# Mathematical Logics Modal Logic: Reasoning\*

### Fausto Giunchiglia and Mattia Fumagallli

University of Trento



\*Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia Fumagalli

# Proof methods for modal logics

#### Problem

Problem 1 How can we show that a modal formula  $\phi$  is valid? (i.e. that  $F \models \phi$  for every frame F).

Problem 2 How can we show that  $\phi$  is satisfiable? (i.e., that there is a model M = (F, V)and a world  $v \in W$  such that  $M, w \models \phi$ )

#### Remark

Problem I and problem 2 can be rewriten one in terms of the other. Indeed, proving that  $\models \varphi$  (i.e., that  $\varphi$  is valid) corresponds to prove that  $\neg \varphi$  is not satisfiable. Viceversa, proving that  $\varphi$  is satisfiable is equivalent to prove that  $\neg \varphi$  is not valid.

#### Solution

There are at least two alternatives.

- We can transform  $\phi$  into a first order formula using the standard translation, and to show that  $\phi$  is valid it is enough to show that  $\forall xST^{x}(\phi)$  is valid.
- we can use a more direct method, and to show that φone can try to search for a counterexample (= an interpretation that falsifies φ). and, when trying out all ways of generating a counterexample without success, this counts as a proof of validity. method of (analytic/semantic) tableaux

## Reasoning in ML via transformation in FOL

- to check the satisfiability of  $\phi_{ML}$
- we transform  $\phi_{FOL}(x) = ST^{x}(\phi_{ML})$
- we apply tableaux to  $\phi_{FOL}(w)$  for some constant w.

### Example

Check if the following formula is valid:

$$(\Box p \land \Diamond q) \supset \Diamond (p \land q)$$

### Solution

• ST<sup>x</sup> ((
$$\Box p \land \Diamond q$$
)  $\supset \Diamond (p \land q)$ ) =

$$(\forall y(R(x,y) \supset p(y)) \land \exists y(R(x,y) \land q(y))) \supset \exists y(R(x,y) \land P(y) \land q(y))$$

• Check if it is valid, e.g., via Tableaux

## Reasoning in ML via transformation in FOL

$$\neg (\forall y (R(w,y) \supset p(y)) \land \exists y (R(w,y) \land q(y))) \supset \exists y (R(w,y) \land P(y) \land q(y))$$

$$\forall y (R(w,y) \supset p(y)) \land \exists y (R(w,y) \land q(y))$$

$$\neg \exists y (R(w,y) \land P(y) \land q(y))$$

$$\exists y (R(w,y) \supset p(y))$$

$$\exists y (R(w,y) \land q(y))$$

$$R(w,v) \land q(v)$$

$$R(w,v) \land q(v)$$

$$R(w,v) \supset p(v)$$

$$\neg R(w,v) \land p(v) \land q(v)$$

$$(LOSED \land CLOSED \land CLOSED$$

- The FOL formulas generated by the standard transformation of a modal formulas are of a special forms.
- Quantifiers are always generated in the following two shapes:
  - $\bigcirc \exists y(R(w,y) \land \varphi(y))$

 γ and δ Tablueaux rules are applied only to these formulas, and generated tableaux of the following two shapes

 $\forall y(R(w,y) \supset \phi(y))$   $R(w,v) \supset \phi(v)$   $\neg R(w,v) \qquad \phi(v)$ 

If we have R(w, v) then this branch is closed. If we don't have R(w, v) this branch will remain open

## Analytic/Semantic Tableau Method - References

Early work by Beth and Hintikka (around 1955). Later refined and popularized by Raymond Smullyan:

• R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.

Modern expositions include:

- M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
- M. D'Agostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
- R. Hähnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
- Proceedings of the yearly Tableaux conference: <u>http://il2www.ira.uka.d/TABLEAUX/</u>

## Definition

Tableau A tableau is a finite tree with nodes marked with one of the following assertions:

$$w \vDash \phi$$
  $w \nvDash \phi$   $w Rw'$ 

which is build according to a set of expansion rules (see next slide)

### Definition (Branch, open branch and closed branch)

A branch of a tableaux is a sequence  $n_1, n_2 \dots n_k$  where  $n_1$  is the root of the tree,  $n_k$  is a leaf, and  $n_{i+1}$  is a children of  $n_i$  for  $1 \le i < k$ . A closed branch is a branch that contains nodes marked with  $w \models \phi$  and  $w \nvDash \phi$ . All other branches are open. If

all branches are closed, the tableau is closed.

| Expansion rules | for propositional | connectives |
|-----------------|-------------------|-------------|
|-----------------|-------------------|-------------|

| $     \underline{w \models \varphi \land \psi}     w \models \varphi     w \models \psi $ | $\frac{w \not\models (\phi \lor \psi)}{w \not\models \phi}$ $w \not\models \psi$ | $     \underline{w \vDash \neg \varphi}  \underline{w \nvDash \neg \varphi} \\     w \nvDash \varphi  w \vDash \varphi $ | $\frac{w \nvDash (\phi \supseteq \psi)}{w \vDash \phi}$ $w \nvDash \psi$ |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| $\frac{w \vDash \varphi \lor \psi}{w \vDash \varphi \lor \psi}$                           | $w \not\models (\phi \land \psi)$ $w \not\models \phi  w \not\models \psi$       | $w \models \phi \supset \psi$ $w \not\models \phi  w \models \psi$                                                       |                                                                          |

#### Expansion rules for modal operators

| $\frac{w \models \Box \Phi}{w' \models \Phi}$ If wRw' is already in<br>w' \models \Phi the brench                                                             | $ \begin{array}{c c} w \not\models \Box \Phi \\ w Rw & & \text{wher } w' \text{ is new in the} \\ w' \not\models \Phi & & \text{brench} \end{array} $ |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\begin{array}{c c} w \models \Diamond \Phi \\ \hline w R w \\ w & \downarrow \models \phi \end{array}  \text{wher } w & \text{is new in the} \\ \end{array}$ | $\frac{w \neq \Diamond \Phi}{w' \neq \Phi}$ If wRw' is already in<br>the brench                                                                       |  |

## Applications of expansion rules

- If a branch β = n1, ..., nk contains a node ni labelled with a premise of one of a rule ρ, and such a rule has not applied yet on this node, then ρ can be applied, and the branch is expanded in the following way
  - if ρ has only one consequence, then β is expanded in
     n1,...nk, nk+1 where nk+1 is labelled with the consequence of
  - if  $\rho$  has two consequences (one on top of the other), then  $\beta$  is expanded in  $n_1, \ldots n_k, n_{k+1}, n_{k+2}$  where  $n_{k+1}$  and  $n_{k+2}$  are labelled with the consequences of  $\rho$
  - if ρ has two alternative consequences (i.e., two consequences separated by a "|"), then β is expanded into two branches n1,...nk,nk+2 and n1,...nk,nk+2, where nk+1 and nk+2 are labelled with the alternative consequences of ρ

## Example of tableaux

### Example (Check satisfiability of $\diamond$ (P $\land \neg$ Q) $\land \Box$ (P $\lor$ Q))

 $w \models \Diamond (P \land \neg Q) \land \Box (P \lor Q)$  $w \models \Diamond (P \land \neg Q)$  $w \models \Box (P \lor Q)$ wRw w' ⊨ P ∧¬O w′⊨P w′⊨¬0 w′⊭0  $w' \models P \lor O$ w′⊨P ⊨Q **OPEN** CLOSED

- The tableau we have constructed starting from  $w \models \Diamond (P \land \neg Q) \land \Box (P \lor Q)$ , has an open branch (the one on the left)
- if we collect all the assertions of the form w ⊨ A and w ⊭ A for all atomic A and the assertions of the form and wRw<sup>'</sup>, which label the node of such an open branch we obtain

which corresponds to the model

$$w \xrightarrow{R} w'$$

with A true in w' and B false in w'

### Example (Check validity of $\Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B$ )

CLOSED

CLOSED

To check the validity of  $\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B$ , we construct a tableaux that searches for a countermodel. I.e., we check the satisfiability of  $\neg(\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B)$ 

$$w \models \neg (\Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B)$$

$$w \not\models \Diamond (A \lor B) \equiv \Diamond A \lor \Diamond B$$

$$w \not\models \Diamond (A \lor B) \supset \Diamond \overline{A} \lor \Diamond B$$

$$w \not\models \Diamond (A \lor B) \supset \langle \overline{A} \lor \Diamond B$$

$$w \not\models \Diamond (A \lor B)$$

$$w \models \Diamond A \lor \Diamond B$$

$$w \not\models \Diamond A \lor \Diamond B$$

$$w \not\models \Diamond A \lor \Diamond B$$

$$w \not\models \Diamond A \lor \phi B$$

$$w \not\models \Diamond A \qquad w \models \Diamond A \lor \phi B$$

$$w \not\models \Diamond A \qquad w \models \Diamond A \lor \phi B$$

$$w \not\models \Diamond B \qquad w \not\models \Diamond A \qquad w \models \Diamond B$$

$$w \not\models A \lor B \qquad w \not\models A \lor \phi B$$

$$w \not\models A \lor B \qquad w \not\models A \lor \phi B$$

$$w \not\models A \lor B \qquad w \not\models B \qquad CLOSED$$

$$w \not\models A \qquad w \not\models B$$

All the branches of the tableaux searching for a model of  $\neg(\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B)$  are closed. This implies that there are no models for such a formulas, i.e., that there are no countermodel for  $\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B$ , and finally that  $\Diamond(A \lor B) \equiv \Diamond A \lor \Diamond B$ , is valid.

## Checking validity via tableaux

#### Example (Check validity of $\Box(A \lor B) \equiv \Box A \lor \Box B$ )

$$w \models \neg (\Box(A \lor B) \equiv \Box A \lor \Box B)$$

$$w \not\models \Box(A \lor B) \supseteq \Box \overline{A} \lor \Box B$$

$$w \not\models \Box(A \lor B) \supseteq \Box \overline{A} \lor \Box B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box B \lor \Box A \lor B$$

$$w \not\models \Box A \lor \Box B \lor \Box A \lor \Box B$$

$$w \not\models \Box B \lor \Box A \lor \Box B = U (A \lor B)$$

$$w \not\models \Box B \lor \Box A \lor \Box B \lor \Box B$$

$$w \not\models A \lor B \lor \Box A \lor B \lor \Box A \lor B$$

$$w ' \not\models A \lor B \lor \Box A \lor B \lor \Box B$$

$$w ' \not\models A \lor B \lor \Box A \lor B \lor \Box B$$

$$w ' \not\models A \lor B \lor \Box A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor \Box B \lor \Box A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor \Box B \lor \Box A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor \Box B \lor \Box A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B \lor \Box A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B \lor \Box A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

$$w ' \not\models A \lor B = U (A \lor B)$$

The tableau is not closed as there is an open branch. This branch contains the statements: wRw', wRw'', w'  $\nvDash$  A, w'  $\vDash$  B w "  $\vDash$  A and w''  $\nvDash$  B, that correspond to the model



with A false in w', B true in w', A true in w'' and B false in w''.

11

# Comparing Reasoning in ML and FOL

Comparing tableaux reasoning directly in ML and via translation in FOL, we can discover that there are a lot of similarities:

- Reasoning about accessibility relation is explicit in FOL and implicit in ML
- Reasoning about  $\forall$  is similar to reasoning about  $\Box$
- Reasoning about  $\exists$  is similar to reasoning about  $\diamond$



