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L = “MCT, MAT, MBeBa, MNBa, MCR, 
MGBa, ∩, ∪, ⊃, …”
T = “MGBa⊃ (MAT∪MNBa)”
D: {#1, #2, #3}

I: “I(MAT) = #1, I(MNBa) = #2, 
I(MGBa) = #3”

M: “#1 ∈ MAT, #2 ∈MNBa, 
#3 ∈ MGBa”
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Extensional Semantics: Extensions
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q The meanings which are intended to be attached to the symbols
and propositions form the intended interpretation σ (sigma) of
the language

q The semantics of a propositional language of classes L are
extensional (semantics)

q The extensional semantics of L is based on the notion of
“extension” of a formula (proposition) in L

q The extension of a proposition is the totality, or class, or set of
all objects D (domain elements) to which the proposition
applies



Extensional Interpretation
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D = {Cita, Kimba, Simba}
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Class-valuation σ
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q In extensional semantics, the first central semantic notion is 
that of class-valuation (the interpretation function)

q Given a Class Language L
q Given a domain of interpretation U

q A class valuation σ of a propositional language of classes 
L is a mapping (function) assigning to each formula ψ of 
L a set σ(ψ) of “objects” (truth-set) in U:

σ: L ® pow(U)



Class-valuation σ
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q σ(⊥) = ∅

q σ(⊤) = U   (Universal Class, or Universe)

q σ(P) Í U, as defined by σ

q σ(¬P) = {a Î U | a ∉ σ(P)} = comp(σ(P))    (Complement)

q σ(P ⊓ Q) = σ(P) ∩ σ(Q)   (Intersection)

q σ(P ⊔ Q) = σ(P) ∪ σ(Q)   (Union)



Class-valuation σ
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By regarding propositions as classes, it is very convenient to use 
Venn diagrams
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Sets: Basic Concepts

The concept of set is considered a primitive concept in math

A set is a collection of elements whose description must be  
unambiguous and unique: it must be possible to decide  whether an 
element belongs to the set or not.

Examples:

the students in this classroom  the points in a straight line  the cards in 
a playing pack

are all sets, while

students that hates math  amusing books

are not sets.
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Describing Sets

In set theory there are several description methods:

Listing: the set is described listing all its elements  Example: A = {a,e,i,o,u}.

Abstraction: the set is described through a property of its  elements

Example:  A = {x |  x  is a vowel of the Latin alphabet }

Eulero-Venn Diagrams: graphical representation that supports  the formal
description
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Sets: Basic Concepts

Empty Set: Ø is the set containing no elements;  
Membership:  a ∈ A, element belongs to the set A;

Non membership: a ∉ A, element a doesn't belong to the set A;

Equality: A = B , iff the sets A and B contain the same  elements;

inequality:  A ≠ B, iff it is not the case that A = B

Subset: A ⊆ B , iff all elements in A belong to B too;
Proper subset: A⊂ B, iff A ⊆ B and A ≠ B
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Power Set

We define the power set of a set A, denoted with P(A), as the  
set containing all the subsets of A.

Example: if A = {a,b,c}, then
P(A) = {Ø,{a},{b},{c },{a,b},{a,c},{b,c},{a,b,c},}

If A has n elements, then its power set P(A) contains 2n  

elements.

Exercise:  prove it!!!
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Operations on Sets

Union: given two sets A and B we define the union of A and  B as the 
set containing the elements belonging to A or to B or to both of 
them, and we  denote it with A ∪ B .

Example: if A = {a,b,c}, B = {a,d,e} then
A∪B = {a,b,c,d,e}

Intersection: given two sets A and B we define the  intersection of A 
and B as the set containing the elements  that belongs both to A and 
B , and we  denote it with A∩B .

Example: if A = {a,b,c}, B = {a,d,e} then A ∩B = {a}
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Operations on Sets (2)

Difference: given two sets A and B we define the difference of  A and B 
as the set containing all the elements which are  members of A, but not 
members of B , and denote it with A− B .

Example: if A = {a,b,c}, B = {a,d,e} then A − B = {b,c}

Complement: given a universal set U and a set A, where A ⊆ U, we 
define the complement of A in U ,denoted with A (or CUA), as the set 
containing all the elements in U not  belonging to A.

Example: if U is the set of natural numbers and A is the set  of even 
numbers (0 included), then the complement of A in U  is the set of odd
numbers.
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Sets: Examples

Examples:

Given A = {a, e, i , o, {u}} and B = {i , o, u}, consider the  
following statements:

1 B ∈ A NO!

2

3

(B − { i , o} )∈ A

4

5

6 B − A = {u }

7

{u }⊂ A NO!

8 { i , o} = A ∩B OK

{ { u } }  ⊂ A 

B – A = Ø 

i ∈ A ∩B

{a }∪{ i } ⊂ A

OK

NO!

OK

OK

OK
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Sets: Operation Properties

A ∩A = A,  
A∪A= A

A ∩B = B ∩A,
A∪B = B ∪A (commutative)

A ∩Ø =Ø
A ∪Ø = A

(A ∩B) ∩C = A ∩(B ∩C ),
(A∪B)∪C = A∪(B ∪C ) (associative)
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Sets: Operation Properties (2)

A ∩(B ∪C ) = (A ∩B)∪(A ∩C ),
A∪(B ∩C ) = (A∪B) ∩(A∪C )
(distributive)

Exercise:  Prove the validity of all the properties.

𝐴 ∩ B = A& ∪ B&

𝐴 ∪ B = A& ∩ B& (De Morgan laws)
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Cartesian Product

Cartesian Product

Given two sets A and B , we define the Cartesian product of A
and B as the set of ordered couples (a, b) where a ∈A and
b ∈B; formally,
A × B = {(a, b) : a ∈A and b ∈B }

Notice that: A × B ≠ B×A
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Cartesian Product (2)

Examples:
given A = {1, 2, 3} and B = {a, b}, then
A × B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)} and
B × A = {(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)}.

The Cartesian product can be computed on any number 
n of  sets A1, A2 . . . ,  An, A1 × A2 × . . . × An is the set of 
ordered  n-tuple (x1, . . . , xn) where xi  ∈ Ai for each i = 
1 . . . n.

Cartesian coordinates of the points in a plane are 
an example  of the Cartesian product R × R
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Relations

A relation R from the set A to the set B is a subset of the  Cartesian
product of A and B: R ⊆A×B; if (x,y)∈R, then  we  will write xRy 
for 'x is R-related to y '.

A binary relation on a set A is a subset R ⊆ A × A

Examples:
given A = {1, 2, 3, 4}, B = {a, b, d, e, r , t} and aRb iff in the  
Italian name of a there is the letter b,  then
R = {(2, d ), (2, e), (3, e), (3, r ), (3, t), (4, a), (4, r ), (4, t)}

given A = {3, 5, 7}, B = {2, 4, 6, 8, 10, 12} and aRb iff a is a  
divisor of b, then R = {(3, 6), (3, 12), (5, 10)}

Exercise:  in prev. example, let aRb iff a + b is an even 
number
R = ?
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Relations (2)

Relations (2)

Given a relation R from A to B ,

the domain of R is the set Dom(R) = {a ∈ A |  there exists a
b ∈B, aRb}
the co-domain of R is the set Cod (R) = {b ∈B | there exists  an a 
∈A, aRb}

Let R be a relation from A to B . The inverse relation of R is  
the relation R−1 ⊆ B × A where
R−1 = {(b, a) | (a, b)∈R }
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Relations Properties

Relation properties

Let R be a binary relation on A. R is

transitive iff aRb and bRc imply aRc for all a, b, c ∈ A;

anti-symmetric iff aRb and bRa imply a = b for all a, b ∈ A;

reflexive iff aRa for all a ∈ A;

symmetric iff aRb implies bRa for all a, b ∈ A;  
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Equivalence

Equivalence Relation

Let R be a binary relation on a set A. R is an equivalence  relation 
iff it satisfies all the following properties:

reflexive  

symmetric  

transitive

an equivalence relation is usually denoted with ~ or ≡
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Set Partition

Set Partition

Let A be a set, a partition of A is a family F of non-empty  subsets 
of A s.t.:

the subsets are pairwise disjoint

the union of all the subsets is the set A

Notice that: each element of A belongs to exactly one subset  in F .
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Equivalence Class

Equivalence Classes

Let A be a set and ≡ an equivalence relation on A, given  an
x ∈ A we  define equivalence class X the set of elements
x '∈ A	s.t.	x'	≡ x, formally
X = {x' | x' ≡ x}

Notice that: any element x is sufficient to obtain the  
equivalence class X , which is denoted also with [x]

x ≡ x' implies [x]= [x'] = X

We define quotient set of A with respect to an equivalence  relation 
≡ as the set of equivalence classes defined by ≡ on A, and denote it 
with A/ ≡
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Equivalence Class (2)

Equivalence Classes (2)

Theorem: Given an equivalence relation ≡ on A, the  equivalence 
classes defined by ≡ on A are a partition of A.  Similarly, given a 
partition on A, the relation R defined as  xRx' iff x and x' belong to the 
same subset, is an equivalence  relation on A.
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Equivalence Class (3)

Equivalence classes (3)

Example:  Parallelism relation.
Two straight lines in a plane are parallel if they do not have  any 
point in common or if they coincide.

The parallelism relation ||    is an equivalence relation since it is:
reflexive r ||  r
symmetric r ||  s  impliess ||  r
transitive r ||  s  and s ||  t imply r ||  t

We can thus obtain a partition in equivalence classes:  intuitively, 
each class represent a direction in the plane.
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Order Relation

Order Relation

Let A be a set and R be a binary relation on A. R is an order (partial), 
usually denoted with ≤, if it satisfies the following  properties:

reflexive a ≤ a
anti-symmetric a ≤ b and b ≤ a imply a = b
transitive a ≤ b and b ≤ c imply a ≤ c

If the relation holds for all a, b ∈ A then it is a total order

A relation is a strict order, denoted with <, if it satisfies the
following properties:

transitive a < b and b < c imply a < c
for all a, b∈ A either a < b or b < a or a = b
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Functions

Functions

Given two sets A and B , a function f from A to B is a  relation 
that associates to each element a in A exactly one  element b in B . 
Denoted with
f  : A →B

The domain of f is the whole set A; the image of each element a in A is
the element b in B s.t. b = f (a); the co-domain of f (or image of f ) is a
subset of B defined as follows:
Imf = {b ∈ B |  there exists an a ∈ A s.t. b = f (a)}

Notice that: it can be the case that the same element in B is  the 
image of several elements in  A.
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Classes of Functions

A function f : A →B is surjective if each element in B is  
image of some elements in A: for each b ∈ B there exists an 
a ∈ A s.t.  f (a) = b

A function f  : A →B is injective if distinct elements in A
have distinct images in B:
for each b ∈ Imf there exists a unique a ∈ A s.t. f (a) = b

A function f : A →B is bijective if it is injective and  
surjective:
for each b ∈ B there exists a unique a ∈ A s.t. f (a) = b
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Inverse Function

Inverse Function

If f  : A →B is bijective we  can define its inverse function:
f −1  : B →A

the inverse relation of f   is NOT a function.

For each function f we can define its inverse relation; such a  
relation is a function iff f   is bijective.

Example:
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Composed Function

Let f : A →B and g : B →C be functions. The  composition of f and g is 
the function g ◦ f : A →C  obtained by applying f   and then g:

(g ◦ f )(a) = g (f (a)) for each a ∈ A
g ◦ f  = {(a, g(f (a)) | a ∈ A)}
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