’, M2 as ’being a multiple of’ and L2 as ’being less
then’, and s.t. I(a) = 1, I(b) = 3, I(c) = 5, I(d) = 15.
Determine whether I satisfies the following formulas:
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1. ∃y.E(y)

2. ∀x.¬E(x)

3. ∀x.M(x, a)

4. ∀x.M(x, b)

5. ∃x.M(x, d)

6. ∃x.L(x, a)

7. ∀x.(E(x)→M(x, a))

8. ∀x∃y.L(x, y)

9. ∀x∃y.M(x, y)

10. ∀x.(M(x, b)→ L(x, c))

11. ∀x∀y.(L(x, y)→ ¬L(y, x))

12. ∀x.(M(x, c) ∨ L(x, c))

]

Exercise 3.16. � -

Provide a FOL language and a set of axioms that formalize the graph color-
ing problem of a graph with at most n nodes, with connection degree ≤ m,
and with less then k + 1 colors.

• node degree: number of adjacent nodes

• connection degree of a graph: max among all the degree of its nodes

• graph coloring problem: given a non-oriented graph, associate a color to
each of its nodes in such a way that no pair of adjacent nodes have the
same color.

Solution.
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Language

• A unary function color, where color(x) is the color associated to the node
x

• A unary predicate node, where node(x) means that x is a node

• A binary predicate edge, where edge(x, y) means that x is connected to y

Axioms

1. ∀x∀y.(edge(x, y)→ (color(x) 6= color(y))

"Two connected node are not equally colored."

2. ∀x∀x1 . . . ∀xk+1.
(∧k+1

h=1 edge(x, xh)→
∨k+1

i,j=1,j 6=i xi = xj

)
"A node does not have more than k connected nodes."

]

Exercise 3.17. � -

Let {c1, .., ck} be a non empty and finite set of colors. A partially colored di-
rected graph is a structure 〈N,R,C〉 where

• N is a non empty set of nodes

• R is a binary relation on N

• C associates colors to nodes (not all the nodes are necessarily colored,.
and each node has at most one color)

Provide a first order language and a set of axioms that formalize partially
colored graphs. Show that every model of this theory correspond to a partially
colored graph, and vice-versa. For each of the following properties, write a
formula which is true in all and only the graphs that satisfies the property:

1. connected nodes don’t have the same color

2. the graph contains only 2 yellow nodes
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3. starting from a red node one can reach in at most 4 steps a green node

4. for each color there is at least a node with this color

5. the graph is composed of |C| disjoint non empty subgraphs, one for each
color

Solution.

Language

• a binary predicate edge, where edge(n,m) means that node n is connected
to node m

• a binary predicate color, where color(n, x) means that node n has color x

• the following constants: yellow,green,red

Axioms

0. "each node has at most one color"

∀n∀x.(color(n, x)→ ¬∃y.(y 6= x ∧ color(n, y)))

1. "connected nodes do not have the same color"

∀n∀m∀x.(edge(n,m) ∧ color(n, x)→ ¬color(m,x))

2. "the graph contains only two yellow nodes"

∃n∃n′.(color(n, yellow) ∧ color(n′, yellow) ∧ n 6= n′ ∧

∀m.(m 6= n ∧m 6= n′ → ¬color(m, yellow)))

3. "starting from a red node one can reach in at most 4 steps a green node"

∀n(color(n, red)→

(∃n1.(edge(n, n1) ∧ color(n1, green)) ∨

∃n1, n2.(edge(n, n1) ∧ edge(n1, n2) ∧ color(n2, green)) ∨

∃n1, n2, n3.(edge(n, n1) ∧ edge(n1, n2) ∧ edge(n2, n3) ∧ color(n3, green)) ∨

∃n1, n2, n3, n4.(edge(n, n1) ∧ edge(n1, n2) ∧ edge(n2, n3) ∧ edge(n3, n4) ∧ color(n4, green))

))
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4. "for each color there is at least a node with this color"

∀x∃n.color(n, x)

5. "the graph is composed of |C| disjoint non empty subgraphs, one for each

color"

∀x∃n.color(n, x) ∧

∀n∃x.color(n, x) ∧

∀n∀x.(color(n, x)→ ¬∃y.(y 6= x ∧ color(n, y))) ∧

∀n∀m∀x.(n 6= m ∧ color(n, x) ∧ color(m,x)→

(edge(n,m)

|N |∨
i=1

(∃n1, .., ni.(edge(n, n1)
i−1∧
j=1

edge(xj , xj + 1) ∧ edge(ni,m)))))

]

Exercise 3.18. � -

Minesweeper is a single-player computer game invented by Robert Donner in
1989. The object of the game is to clear a minefield without detonating a mine.
The game screen consists of a rectangular field of squares. Each square can
be cleared, or uncovered, by clicking on it. If a square that contains a mine
is clicked, the game is over. If the square does not contain a mine, one of
two things can happen: (1) A number between 1 and 8 appears indicating the
amount of adjacent (including diagonally-adjacent) squares containing mines,
or (2) no number appears; in which case there are no mines in the adjacent
cells. An example of game situation is provided in the following figure:
Provide a first order language that allows to formalize the knowledge of a
player in a game state. In such a language you should be able to formalize the
following knowledge:

1. there are exactly n mines in the minefield

2. if a cell contains the number 1, then there is exactly one mine in the
adjacent cells.
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Figure 3.1: An example of a state in the Mines game

3. show by means of deduction that there must be a mine in the position
(3,3) of the game state of picture 3.1.

Suggestion: define the predicate Adj(x, y) to formalize the fact that two cells x
and y are adjacent

Solution.

Language

1. A unary predicate mine, where mine(x) means that the cell xcontains a
mine

2. A binary predicate adj, where adj(x, y) means that the cell x is adjacent
to the cell y

3. A binary predicate contains, where contains(x, n) means that the cell x
contains the number n

Axioms

1. There are exactly n mines in the game.

∃x1, ..∃xn

(
n∧

i=1

mine(xi) ∧ ∀y

(
mine(y)→

n∨
i=1

y = xi

))
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2. If a cell contains the number 1, then there is exactly one mine in the
adjacent cells.

∀x. (contains(x, 1)→ ∃z. (adj(x, z) ∧mine(z) ∧ ∀y. (adj(x, y) ∧mine(y)→ y = z)))

3. Show by means of deduction that there must be a mine in the position
(3,3)
from Picture 3.1 we have:

a. contains((2, 2), 1)

b. ¬mine((1, 1)) ∧ ¬mine((1, 2)) ∧ ¬mine((1, 3))

c. ¬mine((2, 1)) ∧ ¬mine((2, 2)) ∧ ¬mine((2, 3))

d. ¬mine((3, 1)) ∧ ¬mine((3, 2))

we can deduce:

e. ∃z. (adj((2, 2), z) ∧mine(z) ∧ ∀y. (adj((2, 2), y) ∧mine(y)→ y = z))  

from a. and axiom 2

f. mine((1, 1)) ∨ mine((1, 2)) ∨ mine((1, 3)) ∨ mine((2, 1)) ∨ mine((2, 2)) ∨
mine((2, 3)) ∨mine((3, 1)) ∨mine((3, 2)) ∨mine((3, 3))  from e.

g. mine((3, 3))  from b.,c.,d. and f.

]

Exercise 3.19. � -

Formalize in first order logic the train connections in Italy. Provide a language
that allows to express the fact that a town is directly connected (no intermedi-
ate train stops) with another town, by a type of train (e.g., intercity, regional,
interregional). Formalize the following facts by means of axioms:

1. There is no direct connection from Rome to Trento

2. There is an intercity from Rome to Trento that stops in Firenze, Bologna
and Verona.
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3. Regional trains connect towns in the same region

4. Intercity trains don’t stops in small towns.

Solution. We define the language as follows

Constants RM,FI,BO,VR,TN, . . . are identifiers of the towns of Roma, Firenze,
Bologna, Verona, Trento, . . . . and InterCity, Regional, . . . are the identifiers of
the type of trains

Predicates Train with arity equal to 1, where Train(x) means x is a train
Town with arity equal to 1, where Train(x) means x is a town
SmallTown with arity equal to 1, where Train(x) means x is a small town
TrainType with arity equal to 2, where TrainType(x, y) means that the train x

is of type y.
IsInRegion with arity equal to 2, where IsInRegion(x, y) means that the town
x is in region y. DirectConn with arity equal to 3, where DirectConn(x, y, z)

means that the train x directly connects (with no intermediated stops) the
towns y and z.

Background axioms With these set of axioms we have to formalize some
background knowledge which is necessary to make the formalization more
adeguate

1. a train has exactly one train type;

∀x(Train(x)→ ∃y(TrainType(x, y)))∧∀xyz(TrainType(x, y)∧TrainType(x, z)→ y = z)

(3.1)

2. Intercity type is different from regional type:

¬(InterCity = Regional) (also written as InterCity 6= Regional) (3.2)

3. A town is associated to exactly one region

∀x(Town(x)→ ∃y(IsInRegion(x, y)))∧∀xyz(IsInRegion(x, y)∧IsInRegion(x, z)→ y = z)

(3.3)
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4. small towns are towns:

∀x(SmallTown(x)→ Town(x)) (3.4)

5. if a town a is connected to a town b. b is also connected to a town a.

∀xy(∃zDirectConn(z, x, y)→ ∃zDirectConn(z, y, x)) (3.5)

Specific axioms The axioms that formalizes the specific situation described
in the exercise are the following:

1. There is no direct connection from Rome to Trento

¬∃xDirectConn(x,RM,TN)

2. There is an intercity from Rome to Trento that stops in Firenze, Bologna
and Verona.

∃x(DirectConn(x,RM,FI) ∧DirectConn(x,FI,BO) ∧DirectConn(x,BO,VR)∧
DirectConn(x,VR, TN) ∧ TrainType(x, InterCity))

3. Regional trains connect towns in the same region

∀xyz(TrainType(x,Regional)→ (DirectConn(x, y, z)→ ∃w(IsInRegion(y, w)∧IsInRegion(z, w))))

4. Intercity trains don’t stops in small towns.

∀xyz(DirectConn(x, y, z)∧TrainType(x, InterCity)→ ¬SmallTown(y)∧¬SmallTown(y))

]

Exercise 3.20. � -

The game of Draughts is played on a standard Chess board 64 black and white
chequered squares. Each player has 12 pieces (men) normally in the form of
fat round counters. One player has black men and the other has white men.
When starting, each player’s men are placed on the 12 black squares nearest to
that player (see Figure 3.20). The white squares are not used at all in the game
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Figure 3.2: Starting position on a 8x8 Draughts board.

- the men only move diagonally and so stay on the black squares throughout.
Black always plays first.

Players take turns to move a man of their own colour. There are fundamentally
4 types of move: the ordinary move of a man, the ordinary move of a king, the
capturing move of a man and the capturing move of a king.

An ordinary move of a man is its transfer diagonally forward left or right
from one square to an immediately neighbouring vacant square. When a man
reaches the farthest row forward (the king-row or crownhead) it becomes a
king: another piece of the same shade is placed on top of the piece in order to
distinguish it from an ordinary man.

An ordinary move of a king is from one square diagonally forward or back-
ward,left or right, to an immediately neighbouring vacant square.

Whenever a piece (man or king) has an opponent’s piece adjacent to it and the
square immediately beyond the opponent’s piece is vacant, the opponent’s piece
can be captured. If the player has the opportunity to capture one or more of
the opponent’s pieces, then the player must do so. A piece is taken by simply
hopping over it into the vacant square beyond and removing it from the board.
Unlike an ordinary move, a capturing move can consist of several such hops
- if a piece takes an opponent’s piece and the new position allows it to take
another piece, then it must do so straight away.

Kings are allowed to move and capture diagonally forwards and backwards
and are consequently more powerful and valuable than ordinary men. How-
ever, ordinary men can capture Kings.

The game is won by the player who first manages to take all his opponent’s
pieces or renders them unable to move.

For each of the following conditions on Draughts game write the correspond-
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ing axioms, using an appropriate first order logic language.

1. Each piece is either white or black.

2. Each piece is either a king or a man.

3. White squares are always empty (always: in each instant of the game).

4. In each instant of the game, black squares are either empty or contain a
piece.

5. At the beginning of the game (instant zero) there are 12 white and 12
black men on the board.

6. Whenever a black man captures a white man, in the next instant of the
game there is a white man less (and vice-versa).

7. If a piece in square x captures a piece in square y hopping over it into
the vacant square z, then in the next instant of the game the square z

contains the piece that moved while squares x and y are empty.

Solution.

Language Predicates:

• square(x): "x is a square"

• piece(x): "x is a piece"

• white(x): "x is white"

• black(x): "x is black"

• man(x): "x is a man"

• king(x): "x is a king"

• empty(x, t): "square x is empty at time t"

• contain(x, y, t): "square x contains piece y at time t"

• capture(x, y, t): "piece x captures piece y at time t"
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Functions:

• numW (t): "returns the number of white pieces at time t"

• numB(t): "returns the number of black pieces at time t"

Axioms

1. "Each piece is either white or black."

∀x.(piece(x)→ (white(x)⇔ ¬black(x))) (3.6)

2. "Each piece is either a king or a man."

∀x.(piece(x)→ (man(x)⇔ ¬king(x))) (3.7)

3. "White squares are always empty"

∀x.(square(x) ∧ white(x)→ ∀t.empty(x, t)) (3.8)

4. "In each instant of the game, black squares are either empty or contain

a piece."

∀x.(square(x) ∧ black(x)→ ∀t.(empty(x, t)⇔ ¬∃y.contain(x, y, t))) (3.9)

5. "At the beginning of the game (instant zero) there are 12 white and 12

black men on the board."

numW (0) = 12 ∧ numB(0) = 12 (3.10)

6. "Whenever a black man captures a white man, in the next instant of the

game there is a white man less (and vice-versa)."

∀x, y, t.(piece(x) ∧ black(x) ∧ piece(y) ∧ white(y) ∧ capture(x, y, t) ∧ numW (t) = n

→ numW (t+ 1) = n− 1)

7. "If a piece in square x captures a piece in square y hopping over it into

the vacant square z, then in the next instant of the game the square z
contains the piece that moved while squares x and y are empty."

∀p1, p2, x, y, z, t.(piece(p1) ∧ piece(p2) ∧ square(x) ∧ square(y) ∧ square(z) ∧ empty(z, t)

∧contain(x, p1, t) ∧ contain(y, p2, t) ∧ capture(p1, p2, t)

→ empty(x, t+ 1) ∧ empty(y, t+ 1) ∧ contain(z, p1, t+ 1))
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]
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3.3 FOL Natural Deduction

Exercise 3.21. � -

Prove the validity of the following FOL formula, assuming that x doesn’t occur
free in A.

∀x.(A→ B)→ (A→ ∀x.B)

Solution.

∀x.(A→ B)2

A→ B
∀E

A1

B
→ E

∀x.B ∀I
A→ ∀x.B → I1

∀x.(A→ B)→ (A→ ∀x.B)
→ I2

]

Exercise 3.22. � -

Prove the validity of the following FOL formula by using natural deduction.

∀x.A→ ¬∃x.¬A

Solution.

∃x.¬A
¬A1

∀x.A3

A
∀E

⊥ → E

⊥ ∃E1

¬∃x.¬A ⊥
2
c

∀x.A→ ¬∃x.¬A → I3

]
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Exercise 3.23. � -

Prove the validity of the following FOL formula by using natural deduction.

¬∃x.¬A→ ∀x.A

Solution.

¬∃x.¬A2
¬A1

∃x.¬A ∃I
⊥ → E

A
⊥1

c

∀x.A ∀I
¬∃x.¬A→ ∀x.A → I2

]

Exercise 3.24. � -

Prove the validity of the following FOL formula by using natural deduction.

∃x.(A(x) ∧B(x))→ ∃x.A(x)

Solution.

∃x.(A(x) ∧B(x))2

A(x) ∧B(x)1

A(x)
∧E

∃x.A(x)
∃I

∃x.A(x)
∃E1

∃x.(A(x) ∧B(x))→ ∃x.A(x)
→ I2

]

Exercise 3.25. � -

Prove the validity of the following FOL formula by using natural deduction.

∃x.A(x),∀x.(A(x)→ A(f(x))),∀x.(A(x)→ A(g(x))) |= ∃x.A(f(g(x)))
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Solution.

∃x.A(x)

A(x)1
∀x.(A(x)→ A(g(x)))

A(x)→ A(g(x))
∀E

A(g(x))
→ E

∀x.(A(x)→ A(f(x)))

A(g(x))→ A(f(g(x)))
∀E

A(f(g(x)))
→ E

∃x.A(f(g(x)))
∃I

∃x.A(f(g(x)))
∃E1

]

Exercise 3.26. � -

Prove the validity of the following FOL formula by using natural deduction.

¬¬∀x.A(x)→ ∀x.¬¬A(x)

Solution.

¬¬∀x.A(x)3

¬A(x)2
∀x.A(x)1

A(x)
∀E

⊥ → E

¬∀x.A(x)
⊥1

c

⊥ → E

¬¬A(x)
⊥2

c

∀x.¬¬A(x)
∀I

¬¬∀x.A(x)→ ∀x.¬¬A(x)
→ I3

]

Exercise 3.27. � -

Prove the validity of the following FOL formula by using natural deduction.

∀z.((¬A(z) ∨B(z))→ (A(z)→ B(z)))
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Solution.

¬A(z) ∨B(z)3

¬A(z)1 A(z)2

⊥ → E

B(z)
⊥c

B(z)1

B(z)
∨E1

A(z)→ B(z)
→ I2

(¬A(z) ∨B(z))→ (A(z)→ B(z))
→ I3

∀z.((¬A(z) ∨B(z))→ (A(z)→ B(z)))
∀I

]

Exercise 3.28. � -

Prove the validity of the following FOL formula by using natural deduction.

∀x∀y.A(x, y)→ ¬∀x.¬A(x, x)

Solution.

∀x∀y.A(x, y)2

∀y.A(x, y)
∀E

A(x, x)
∀E

∀x.¬A(x, x)1

¬A(x, x)
∀E

⊥ → E

¬∀x.¬A(x, x)
⊥1

c

∀x∀y.A(x, y)→ ¬∀x.¬A(x, x)
→ I2

]

Exercise 3.29. � -

Prove the validity of the following FOL formula by using natural deduction.

∃y(B(y)→ C(y)),∀x.B(x) |= ∃x.C(x)

Solution.

75



First Order Logic

∃y(B(y)→ C(y))

B(x)→ C(x)1
∀x.B(x)

B(x)
∀E

C(x)
→ E

∃x.C(x)
∃I

∃x.C(x)
∃E1

]

Exercise 3.30. � -

Prove the validity of the following FOL formula by using natural deduction.

∃x.A(x)→ ∀x.B(x) |= ∀x.(A(x)→ B(x))

Solution.

∃x.A(x)→ ∀x.B(x)

A(x)1

∃x.A(x)
∃I

∀x.B(x)
→ E

B(x)
∀E

A(x)→ B(x)
→ I1

∀x.(A(x)→ B(x))
∀I

]

Exercise 3.31. �

Prove the validity of the following FOL formulas by using natural deduction.

1. ∃x.∀y.R(x, y)→ ∀y.∃x.R(x, y)

2. ∃x.(P (x)→ ∀x.P (x))

3. (∃x.P (x) ∧ ∀x.Q(x))→ ∃x.(P (x) ∧Q(x))

4. ∀x.(P (x)→ Q)→ (∃x.P (x)→ Q) with x not free in Q

5. ∀x.∃y.x = y
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6. ∀xyzw.((x = z ∧ y = w)→ (R(x, y)→ R(z, w)))

]

Exercise 3.32. �

Prove the validity of the following FOL formulas by using natural deduction.

1. ∀xA(x, x)→ ∀x∃yA(x, y)

2. ∃x(A(x) ∨B(x))→ (∃xA(x) ∨ ∃xB(x))

3. (∃xA(x) ∨ ∃xB(x))→ ∃x(A(x) ∨B(x))

4. ∃x(A(x) ∧B(x))→ (∃xA(x) ∧ ∃xB(x))

5. (∀xA(x) ∨ ∀xB(x))→ ∀x(A(x) ∨B(x))

6. ∀x(A(x) ∧B(x))→ (∀xA(x) ∧ ∀xB(x))

]

Exercise 3.33. �

Prove the validity of the following FOL formulas by using natural deduction.

1. (A→ ∀x.B(x)) ≡ ∀x(A→ B(x)) with x not free in A

2. ¬∃xA(x) ≡ ∀x¬A(x)

3. ∀x(A(x) ∨B) ≡ ∀xA(x) ∨B with x not free in B

4. ∃x(A(x)→ B) ≡ (∀xA(x)→ B) with x not free in B

5. ∃x(A→ B(x)) ≡ (A→ ∃xB(x)) with x not free in A

6. ∀x(A(x)→ B) ≡ (∃xA(x)→ B) with x not free in B
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]

Exercise 3.34. � -

For each of the following FOL formulas either prove its validity via natural
deduction or provide a countermodel.

1. ∀x(P (x)→ ∃yP (y))

2. ∃x(P (x)→ ∀yP (y))

3. ¬¬∀x.P (x)→ ∀x.¬¬P (x)

Solution.

1. ∀x(P (x)→ ∃yP (y))
P (x)1

∃yP (y)
∃I

P (x)→ ∃yP (y)
→ I(1)

∀x(P (x)→ ∃yP (y))
∀I

2. ∃x(P (x)→ ∀yP (y))

P (x)1 ¬P (x)2

⊥ → E

∀yP (y)
⊥

P (y)→ ∀yP (y)
→ I(1)

∃x(P (x)→ ∀yP (y))
∃I ¬(∃x(P (x)→ ∀yP (y)))3

⊥ → E

P (x)
⊥c(2)

∀yP (y)
∀I

P (x)→ ∀yP (y)
→ I

∃x(P (x)→ ∀yP (y))
∃I ¬(∃x(P (x)→ ∀yP (y)))3

⊥ → E

∃x(P (x)→ ∀yP (y))
⊥c(3)

3. ¬¬∀x.P (x)→ ∀x.¬¬P (x)
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¬¬∀x.P (x)3

¬P (x)2
∀x.P (x)1

P (x)
∀E

⊥ → E

¬∀x.P (x)
⊥1

c

⊥ → E

¬¬P (x)
⊥2

c

∀x.¬¬P (x)
∀I

¬¬∀x.P (x)→ ∀x.¬¬P (x)
→ I3

]

Exercise 3.35. � -

If the following formula is valid, show a proof in natural deduction, if not
provide a counter-model.

(∀x(P (x)→ ∃yQ(x, y)))→ (∃xP (x)→ ∃yQ(x, y))

Solution.

P (x)(1)
∀x(P (x)→ ∃yQ(x, y))(3)

P (x)→ ∃yQ(x, y)
∀E

∃yQ(x, y)
→ E ∃xP (x)(2)

∃yQ(x, y) ∃E(1)

∃xP (x)→ ∃yQ(x, y) → I(2)

(∀x(P (x)→ ∃yQ(x, y)))→ (∃xP (x)→ ∃yQ(x, y)) → I(3)

]

Exercise 3.36. � -

Either prove its validity via Natural Deduction or show a countermodel for the
following formula:

(∃xQ(x) ∧ (∀x(P (x)→ ¬Q(x))))→ ∃x¬P (x)
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Solution.

∃xQ(x) ∧ (∀x(P (x)→ ¬Q(x)))

∃xQ(x)
∧E

Q(x)3
P (x)2

∃xQ(x) ∧ (∀x(P (x)→ ¬Q(x)))1

∀x(P (x)→ ¬Q(x))
∧E

P (x)→ ¬Q(x)
∀E

¬Q(x)
→ E

⊥ → E

¬P (x)
⊥c(disc 2)

∃x¬P (x)
∃I

∃x¬P (x)
∃E(disc 3)

(∃xQ(x) ∧ (∀x(P (x)→ ¬Q(x))))→ ∃x¬P (x)
→ I(disc 1)

]
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"The rule is jam tomorrow and
jam yesterday but never jam
to-day" the Queen said.
"It must come sometimes to
"jam to-day,""Alice objected.
"No it can’t," said the Queen.
"It’s jam every other day;
to-day isn’t any other day, you
know."
"I don’t understand you," said
Alice. "It’s dreadfully
confusing."

Through the Looking Glass.
LEWIS CARROLL

Chapter 4

Modal Logic
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Modal Logic

4.1 Basic Concepts

Exercise 4.1. � -

Say whether the following strings of symbols are well formed modal formulas
on P = {p, q}

1. �→ p

2. �p→ p

3. �p→ ��p

4. �♦q ∧ ⊥♦

5. �p→ ♦p

6. ♦>

7. p→ �♦p

Solution.

Well formed formulas: 2., 3., 5., 6. and 7.

]

Exercise 4.2. � -

Say whether the following strings of symbols are well formed modal formulas
on P = {p, q}

1. �♦�q

2. �♦q�

3. ♦p→ �♦p
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4. (> ∧ p)→ �q

5. ♦(p ∨ q) ∨ (♦p ∨ ♦q)

6. �♦q ∨ (�p→ ♦p(q))

Solution.

Well formed formulas: 1., 3., 4., and 5.

]

Exercise 4.3. � -

Let the kripke frame F = (W,R) given by
F = ({1, 2, 3, 4}, {(1, 2), (1, 3), (2, 4), (3, 4)})

Depict the labeled graph corresponding to F .

Solution.

1

2

3

4

]

Exercise 4.4. � -

Let the kripke frame F = (W,R) given by
F = ({1, 2, 3, 4}, {(1, 2), (1, 3), (2, 4), (3, 4)})

Depict the labeled graph corresponding to F .

Solution.

1

2

3

4
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]

Exercise 4.5. �

SupposeM1 = ((W,R), I) is the Kripke model depicted by:

1M

1 2

3

p,q

p

4

p

write down some formulae φ such thatM1, 1 |= φ.

]

Exercise 4.6. � -

Consider the following modelM = ((W,R), I) for the basic modal language of
P = {p}:
W = {1, 2, 3}, R = {(1, 2), (2, 2), (2, 3)}, I(p) = {1, 2}.
Draw it as a labelled graph and then verify which of the following holds:

1. M, 1 |= p

2. M, 2 |= ♦p

3. M, 3 |= �p

4. M, 1 |= ��p

5. M, 1 |= �♦p

6. M, 1 |= ♦¬p

7. M, 2 |= ♦¬p
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8. M, 2 |= (p→ p)→ ♦(p→ p)

9. M, 3 |= (p→ p)→ ♦(p→ p)

Solution.

1 2
p

3
p

1. ,2. ,3. ,5. ,7. and 8. hold.

]

Exercise 4.7. � -

Determine whether the following formulas are valid in the lowermost worlds
of the two Kripke models below:

1. �p

2. �q

3. �p ∧ q

4. ���⊥

5. ♦(q ∧ ♦(p ∧ ¬q))

1

2 3

4 5

p

p

q

1

2 3

4 5

p

p

q

M1 M2

Solution.

1. M1, 1 2 �p andM2, 1 2 �p
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2. M1, 1 2 �q andM2, 1 |= �q

3. M1, 1 2 �p ∧ q andM2, 1 2 �p ∧ q

4. M1, 1 |= ���⊥ andM2, 1 2 ���⊥

5. M1, 1 |= ♦(q ∧ ♦(p ∧ ¬q))M2, 1 2 ♦(q ∧ ♦(p ∧ ¬q))

]

Exercise 4.8. �

Determine in which worlds, of the two Kripke models below, are valid the fol-
lowing formulas:

1. �p

2. �q

3. �p ∧ q

4. ���⊥

5. ♦(q ∧ ♦(p ∧ ¬q))

1

2 3

4 5

p

p

q

1

2 3

4 5

p

p

q

M1 M2

]

Exercise 4.9. �
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4.1 Basic Concepts

Consider the following model M2 = ((W2, R2), I2) for the basic modal lan-
guage of P = {p}:
W2 = {1, 2}, R2 = {(1, 2), (2, 1)}, I(p) = {2}.
Draw it as a labelled graph and then verify which of the following holds:

1. M2, 1 |= p ∧ ¬p

2. M2, 1 |= p→ p

3. M2, 2 |= p ∧ ♦¬p

4. M2, 1 |= p ∨ ♦¬p

5. M2, 1 |= �p

6. M2, 1 |= ��p

7. M2, 1 |= �♦p

8. M2, 2 |= �♦p

9. M2, 2 |= ♦�¬p

10. M2, 1 |= ♦�¬p→ ¬p

11. M2, 2 |= ♦�¬p→ ¬p

]

Exercise 4.10. �

Consider the following model M3 = ((W3, R3), I3) for the basic modal lan-
guage of P = {p, q}:
W3 = {1, 2, 3, 4}, R2 = {(1, 2), (2, 3), (3, 1), (3, 4), (4, 2)}, I(p) = {1, 3}, I(q) =

{1, 2}.
Draw it as a labelled graph and then verify which of the following holds:

1. M3, 1 |= �q

2. M3, 1 |= �¬(p→ q)
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3. M3, 3 |= �((p ∧ q) ∨ (¬p ∧ ¬q))

4. M3, 1 |= ♦�p

5. M3, 1 |= ♦p ∧ ♦q

6. M3, 1 |= ♦p ∨ ♦q

7. M3, 3 |= ♦(p ∨ ¬q)

8. M3, 3 |= ♦p ∧ ♦¬q

]
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4.2 Satisfiability and Validity

Exercise 4.11. � -

Is ♦p ∧ ♦¬p satisfiable?

Solution.

It’s sufficient to find a modelM and a world w inM such thatM, w |= ♦p ∧
♦¬p:

1 2
pp

]

Exercise 4.12. � -

Is ♦p ∧�¬p satisfiable?

Solution.

M, w |= ♦p ∧�¬p
iff M, w |= ♦p andM, w |= �¬p
iff for some world v ∈W , (w, v) ∈ R andM, v |= p, andM, w |= �¬p
iff for some world v ∈ W , (w, v) ∈ R and M, v |= p, and for every world

u ∈W , (w, u) ∈ R impliesM, u |= ¬p
iff for some world v ∈ W , (w, v) ∈ R and v ∈ I(p), and for every world

u ∈W , (w, u) ∈ R implies u /∈ I(p)

iff for some world v ∈ W , (w, v) ∈ R and v ∈ I(p), and (w, v) ∈ R implies
v /∈ I(p)

iff for some world v ∈W , (w, v) ∈ R and v ∈ I(p) and v /∈ I(p)

We can conclude that ♦p ∧�¬p is unsatisfiable.
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]

Exercise 4.13. � -

Consider the simple Kripke model below:

2

34

1
qp q

p

Decide whether the following formulas are valid in the model:

1. ♦�p ∨ ♦♦�p

2. �p→ ¬p

3. ♦(p ∨ ¬p)→ (p ∨ ♦¬q)

4. ��♦q

Solution.

1. M, 2 2 ♦�p ∨ ♦♦�p,
thus M 2 ♦�p ∨ ♦♦�p

2. M, 1 |= �p→ ¬p,
M, 2 |= �p→ ¬p,
M, 3 |= �p→ ¬p, and M, 4 |= �p→ ¬p
thus M |= �p→ ¬p

3. M, 1 |= ♦(p ∨ ¬p)→ (p ∨ ♦¬q),
M, 2 |= ♦(p ∨ ¬p)→ (p ∨ ♦¬q),
M, 3 |= ♦(p ∨ ¬p)→ (p ∨ ♦¬q),
and M, 4 |= ♦(p ∨ ¬p)→ (p ∨ ♦¬q)
thus M |= ♦(p ∨ ¬p)→ (p ∨ ♦¬q)

4. M, 2 2 ��♦q,
thus M 2 ��♦q
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]

Exercise 4.14. � -

Prove that ♦p↔ ¬�¬p is valid in any Kripke model.

Solution. SupposeM = ((W,R), I) is an arbitrary Kripke model and w is an

arbitrary world inM.

M, w |= ¬�¬p
iff notM, w |= �¬p
iff not for every v, w, v ∈ R impliesM, w |= ¬p
iff for some v, w, v ∈ R and notM, w |= ¬p
iff for some v, w, v ∈ R andM, w |= ¬¬p
iff for some v, w, v ∈ R andM, w |= p

iff M, w |= ♦p

]

Exercise 4.15. �

Prove that the following facts hold:

1. |= p ∧ (p→ q)→ q (modus ponens)

2. if |= p then |= �p (necessitation)

]

Exercise 4.16. � -

Prove that �p→ ♦p (D) is not valid in the class of all frames.
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Solution. We need to find a model and a world in the model which falsify the

formula.

1M

1 2

3

p,q

p

4

p

M1, 4 2 �p→ ♦p

]

Exercise 4.17. �

Prove that the following formulae are not valid in the class of all frames.

1. �p→ p

2. p→ �♦p

3. �p→ ��p

4. ♦p→ �♦p

]

Exercise 4.18. � -

For each of the following formulas, show that it is valid (i.e., true in all models)
or find a counterexample

1. �A ∧ ♦B → ♦(A ∧B)

2. A→ �♦A

3. �(A ∨�B)→ �A ∨��B

Solution.
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1. �A ∧ ♦B → ♦(A ∧B)

M,w |= �A ∧ ♦B ⇔ M,w |= �A and M,w |= ♦B

⇔ for all w′ with wRw′, M,w′ |= A and

there is a w0 with wRw0, and M,w0 |= B

⇒ there is a w0 with wRw0, and M,w0 |= B and M,w0 |= A

⇔ there is a w0 with wRw0, and M,w0 |= A ∧B

⇔ M,w |= ♦A ∧B

2. A→ �♦A
Counterexample:

1 2
A

M, 1 2 A→ �♦A

3. �(A ∨�B)→ �A ∨��B
Counterexample:

1

2

53

4
A

A

B

B

M, 1 2 �(A ∨�B)→ �A ∨��B

]

Exercise 4.19. � -

For each of the following formulas, either prove that it is valid or find a Kripke
model 〈W,R, I〉 and a w ∈W that does not satisfy it.
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1. ♦�A→ ��A

2. ♦A ∧ (�B ∨�C)→ ♦(A ∧ (B ∨ C))

3. ��A→ �A

Solution.

1. ♦�A→ ��A
Counterexample:

1

2

43
A

2. ♦A ∧ (�B ∨�C)→ ♦(A ∧ (B ∨ C))

This formula is valid as, w0 |= ♦A ∧ (�B ∨ �C) implies that there is a
world w1 accessible from w0 such that w1 |= A. Suppose w0 |= �B then
w1 |= B and therefore w1 |= A∨B. If, instead w0 |= �C, then w1 |= C and
therefore w1 |= A∧C. In both cases w1 |= A∧ (B∨C). Which implies that
w0 |= ♦(A ∧ (B ∨ C)).

3. ��A→ �A
Counterexample:

1 32
A A

]

Exercise 4.20. � -

For each of the following formulas either prove that it is valid or find a counter-
example. Note that if your attempts to produce a falsifying model always end
in incoherent pictures, it may be because the formula is valid.
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1. �♦A→ ♦♦A

2. ♦(�A ∧ ♦B)→ ♦♦T

3. ¬♦�A→ ♦♦¬A

Solution.

1. Countermodel:

M

w

M,w 2 �♦A→ ♦♦A.

2. ♦(�A ∧ ♦B)→ ♦♦T is valid.
We prove that for all models M and for all worlds w, M,w |= ♦(�A ∧
♦B)→ ♦♦T.

M,w |= ♦(�A ∧ ♦B) ⇔ there exists a v ∈W s.t. wRv and M,v |= �A ∧ ♦B

⇔ there exists a v ∈W s.t. wRv and M,v |= �A and M,v |= ♦B

⇔ there exists a v ∈W s.t. wRv and M,v |= �A

and there exists a v′ s.t. vRv′ and M,v′ |= B

⇒ there exist v, v′ ∈W s.t. wRv and vRv′

⇔ M,w |= ♦♦T

3. Countermodel:

M

w

M,w 2 ¬♦�A→ ♦♦¬A.

]
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Exercise 4.21. � -

For each of the following formulas, either prove that it is valid or find a Kripke
model 〈W,R, I〉 and a w ∈W that does not satisfy it.

1. �♦A→ A

2. (♦A→ �B)→ (�A→ �B)

Solution.

1. �♦A→ A

Counterexample:

w1 w2

A
M

A

M,w1 2 �♦A→ A.

2. (♦A→ �B)→ (�A→ �B)

We prove that for all models M and for all worlds w, M,w |= (♦A →
�B) → (�A → �B). Consider any model M and any world w. We have

two cases:

• case 1: M,w 2 ♦A→ �B

M,w 2 ♦A→ �B =⇒ by def. of→, M,w |= (♦A→ �B)→ (�A→ �B) .

• case 2: M,w |= ♦A→ �B
then we have two cases:

– case 2.1: M,w 2 ♦A

M,w 2 ♦A =⇒ M,w 2 �A

=⇒ M,w |= �A→ �B

=⇒ M,w |= (♦A→ �B)→ (�A→ �B)

– case 2.2: M,w |= ♦A

M,w |= ♦A =⇒ since M,w |= ♦A→ �B, M,w |= �B

=⇒ by def of→, M,w |= �A→ �B

=⇒ M,w |= (♦A→ �B)→ (�A→ �B)
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]

Exercise 4.22. � -

For each of the following formulas, either prove that it is valid or find a Kripke
model 〈W,R, I〉 and a w ∈W that does not satisfy it.

1. A→ �A

2. (¬♦A ∧ ♦B)→ ♦(¬A ∧B)

3. �♦A→ ♦�A

Solution.

1. Countermodel:

w1 w2

A A
M

M,w1 2 A→ �A.

2. We prove that for all models M and for all worlds w, M,w |= (¬♦A ∧
♦B)→ ♦(¬A ∧B).

M,w |= ¬♦A ∧ ♦B ⇔ M,w |= ¬♦A and M,w |= ♦B

⇔ M,w 2 ♦A and M,w |= ♦B

⇔ for all w′, wRw′ implies M,w′ 2 A and

there is a w0 with wRw0, and M,w0 |= B

⇒ there is a w0 with wRw0 s.t. M,w0 2 A and M,w0 |= B

⇔ there is a w0 with wRw0 s.t. M,w0 |= ¬A and M,w0 |= B

⇔ M,w |= ♦9(¬A ∧B)

3. Countermodel:
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w1

w3

w4

w2

A

A

A

M

M,w1 2 �♦A→ ♦�A

4. ��A→ �A
Counterexample:

1 32
A A

]

Exercise 4.23. � -

Prove that the modal logic formula

�φ→ φ

is valid in the class of reflexive Kripke frames.

Solution. Suppose F = (W,R) is a frame with reflexive R. Let I and let

M = ((W,R), I). We need to show that for every world v ∈ W and for every
formula φ,

M, v |= �φ→ φ

Let v be an arbitrary element of W and φ an arbitrary modal formula. We
distinguish two cases:

1. M, v 2 �φ
Then by def. of→, M, v |= �φ→ φ
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4.2 Satisfiability and Validity

2. M, v |= �φ
Then by def. of �

for every u ∈W , if (v, u) ∈ R thenM, u |= φ.
R is reflexive, hence (v, v) ∈ R.
ThereforeM, v |= φ.
So,M, v |= �φ→ φ.

]

Exercise 4.24. � -

Prove that if, for every formula φ, the modal logic formula

�φ→ φ

is valid in a Kripke frame F = (W,R), then R is reflexive.

Solution. Assume that �φ→ φ is valid in F = (W,R), for every φ.

Then, for every I and for any world w ∈W we have

ifM, w |= �φ thenM, w |= φ.

We need to show that R is reflexive.

Assume R is not reflexive.

=⇒ there is a world w ∈W s.t. (w,w) /∈ R
Let I be an interpretation function s.t. (F , I), w 2 φ and for all v ∈ W , v 6= w,
(F , I), v |= φ.

There are 2 cases:

1. w has a successor v (with v 6= w)

2. w is a dead-end (no successors)

In both casesM, w |= �φ, butM, w 2 φ.

CONTRADICTION!
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]

Exercise 4.25. � -

Show that in the frame F = (W,R) if R is an equivalence relation then the
schema φ→ �♦φ is valid

Solution. We need to prove that for any model M and any world w, M,w |=

φ→ �♦φ.
Consider two cases:

• case 1: M,w 2 φ

M,w 2 φ =⇒ by def of→, M,w |= φ→ �♦φ

• case 2: M,w |= φ

since R is an equivalence relation, it is simmetric, then we have that
for all w′, wRw′ → w′Rw

M,w |= φand for all w′, wRw′ → w′Rw =⇒ for all w′, wRw′ implies M,w′ |= ♦φ

=⇒ M,w |= �♦φ

=⇒ M,w |= φ→ �♦φ.

]

Exercise 4.26. �

Show that if a frame 〈W,R〉 satisfy the schema �φ→ ��φ then R is transitive.

]
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4.2 Satisfiability and Validity

Exercise 4.27. �

Let F = (W,R) be a frame.
Prove that the following statements are equivalent:

1 R is transitive

2 �φ→ ��φ is valid in F (for every ML formula φ)

]
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4.3 Modal Logic Formalization

Exercise 4.28. � -

Provide a modal language and a set of axioms that formalize the graph col-
oring problem of a graph with at most n nodes, with connection degree ≤ m,
and with less then k + 1 colors.

• node degree: number of adjacent nodes

• connection degree of a graph: max among all the degree of its nodes

• graph coloring problem: given a non-oriented graph, associate a color to
each of its nodes in such a way that no pair of adjacent nodes have the
same color.

Solution.

Language A set of propositional variables, C1, . . . Ck one for each color.

Axioms

1. "Each node has at least one color":

k∨
i=1

Ci

2. "Each node has at most one color":

k∧
i 6=j=1

Ci → ¬Cj

3. "Each node does not have the same color as an accessible nodes:

k∧
i=1

(Ci → �¬Ci)

102



4.3 Modal Logic Formalization

4. "Each node does not have more than m successors":

m+1∧
i=1

♦φi →
m+1∨
i 6=j=1

♦(φi ∧ φj)

]

Exercise 4.29. � -

Show how it is possible to represent the railways connections in a country by
means of a Kripke frame. First, select the schema you have to impose to capture
the following fact: “if there is a direct train connection to go from a to b, then
there is also a train connection in the opposite direction

Then, provide a set of axioms to formalize the following statements.

1. You cannot be at the same time in Roma and Firenze

2. There is no direct train connection from Roma to Trento.

3. From Rome you can reach Trento with 2 changes.

4. At Riva del Garda there is no train station.

Solution. If the train direct connections is represented by the relation R of
a Kripke frame, and each world is considered as a train stop, then then the
condition

“if there is a direct train connection to go from a to b, then there is also a train
connection in the opposite direction”

can be imposed by requiring thatR is symmetric. Symmetry of the accessibility
relation can be strongly represented by means of the schema

φ→ �♦φ

As far as the other conditions, they can be represented by means axioms, on a
language that contains the propositions RM,TN,FI . . . (meaning that we are
at in Rome, Trento, Firenze, . . . ).

103



Modal Logic

1. You cannot be at the same time in Roma and Firenze

RM→ ¬FI

2. There is no direct train connection from Roma to Trento.

RM→ ¬♦TN

3. From Rome you can reach Trento with 2 changes.

RM→ ♦♦♦TN

4. At Riva del Garda there is no train station.

RivaDelGarda→ �⊥

]

104


	Introduction
	Propositional Logic
	Basic Concepts
	Truth Tables
	Propositional Formalization
	Formalizing Simple Sentences
	Formalizing Problems

	Normal Form Reduction
	Propositional Natural Deduction

	First Order Logic
	Basic Concepts
	FOL Formalization
	FOL Natural Deduction

	Modal Logic
	Basic Concepts
	Satisfiability and Validity
	Modal Logic Formalization


