Mathematical Logics Description Logic and Databases

Fausto Giunchiglia and Mattia Fumagallli

University of Trento

*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

Limitations of databases w.r.t. DL

Employee					
Name	Role	Nationality	Supervises		
Fausto	Professor	Italian	Rui		
Rui	Student	Chinese	Bisu		
Bisu	Student	Indian	-		

- No negation
- No disjunction
- Ambiguous support for incomplete information (null values)
- □ The database represents a single model.
- Hence, inference is just model checking.

Defining a TBox and ABox for a database

Employee					
Name	Role	Nationality	Supervises		
Fausto	Professor	Italian	Rui		
Rui	Student	Chinese	Bisu		
Bisu	Student	Indian	-		
Individual	Class	Attribute	Relation		

TBox = {Professor ⊑ Employee, Student ⊑ Employee}

ABox = {Professor(Fausto), Student(Rui), Student(Bisu), Nationality(Fausto, Italian), Nationality (Rui, Chinese), Nationality (Bisu, Indian), Supervises(Fausto, Rui), Supervises(Rui, Bisu)}

Defining DL theories for ER diagrams

□ An ER conceptual schema can be expressed as a DL theory

- The models of the DL theory correspond to the legal database states of the ER schema.
- Reasoning services, such as satisfiability of a schema or of a logical implication, can be performed by the corresponding DL theory.
- A DL theory allows for a greater expressivity than the original ER schema, in terms of full disjunction and negation and entity definitions by means of both necessary and sufficient conditions.

Defining DL theories for ER diagrams

 $TBox = \{ Person \sqsubseteq Manager \sqcup Employee, \\ Manager \sqsubseteq Person \sqcap \neg Employee, \\ Employee \sqsubseteq Person \sqcap \exists income^{-1}.Dollar-quantity \sqcap \exists location^{-1}.City \\ Dollar-quantity \sqsubseteq Quantity \\ City \sqsubseteq \exists is-part^{-1}.Region \\ \}$

TBox = {} ABox = {Child(John, Mary), Female(Mary)}

NL Query: Who are the individuals having only female children?

```
DL Query: T, A \vDash \forall Child. Female
```

Answer: {John}

We can think to a database as a DL theory with <u>one model</u>
<u>ABox services</u> are generally applied to resolve a query
Complexity may go up to CO-NP complete

How to use ABox Reasoning Services

ABox Service	Description	Query
Instance retrieval	Given a concept C, retrieve all the instances <i>a</i> which satisfy C w.r.t. the ABox A.	A ⊨ C
Instance checking	Check whether an assertion $C(a)$ is entailed by the ABox, i.e. check whether <i>a</i> belongs to C.	A ⊨ C(a) A ⊨ R(a,b)

NOTE: this means that before answering we need to expand the ABox (w.r.t. the TBox) and reason on the identified model

RECALL: Reasoning via expansion of the ABox

Reasoning services over an ABox w.r.t. an <u>acyclic</u> TBox can be reduced to checking an expanded ABox.

□We define the expansion of an ABox A with respect to T as the ABox A' that is obtained from A by replacing each concept assertion C(*a*) with the assertion C'(*a*), with C' the expansion of C with respect to T.

□A is consistent with respect to T iff its expansion A' is consistent

DA is consistent iff A is satisfiable, i.e. non contradictory.

Answering Queries via instance checking (I)

TBox = {Horse \sqsubseteq Animal, Mule \sqsubseteq Animal}

ABox = {Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is Furia an animal?

DL Query: T, A ⊨ Animal(Furia)

YES, in fact the ABox can be expanded as follows: ABox = {Horse(Furia), Animal(Furia), Parent(Speedy, Furia)}

Answering Queries via instance checking (II)

TBox = {Horse \sqsubseteq Animal $\sqcap \neg$ Mule, Mule \sqsubseteq Animal} ABox = {Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is Furia a mule?

DL Query:T,A ⊨ Animal(Furia)

NO, in fact the ABox can be expanded as follows: ABox = {Horse(Furia), Animal(Furia), ¬Mule(Furia), Parent(Speedy, Furia)}

Answering Queries via instance checking (III)

TBox = {Horse \sqsubseteq Animal, Mule \sqsubseteq Animal} ABox = {Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is Furia a mule?

DL Query:T,A ⊨ Mule(Furia)

NO (BY CLOSED WORLD ASSUMPTION), in fact the ABox can be expanded as follows:

ABox = {Horse(Furia), Animal(Furia), Parent(Speedy, Furia)}

If we drop closed world assumption the answer should be I DO NOT KNOW

TBox = {Horse \sqsubseteq Animal, Mule \sqsubseteq Animal} ABox = {Horse(Speedy), Horse(Furia), Parent(Speedy, Furia)}

NL Query: Is there any animal which is not both a horse and a mule, and is parent of a horse?

DL Query: $T, A \vDash \exists$ Parent. Horse $\sqcap \neg$ (Horse \sqcap Mule) i.e. is the formula satifiable?

Answering Queries via instance retrieval: Tableaux (I)

TBox = {Horse \sqsubseteq Animal, Mule \sqsubseteq Animal} ABox = {Horse(Speedy), Horse(Furia), Parent(Speedy, Furia)}

Is \exists Parent.Horse $\sqcap \neg$ (Horse \sqcap Mule) satifiable?

Answering Queries via graph reasoning

NL Query: Does John have a female friend loving a not female?

DL Query: $\Gamma \vDash \exists$ FRIEND.(Female \sqcap (\exists LOVES. \neg Female))(john)

Answering Queries via graph reasoning

NL Query: Does John have a female friend loving a male?

```
DL Query: \Gamma_1 \vDash \exists FRIEND.(Female \sqcap (\exists LOVES.Male))(john)
```

Provide the answer for the queries

- $\Gamma \vDash \mathsf{ENROLLED}(\mathsf{Mary, cs221})$
- $\Gamma \models Grad(peter)$
- $\Gamma \models Grad(Susan)$
- $\Gamma \vDash \exists$ ENROLLED.Grad (ee282)
- $\Gamma \vDash \forall$ TEACHES. IntermediateCourse(bob)

 $\Gamma \models \mathsf{Grad} \sqcap \exists \mathsf{TEACHES}.^{\top}$ $\Gamma \models \mathsf{Student} \sqcap \forall \mathsf{ENROLLED}.^{\top}$