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L = “MCT, MAT, MBeBa, MNBa, MCR,
MGBg, N, U, O, ...”

T = “MGBa D (MAT UMNBa)”

D: {#1, #2, #3}

I: “I(MAT) = #1, I(MNBa) = #2,
I(MGBa) = #3”

M: “#1 = MAT, #2 =MNBa,
#3 = MGB2”



Extensional Semantics: Extensions

U The meanings which are intended to be attached to the symbols
and propositions form the intended interpretation o (sigma) of
the language

U The semantics of a propositional language of classes L are
extensional (semantics)

U The extensional semantics of L is based on the notion of
“extension” of a formula (proposition) in L

U The extension of a proposition is the totality, or class, or set of
all objects D (domain elements) to which the proposition
applies



Extensional Interpretation

D = {Cita, Kimba, Simba}
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Class-valuation o

U In extensional semantics, the first central semantic notion is
that of class-valuation (the interpretation function)

U Given a Class Language L
U Given a domain of interpretation U

U A class valuation o of a propositional language of classes
L is a mapping (function) assigning to each formula  of

L a set o() of “objects” (truth-set) in U:

o: L — pow(V)



Class-valuation o

Qo(l)=2
Qo(t)=U (Universal Class, or Universe)

0 o(P) = U, as defined by o

D o(-P) ={a € U|a&o(P)} = comp(c(P)) (Complement)
Do(PnQ)=0(P) no(Q) (Intersection)

Qo(PuQ)=0(P) U o(Q) (Union)



Class-valuation o

By regarding propositions as classes, it is very convenient to use
Venn diagrams

“® 1 o-P) | (»)

o(l) o(T)

o(P7Q) e.b o(P U Q) G.b




Sets: Basic Concepts

The concept of set is considered a primitive concept in math

A setis a collection of elements whose description must be
unambiguous and unique: it must be possible to decide whether an
element belongs to the set or not.

Examples:

the students in this classroom the points in a straight line the cards in
a playing pack

are all sets, while
students that hates math amusing books

are not sets.



Describing Sets

In set theory there are several description methods:

Listing: the set is described listing all its elements Example: A = {q,e,i,o,u}.

Abstraction: the set is described through a property of its elements
Example: A = {x | x is a vowel of the Latin alphabet }

Eulero-Venn Diagrams: graphical representation that supports the formal
description
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Sets: Basic Concepts

Empty Set: @ is the set containing no elements;
Membership: a € A, element belongs to the set A;

Non membership: a ¢ A, element a doesn't belong to the set A;
Equality: A = B, iff the sets A and B contain the same elements;
inequality: A # B, iff it is not the case that A = B

Subset:A < B, iff all elementsin A belong to B too;
Proper subset: AC B, iff A © B andA# B
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We define the power set of a set A, denoted with P(A), as the
set containing all the subsets of A.

Example: if A = {a,bc}, then
P(A) = {@{a}.{b}.{c}{a,b}{a,c}{b,c}{abc}}

If A has n elements, then its power set P(A) contains 2"
elements.

Exercise: proveit!!!
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Operations on Sets

Union: given two sets A and B we define the union of A and B as the
set containing the elements belonging to A or to B or to both of
them,and we denote it with A U B.

Example: if A = {a,bc}, B = {a,d,e} then
A UB ={a,bc,de}

Intersection: given two sets A and B we define the intersection of A
and B as the set containing the elements that belongs both to A and
B, and we denote it with An B.

Example: if A = {a,bc}, B = {a,d,e} then A nB = {a}



Operations on Sets (2)

Difference: given two sets A and B we define the difference of A and B
as the set containing all the elements which are members of A, but not
members of B, and denote it with A- B.

Example: if A = {a,bc}, B = {a,d,e} then A-B = {b,c}

Complement: given a universal set U and a set A, whereA & U, we

define the complement of A in U ,denoted with A (or CuA), as the set
containing all the elements in U not belonging to A.

Example:if U is the set of natural numbers and A is the set of even

numbers (0 included), then the complement of A in U is the set of odd
numbers.
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Sets: Examples

Examples:

Given A ={q,e,i,0,{u}} and B = {i, o, u}, consider the
following statements:

OBEA NO!
O B-{i0})) €A OK
© {d) U{i} CcA OK
O {u}CA NO!
0 {{u}} <A OK
O B-A=0 NO! B-A={u}
@ic AnB OK
O {i,o}=AnB OK
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Sets: Operation Properties

ANnA=A,
AUA=A

ANnB =B nA,
A UB =B UA (commutative)

AnNO=0
AUQ@=A

(AnB)nC=An(BnC),
(AUB) UC=A U(B UC) (associative)
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Sets: Operation Properties (2)

An(B UC)=(AnB) U(ANC),
AU(BNC)=(AUB)Nn(A UC)
(distributive)

(De Morgan laws)

Exercise: Prove the validity of all the properties.
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Cartesian Product

Given two sets A and B, we define the Cartesian product of A
and B as the set of ordered couples (g, b) wherea €A and

b € B; formally,

A X B ={(a, b):a =Aandb € B}

Notice that: A X B # BXA
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Cartesian Product (2)

® Examples:
¢ given A ={l, 2, 3} and B = {q, b}, then
A X B={(l, a), (I, b), (2, a), (2, b), (3, a), (3, b)} and
BXA={(a 1), (a 2), (g 3), (b 1), (b 2), (b 3)}
¢ Cartesian coordinates of the points in a plane are
an example of the Cartesian product R x R

® The Cartesian product can be computed on any number
nof sets Ai, A2..., An, A X A2 %X ... X Anis the set of
ordered n-tuple (xi, ..., xn) where xi & Aifor eachi=
I...n
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o A relation R from the setA to the set B is a subset of the Cartesian
product of A and B: R & A X B; if (x,y) €R, then we will write xRy
for 'x is R-related to y'.

© Abinary relation onaset Aisasubset R & Ax A

o Examples:
* givenA={l,23,4},B={a b, d e r, t} and aRb iff in the
Italian name of a there is the letter b, then

R={2d). (2,3 Gr) G (4a@r) 40}

o« givenA={3,57},B={2,46,8 10 12}andaRbiffaisa
divisor of b, then R ={(3, 6), (3, 12), (5, 10)}

e Exercise: in prev. example, let aRb iff a + b is an even

number
R=?
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Relations (2)

o Given a relation R from A to B,

e the domain of R is the set Dom(R) = {a € A | there exists a
b € B, aRb}

¢ the co-domain of R is the set Cod (R) = {b & B |there exists ana
€ A, aRb}

o Let R bearelation from A to B. The inverse relation of R is

the relation R-! € B X A where
R-''={(b, a) |(a b) ER}

21/61



Relations Properties

o LetR beabinary relationonA. R is

o reflexive iff aRa for all a € A;

o symmetric iff aRb implies bRa for all g b € A;

o transitive iff aRb and bRc imply aRc for all g b, c € A;

anti-symmetric iff aRb and bRa imply a= bforall g b € A;
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Equivalence

o Let R be abinary relation onasetA. R is an equivalence relation
iff it satisfies all the following properties:

o reflexive
e Symmetric

e transitive

e an equivalence relation is usually denoted with ~ or =
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Set Partition

Let A be a set, a partition of A is a family F of non-empty subsets
of A st

the subsets are pairwise disjoint

the union of all the subsets is the set A

Notice that: each element of A belongs to exactly one subset in F.
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Equivalence Class

o Let A beasetand = an equivalence relation on A, given an
x € A we define equivalence class X the set of elements
x'€ As.t. x' = x, formally
X ={x"|x'=x}

® Notice that: any element x is sufficient to obtain the
equivalence class X , which is denoted also with [x]
s x=x" implies [x]= [x]= X
© We define quotient set of A with respect to an equivalence relation

= as the set of equivalence classes defined by = on A, and denote it
with A/ =
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Equivalence Class (2)

e Theorem: Given an equivalence relation = on A, the equivalence
classes defined by = on A are a partition of A. Similarly, given a

partition on A, the relation R defined as xRx" iff x and x" belong to the
same subset, is an equivalence relation on A.
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Equivalence Class (3)

o Example: Parallelism relation.

Two straight lines in a plane are parallel if they do not have any
point in common or if they coincide.

e The parallelism relation || is an equivalence relation since it is:
o reflexiver|| r
e symmetricr || s impliess|| r
® transitiver || s ands|| timply r || t

® We can thus obtain a partition in equivalence classes: intuitively,
each class represent a direction in the plane.
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Order Relation

o Let A beasetand R beabinary relation on A. R is an order (partial),
usually denoted with £, if it satisfies the following properties:

* reflexivea<a
e anti-ssymmetrica< bandb<aimplya=b
s transitvea<bandb<cimplyasc

o [f the relation holds for all a, b € A then it is a total order

© A relation is a strict order, denoted with <, if it satisfies the
following properties:
e transitivea<band b <cimplya<c
e foralla,b € Aeithera<borb<aora=b
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Functions

Given two sets A and B, afunction f from A to B is a relation
that associates to each elementain A exactly one elementbin B.
Denoted with

f:A->B

The domain of fis the whole set A; the image of each element ain A is
the element b in B s.t. b= f(a); the co-domain of f (or image of f) is a
subset of B defined as follows:

Img={b € B | thereexistsana € A s.t. b=f(a)}

Notice that: it can be the case that the same elementin B is the
image of several elementsin A.
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Classes of Functions

A function f:A - B is surjective if each elementin B is

image of some elements in A:for eachb € B there exists an
ac€ Ast. f(a=b

A function f:A - B is injective if distinct elementsin A
have distinct images in B:
for eachb € Imys there exists auniquea € A st. f(a) = b

A function f:A - B s bijective if it is injective and
surjective:
for eachb & B there existsauniquea & A s.t. f(a) = b
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Inverse Function

If f:A = B is bijective we can define its inverse function:
f1:B >A

For each function fwe can define its inverse relation; such a
relation is a function iff f is bijective.

Example:

the inverse relation of f is NOT a function.
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Composed Function

Let f:A - B and g :B - C be functions.The composition of fand g is
the function g ° f:A - C obtained by applying f and then g:

(g°f)(a) = g(f(a) foreacha € A
g°f={(a,g(f(a) la EA)}
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