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Reasoning  tasks  in FOL

In First order logics we have the same reasoning tatsk as in propositional  
logics (and any other logics)

Model checking

For a closed formula φ check if I ⊨ φ

Satisfiability
Find an interpretation I that satisfies a closed formula φ.  I.e., check if
there is a I such that I ⊨ φ.

Validity

Check if a formula φ is valid, i.e., if for all interpretations I, I ⊨ φ

Logical consequence
Check if a formula φ is a logical consequence of a set of formulas Γ, i.e.,  
Γ ⊨ φ
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Reasoning  tasks  in FOL

FOL has to do with objects which have some properties, we might be  
interested in knowing the set of objects which share a given property.  
More in general we might be interested in knowing the set of n-tuples of  
objects which are in a certain n-ary  relation.

This task is similar to what we do when we query a database. E.g. we  
want to know the set of people who earn more than 1300 euro per  
month, or the set of pair of people who works in the same   project.

A property in FOL can be expressed by a formula with free  variable
φ(x1 , . . . , xn ).

person(x ) ∧ earn(x, y) ∧ y > 1000: the persons (free variable x ) who  
earns more than 1000 euros

∃z (worksFor (x, z) ∧ worksFor (y, z)): the pairs of people (the free  
variables (x, y)) who works in the same project.
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Query answering  in FOL

Query answering
Given an interpretation I (a database instance) of a FOL L and a
formula φ(x1, . . . , xn) with n-free variables, find all the n-tuples of
elements of the domain (d1, . . . , dn) ∈(∆ I )n such that
I ⊨φ[a[x1/d1 . . . xn/dn]]
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Example of query

Exampl
eWhat is the result of the following queries agains the interpretation   above?

1    friends(x, alice)

2   ¬friends(x, bob)

3  friends(x, y ) ∧ friends(y, z ),

∃y (friends(x, y ) ∧ friends(y, z ))

4    ∀y (friends(x, y ) → supervisor(x ) = y ) Notice that 5 and 6 are there because they don’t have any 
friends so the premise of the implication is always false.

The interpretation I is defined as follows:
Symbols Constants: alice, bob, carol, robert  Function: 

supervisor (with arity equal to 1)  Predicate:  
friends (with arity equal to 2)

Domai
n

∆I = {1, 2, 3, 4, 5, 6}

Interpretation I(alice) = 1, I(bob) = 2, I(carol) = 3,
I(robert) = 2

S (1) = 3
S (3) = 4
S (5) = 5

S (2) = 1
I(supervisor) = S S (4) = 5

S (6) = 5

(1, 2) ,     (2, 1) , (3, 4) ,   
I(friends) = F =

{1, 4}
{2, 3, 5, 6}

(1, 2, 1) , (1, 2, 4) , (2, 1, 2) , (2, 1, 4) , 
(3, 4, 3) , (4, 3, 4) , (4, 2, 4) , (4, 1, 4) ,
(4, 4, 1) , (4, 4, 2) , (4, 4, 3) , (4, 4, 4)

(1, 1) , (1, 4) , (2, 2) , (2, 4) ,
(3, 3) , (4, 4) , (4, 1) , (4, 2) ,
(4, 3)

{3, 5, 6} 

(4, 1) ,    (1, 4) ,  (4, 4)
(4, 3) ,     (4, 2) ,  (2, 4) ,
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Hilbert style axiomatization
Axioms for propositional connectives They are the same as 
in  propositional logic

A1 φ ⊃ (ψ⊃ φ)

A2 (φ⊃ (ψ⊃ θ)) ⊃ ((φ⊃ ψ) ⊃ (φ⊃ θ))
A3 (¬ψ ⊃ ¬φ) ⊃ ((¬ψ⊃ φ) ⊃ ψ)

MP

A4 ∀x.(φ(x )) ⊃ φ(t) if t is free for x in φ(x )
A5 ∀x.(φ ⊃ ψ) ⊃ (φ⊃∀x.ψ) if x  does not occur free 

in φ

Gen

Axioms and rules  for  quantifiers

𝜑		𝜑		 ⊃ 	𝜓	
𝜓

𝜑
∀𝑥. 𝜑	
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Example of Hilbert style  proof in  FOL

Example
To show that the formula P(a) ⊃ ¬∀x ¬P(x ) is valid we have to generate  
a sequence of formulas (i.e., a Hilbert proof) starting from the axioms (A1-
A5), using the rules (MP) and (GEN). (In the example we only report the 
inferences that involves first order reasoning, propositional  proofs are 
omitted)

.

.

(1)
..

∀x¬P(x) ⊃¬P(a) instance of (A4)
a proof in Propositional Logic

(2) (φ ⊃ ψ) ⊃ (¬ψ ⊃ ¬φ)
(3)   (∀x ¬P(x ) ⊃ ¬P(a)) ⊃ (¬¬P(a) ⊃ ¬∀x ¬P(x )) Instance of (2)
(4) ¬¬P(a)⊃¬∀x¬P(x)) From (1) and (3) by (MP)
.. a proof in Propositional Logic
(5) (¬¬φ  ⊃ ψ) ⊃ (φ ⊃ψ)
(6)   (¬¬P(a) ⊃ ¬∀x ¬P(x )) ⊃ (P(a) ⊃ ¬∀x ¬P(x )) Instance of (5)
(7) P(a) ⊃ ¬∀x ¬P(x ) from (4) and (6) by (MP)
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Automatic reasoning  based  on  Hilber Style

Hilbert style proof system was invented with the main purpose  of 
describing the minimal rational assumptions behind mathematical
reasoning.

Hilber style proofs are suppesed to be provided by humans,  who 
can use their intuition to apply smart heuristics to  generate
them.

Writing an algorithm that decides on the validity of a formula by 
searching a Hilbert style proof, is not a good  idea.

We look at alternative ways to write algorithms for deciding  the 
falidity of a FOL formula.
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Tableaux Calculus

The Tableaux Calculus is an algorithm solving the problem of  
satisfiability.
If a formula is satisfiable, then there exists an open branch in  the 
tableaux of this formula.

the procedure attempts to construct the tableaux for a  formula. 
Sometimes it’s not possible since the model of the  formula is
infinite.
The basic idea is to incrementally build the model by looking  at the 
formula, by decomposing it in a top/down fashion. The  procedure 
exhaustively looks at all the possibilities, so that it can possibly prove 
that no model could be found for unsatisfiable formulas.
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Semantic tableaux

Definition
A tableau is a rooted tree, where each node carries a first order sentence (closed
formula), and the children of a node n are generated by applying a set of expansion
rules to n or to one of the ancestors of n.

Definition
The expansion rules for a first order semantic tableaux are those for the  
propositional semantic tableaux, extended with the following rules that  deal 
with the quantifiers:

γ rules Where t  is a term free
for x  inφ

δ rules
where  c is a new
constant not
previously appearing 
in the tableaux

¬∃𝑥. 𝜑(𝑥)
¬𝜑(𝑡)

¬∀𝑥. 𝜑(𝑥)
¬𝜑(𝑐)

∃𝑥. 𝜑(𝑥)
𝜑(𝑐)

∀𝑥. 𝜑(𝑥)
𝜑(𝑡)
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Tableaux production  rules for  propositional logic

.	.	.	for	propositional	connectives

α rules

𝜑 ∧ ψ
𝜑
ψ

¬(𝜑 ∧ ψ)
¬𝜑
¬ψ

¬¬𝜑
𝜑

¬(𝜑⊃ψ)
𝜑
¬ψ

β rules
𝜑 ∧ ψ 𝜑⊃ψ ¬(𝜑 ∧ ψ) 𝜑≡ψ ¬(𝜑≡ψ)

𝜑 ψ ¬𝜑 ψ ¬𝜑 ¬ψ 𝜑
ψ

¬𝜑
¬ψ

𝜑
¬ψ

¬𝜑
ψ
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Substitution φ[x/t]

If φ(x ) is a free variable and t is a term, we use the notation φ(t)  
instead of the more precise notation φ[x/t] to represent the  
substitution of x  for t  in φ.

Substitution
φ[x/t] denotes the formula we get by replacing each free  
occurrence of the variable x in the formula φ by the term t. This is 
admitted if t does not contain any variable y such that x occurs in  
the scope of a quantifier for y (i.e., in the scope of ∀y or ∃y).
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Example (of substitution)

P(x, y, f(x))[x/a]

Substitution φ[x/t]

= P(a, y , f (a))

∀xP(x,y)[x/b] =  ∀xP(x, y)

∃xP(x, x)∧Q(x)[x/c] = ∃xP(x, x)∧Q(c)

P(x, g(y))[y/f (x)] = P(x, g(f (x)))

∀x.P(x, y)[y/f (x)] Not allowed since f (x ) is  not 
free for y in ∀x.P(x, y)

=
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Universal quantification rule

∀𝑥𝜑(𝑥)
𝜑(𝑡)

∀xφ(x ) means that for every object of the domain, the  
property φ(x ) should be true.
a term t that occurs in the tableaux denotes an object of the domain
therefore, φ(t) must be true for all the terms t that occurs in the 
tableaux. I.e., the ∀ rule can be applied as many time as one want to 
any term that appear in the tableaux.

Exercize
Show that the following tableaux rule is sound.

∀𝑥∃𝑦𝑃(𝑦, 𝑥	)
∃𝑦𝑃(𝑦, 𝑓	(𝑥))
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Existential quantification rule

for a new constant c

∃xφ(x ) means that for some object of the domain, the  
property φ(x ) should be true.
we don’t know which object of the domain has the property φ,  
we know only that there is one.
this means that this rule cannot be applied to the terms that  
already occur in the tableaux, since otherwise we would  
introduce an unjustified joiche on the element that has the  
property φ.
the trick is to introduce a term to denote an unconditioned  
objects (sometimes called “fresh” constant/variable) for  
denoting an “unknown” object, i.e., an object on which we  
haven’t done any commitment.
therefore we  allow only to infer φ(c) form ∃xφ(x), where c is
fresh.  Only one application is possible.

∀𝑥𝜑(𝑥)
𝜑(𝑐)
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Open and Closed Branches

a tableaux rooted with φ is a method to search an  
interpretation that satisfy φ
Every branch of a tableaux with root equal to φ, corresponds  
to an attempt to find an interpretation I that satisfies φ.

The interpretation corresponding to a branch b of a tableaux  
should satisfy all the formulas that appear in the  branch.

If the branch contains two opposite literals, i.e. P(t1, . . . , tn)  
and ¬P(t1, . . . , tn), then the branch cannot correspond to an  
interpretation, since there is no interpretation that satisfy at  
the same time P(t1, . . . , tn) and ¬P(t1, . . . , tn). So we can  
consider this attempt to find an interpretation failed. In this  
case we say that the branch is closed.
if in a branch b all the rules has been applied and there is no  
opposite literals, then this branch corresponds to an  
interpretation. We call such a branch open
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Open and Closed Branches

Definition
A branch of a tableau is said to be closed if it contains a a  
pair of formulas φ and ¬φ.
A branch of a tableau is said to be open if it is not closed.  
A tableau is said to be closed if each of its paths is closed.
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The	tableaux	method

1

2

3

To test a formula φ for validity, form tableau starting with
¬φ. If the tableau closes off, then φ is logically valid.
To test whether φ is a logical consequence of Γ form a 
tableau starting with each formula in Γ and ¬φ. If the
tableau closes off, then φ is indeed a logical consequence of 
Γ.
To test a set of formulas Γ is satisfiable, form a tableau  
starting with Γ or equivalently an unsigned If the tableau  
closes off, then Γ is not satisfiable. If the tableau does not  
close off, then Γ is satisfiable, and from any open branch 
we can read off an interpretation satisfying Γ.
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Example

Example
To check if the formula
(∃x(P(x)∨Q(x))) ≡ ((∃xP(x))∨(∃xQ(x))) is satisfiable, we start
with a tableaux with this formula:
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¬ ∃x Px	 ∨ 	Qx ⇔	 ∃xPx ∨	 ∃xQx

∃x Px	 ∨ 	Qx
¬( ∃xPx ∨ ∃xQx)

¬∃xPx
¬∃xQx
Pa ∨ Qa

Pa
¬Pa

Qa
¬Qa

¬∃x Px	 ∨ 	Qx
∃xPx ∨ ∃xQx

∃xPx
Pb

¬(Pb	∨ Qb)	
¬Pb
¬Qb

∃xQx
Qc

¬Pc
¬Qc

¬(Pc	∨ Qc)	
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Practicing with Semantic  Tableaux

Exercize
Show with the method of semantic tableaux that the following  
formulas are valid:

∀xP(x) ⊃ ¬∃x ¬P(x)
∀x (P(x) ∨ A) ⊃ (∀xP(x) ∨ A) when x is not free in A

∃x (P(x) ⊃∀xP(x))
∃x ∀yP(x, y) ⊃∀y ∃xP(x, y)

20



Practicing with Semantic  TableauxSolutio
n

¬(∀x (P(x) ∨ A) ⊃ (∀xP(x) ∨ A))

∀x (P(x) ∨ A)
¬(∀xP(x) ∨ A)

¬∀xP(x)
¬A

¬P(a)

P(a) ∨ A

P(a)

×

A

×

¬(∀xP(x) ⊃ ¬∃x ¬P(x))

∀xP(x)

¬¬∃x ¬P(x)

∃x ¬P(x)

¬P(a)

P(a)

×

Practicing with Semantic  Tableaux
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Solution

¬∃x (P(x) ⊃∀xP(x))

¬(P(a) ⊃∀xP(x))

P(a)
¬∀xP(x)

¬P(b)

¬(P(b) ⊃∀xP(x))

P(b)
¬∀xP(x)

×

Practicing with Semantic  Tableaux

¬(∃x ∀yP(x, y) ⊃∀y ∃xP(x, y))

∃x ∀yP(x, y)
¬∀y ∃xP(x, y)

∀yP(a, y)

¬∃xP(x, b)

P(a, b)

¬P(a, b)

×
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Example

Example
Check if ∀xP(x) ∧∃x ¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x) ∧∃x ¬P(f (x))

∀xP(x)
∃x ¬P(f (x))

¬P(f (c))

Now to expand ∀xP(x), we  can use any ground term t. Possible
choices: c, f (c), f (f (c)), . . . .  we choose f (c) because we want to 
create a clash with ¬P(f (c)).
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Example (Cont’d)

Example
Check if ∀xP(x) ∧∃x ¬P(f (x)) is valid/satisfiable/unsatisfiable.

Solution

∀xP(x ) ∧∃x ¬P(f (x))

∀xP(x)
∃x ¬P(f (x))

¬P(f (c))

P(f (c))

×
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Example of tableaux

OPEN

Example

∃x (P(x) ∧ ¬Q(x)) ∧∀y (P(y) ∨ Q(y))

∃x (P(x) ∧ ¬Q(x))
∀y (P(y) ∨ Q(y))

P(a) ∧ ¬Q(a)

P(a)
¬Q(a)

P(a) ∨ Q(a)

P(a) Q(a)

CLASH
25



Termination

For certain formulas

∃x.P(x) ∧∀x (P(x) ⊃ P(f (x)))

∃x.P(x)
∀x (P(x) ⊃ P(f (x)))

P(a)

P(a) ⊃ P(f (a))

¬P(a)

CLASH

P(f (a))

P(f (a)) ⊃ P(f (f (a)))

¬P(f (a))

CLASH

P(f (f (a)))

.
,
,
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Tableaux

Exercize
G4ive tableau proofs for the following logical  consequences:
∀x.P(x) ∨∀x.Q(x) ⊨ ¬∃x (¬P(x) ∧ ¬Q(x))
⊨ ∃x.(P(x) ∨ Q(x)) ≡∃x.P(x) ∨∃x.Q(x)
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Some  definition for tableaux

Definition (Closed branch)
A closed branch is a branch which contains a formula and its  
negation.

Definition (Open branch)
An open branch is a branch which is not  closed

Definition (Closed tableaux)
A tableaux is closed if all its branches are  closed.

Definition
Let φ be a first-order formula and Γ a finite set of such formulas.  
We write Γ ⊢ φ to say that there exists a closed tableau for
Γ∪ {¬φ}
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Soundness  and completeness

Theorem 
(Soundness)

Γ ⊢ φ ⇒ Γ ⊨ φ

Theorem 
(Completeness)

Γ ⊨ φ ⇒ Γ ⊢	φ

Remark
The mere existence of a closed tableau does not mean that we  
have an effective method to build it! Concretely: we don’t know  
how often and in which way we have to apply ] the γ-rules  
(∀xφ(x) ⇒ φ[x/t]), and what term to use in the substitution.
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Example
Check via tableaux if the validity/satisfiability of the  formula
φ = ∀x, y (P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃∀yQ(y))

∃xP(x)
¬∀yQ(y)

P(a)

¬Q(b)

P(a) ⊃ Q(b)

¬P(a)

CLASH

Q(b)

CLASH

We try, vith the tableaux, to build a model for the
negation of φ. Since the tableaux ends with all
CLASHES, there is no such a model. In other
words, for all I, I ⊭ ¬φ. Which implies that for all
I, I ⊨ φ, i.e., that φ is valid.

Solution
¬(∀xy (P(x) ⊃ Q(y)) ⊃ (∃xP(x) ⊃∀yQ(y)))

∀xy (P(x) ⊃ Q(y))
¬(∃xP(x) ⊃∀yQ(y))
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Infinite domains

Differently from Prop. Logic, in FOL, models can be infinite.

There are formulas which are satisfied only by infinite models. For  
instance the following formula1

∀x ¬R(x, x )
φ = ∀xyz.(R(x, y ) ∧ R(y, z ) ⊃ R(x, z ))

∀x.∃y.R(x, y )

If we build a tableaux for such a formula, searching for a model, we  
will end up in an infinite  tableaux.

1To verify this, suppose that I = ∆I ,.I › is an interpretation that satisfies φ, and 
suppose that |∆| = n for some finite number n. Consider the sequence  ‹d1 , d2 , d3 , . 
. . dn+1 › of n + 1 elements of ∆, such that ‹di , di +1›∈ R I. This  sequence exists, 
because for every d there is always a d i with ‹d, d i ›∈ R I,  since I ⊨ ∀x.∃y.R (x, 
y). I ⊨ ∀xyz.(R(x, y) ∧ R (y, z) ⊃ R (x, z)), implies that  R I is transitive, and 
therefore for all 0 ≤ i < j ≤ n + 1, ‹di , dj ›∈ R I. The fact  that ∆ contains at most n 
elements implies that for some 1 ≤ i < j ≤ n + 1, di  = dj , which means that ‹di , di › 
∈ R I for some 1 ≤ i ≤ n. But this contradicts the fact that I ⊨ ∀x ¬R (x, x).

∧
∧
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Infinite tableaux

Exercize
Build a tableaux for
∀x ¬R(x, x) ∧∀xyz.(R(x, y) ∧ R(y, z) ⊃ R(x, z)) ∧∀x.∃y.R(x, y)

Solution

∀x ¬R (x, x ) ∧∀xyz.(R (x, y ) ∧ R (y, z) ⊃ R (x, z)) ∧∀x.∃y.R (x, y)

∀x ¬R (x, x)
∀xyz.(R (x, y ) ∧ R (y, z) ⊃ R (x, z ))

∀x.∃y.R (x, y)

∃y.R (a0 , y)

R (a0 , a1)

∃y.R (a1 , y)

..

.

By applying the γ-rule to the axiom ∀x
∃y (R (x, y )), we generate
∃yR(a0 , y ) for an initial constant a0 ,
and by applying the δ-rule to this last
formula we generate a new individual a1
This allow to apply the γ-rule again to
∀x ∃yR(x, y), obtaining ∃yR(a1 , y),
and again by applying δ-rule to this new
formula we generate another constant
a2.
The process can go on infinitively without
reaching any clash
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Example

∃x (P(x) ∧ ¬Q(x)) ∧∀y (P(y) ∨ Q(y))

∃x (P(x) ∧ ¬Q(x))
∀y (P(y) ∨ Q(y))

P(a) ∧ ¬Q(a)

P(a)
¬Q(a)

P(a) ∨ Q(a)

P(a) Q(a)  

OPEN CLASH

Comments
From the formulas appearing  
in the OPEN branch of the  
tableaux it is possible to  
construct a model for the  
root formula.

∆ = {a}, the constants  
appearing in the  
formulas

I (P) = {a}, since the  
formula P(a) appears in  
the open branch

I (Q) = {} since the
formula ¬Q(a) appears  
in the open branch

Example of tableaux
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Termination fo FO tableauxs

In contrast to what happens in propositional logic, the tableau  
construction is not guaranteed to terminate.
If the formula φ that labels the root is unsatisfiable, in which case  
the construction is guaranteed to terminate and the tableau is  
closed.
If the formula φ that labels the root is satisfiable then either the  
construction is guaranteed to terminate and the tableau is open, or  
the construction does not terminate.
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Saturated Branches

Saturated open 
branchesAn open branch is called saturated if every non-literal has been  
analyzed at least once and, additionally, every  γ-formula
(γ-formulas are of the form ∀xφ and ¬∃xφ) has been instantiated
with every term we  can construct using the function symbols on 
the branch.

Failing proof
A tableau with an open saturated branch can never be closed, i.e.  
we can stop an declare the proof a failure.

Is this the solution?
This only helps us in special cases though.(A single 1-place  
function symbol together with a constant is already enough to  
construct infinitely many terms . . . )
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Countermodels

If the construction of a tableaux ends in a saturated open  
branch, you can use it to help you define a model M for all  
the formulas on that branch.

domain: set of all terms we can construct using the function  
symbols appearing on the branch (so-called Herbrand universe)

terms are interpreted as themselves
interpretation of predicate symbols:  see literals on  branch

36


