Mathematical Logic
 First Order Logic and Propositinal Logic

Luciano Serafini

FBK-IRST, Trento, Italy
September 28, 2015

Finite domain

If we are interested in representing facts on a finite domain that contains n elements we can use the following theorem:

Theorem

The formula

$$
\phi_{|\Delta|=n}=\exists x_{1}, \ldots, x_{n}\left(\bigwedge_{i \neq j=1}^{n} x_{i} \neq x_{j} \wedge \forall x\left(\bigvee_{i=1}^{n} x_{i}=x\right)\right)
$$

is true in $\mathcal{I}=\left\langle\Delta^{\mathcal{I}},{ }^{\mathcal{I}}\right\rangle$ if and only if $\left|\Delta^{\mathcal{I}}\right|=n$, i.e., the cardinality of Δ is equal to n, i.e., $\Delta^{\mathcal{I}}$ contains exactly n elements.

Finite domain

Proof.

We show that if
then
(1) If then there are $d_{1}, \ldots, d_{n} \in \Delta^{\mathcal{I}}$ s.t.
(2) $\mathcal{I} \models \bigwedge_{i \neq j=1}^{n} x_{i} \neq x_{j} \wedge \forall x\left(\bigvee_{i=1}^{n} x_{i}=x\right)\left[a\left[x_{1}:=d_{1}, \ldots, x_{n}:=d_{n}\right]\right]$
(3) $\mathcal{I} \mid=\bigwedge_{i \neq j=1}^{n} x_{i} \neq x_{j}\left[a\left[x_{1}:=d_{1}, \ldots, x_{n}:=d_{n}\right]\right.$
(4) From 3 we have that for all $1 \leq i \neq j \leq n$, $\mathcal{I} \models x_{i} \neq x_{j}\left[a\left[x_{i}:=d_{i}, x_{j}=d_{j}\right]\right]$
(5) this implies that $d_{i} \neq d_{j}$ for $1 \leq i \neq j \leq n$.
(6) since $d_{1}, \ldots, d_{n} \in \Delta^{\mathcal{I}}$, we have that
(7) from 2 we have $\mathcal{I} \models \forall x\left(\bigvee_{i=1}^{n} x_{i}=x\right)\left[a\left[x_{1}:=d_{1}, \ldots, x_{n}:=d_{n}\right]\right]$
(8) ths implies that for any $d \in \Delta^{\mathcal{I}}$,
$\mathcal{I} \models \bigvee_{i=1}^{n} x_{i}=x\left[a\left[x_{1}:=d_{1}, \ldots, x_{n}:=d_{n}, x:=d\right]\right]$
(9) which implies that for some $i, I \models x_{i}=x\left[a\left[x_{i}:=d_{i}, x=d\right]\right]$, i.e., $d_{i}=d$ for some $1 \leq i \leq n$.
(10) Since this is true for all $d \in \Delta^{\mathcal{I}}$, then

Finite domain, with names for every element

Unique Name Assumption (UNA)

Is the assumption under which the language contains a name for each element of the domain, i.e., the language contains the constant c_{1}, \ldots, c_{n}, and each constant is the name of one and only one domain element.

Theorem

The formula

$$
\phi_{\Delta=\left\{c_{1}, \ldots, c_{n}\right\}}=\bigwedge_{i \neq j=1}^{n} c_{i} \neq c_{j} \wedge \forall x\left(\bigvee_{i=1}^{n} c_{i}=x\right)
$$

$\phi_{\Delta=\left\{c_{1}, \ldots, c_{n}\right\}}$ is also called Unique Name Assumption.

Proof.

The proof is similar to the one of the previous theorem. Try it by

Finite domain - Grounding

Under the hypothesis of finite domain with a constant name for every elements, First order formulas can be propositionalized, aka grounded as follows:

$$
\begin{align*}
\phi_{\Delta=\left\{c_{1}, \ldots, c_{n}\right\}} & \models \forall x \phi(x) \equiv \phi\left(c_{1}\right) \wedge \cdots \wedge \phi\left(c_{n}\right) \tag{1}\\
\phi_{\Delta=\left\{c_{1}, \ldots, c_{n}\right\}} & \models \exists x \phi(x) \equiv \phi\left(c_{1}\right) \vee \cdots \vee \phi\left(c_{n}\right) \tag{2}
\end{align*}
$$

Generalizing:

$$
\begin{align*}
& \phi_{\Delta=\left\{c_{1}, \ldots, c_{n}\right\}} \models \forall x_{1} \ldots x_{k} \phi\left(x_{1}, \ldots, x_{k}\right) \equiv \bigwedge_{\substack{c_{i_{1}}, \ldots, c_{i} \in \\
\left\{c_{1}, \ldots, c_{n}\right\}}} \phi\left(c_{i_{1}}, \ldots, c_{i_{k}}\right) \tag{3}\\
& \phi_{\Delta=\left\{c_{1}, \ldots, c_{n}\right\}} \models \exists x_{1} \ldots x_{k} \phi\left(x_{1}, \ldots, x_{k}\right) \equiv \bigvee_{\substack{c_{1}, \ldots, c_{i} \in \\
\left\{c_{1}, \ldots, c_{n}\right\}}} \phi\left(c_{i_{1}}, \ldots, c_{i_{k}}\right) \tag{4}
\end{align*}
$$

Finite predicate extension

The assumption that states that a predicate P is true only for a finite set of objects for which the language contains a name, can be formalized by the following formulas:

$$
\forall x\left(P(x) \equiv x=c_{1} \vee \cdots \vee x=c_{n}\right)
$$

Example

- The days of the week are: Monday, Tuesday, ..., Sunday.

$$
\forall x(\operatorname{WeekDay}(x) \equiv x=\text { Mon } \vee x=\text { Tue } \vee \cdots \vee x=\text { Sun })
$$

- The WorkingDays Monday, Tuesday, ..., Friday:

$$
\forall x(\text { WorkingDay }(x) \equiv x=\text { Mon } \vee x=\text { Tue } \vee \cdots \vee x=\text { Fri })
$$

Infinite domain

Is it possible to write a (set of) formula(s) that are satisfied only by an interpretation with infinite domain

Theorem

Let $\phi_{\text {inf-dom }}$ be the formula:

$$
\begin{aligned}
& \phi_{\text {inf-dom }}=\forall x \neg R(x, x) \wedge \\
& \forall x \forall y \forall z(R(x, y) \wedge R(y, z) \supset R(x, z)) \wedge \\
& \forall x \exists y R(x, y)
\end{aligned}
$$

If $\mathcal{I} \models \phi_{\text {inf-dom }}$ then $\left|\Delta^{\mathcal{I}}\right|=\infty$.

Observe that:

- $\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \supset R(x, z))$ represents the fact that R is interpreted in a transitive relation
- $\forall x \neg R(x, x)$ represents the fact that R is anti-reflexive

Infinite domain

Proof.

- By definition there is a $d_{0} \in \Delta^{\mathcal{I}}$. Since $\mathcal{I} \models \forall x \exists y R(x, y)$, there must be a $d_{1} \in \Delta^{\mathcal{I}}$ such that $\left\langle d_{0}, d_{1}\right\rangle \in R^{\mathcal{I}}$. For the same reason there must be a $d_{2} \in \Delta^{\mathcal{I}}$, such that $\left\langle d_{1}, d_{2}\right\rangle \in R^{\mathcal{I}}$. And so on \ldots. This means that there must be an infinite sequence $d_{0}, d_{1}, d_{2}, \ldots$ such that $\left\langle d_{i}, d_{i+1}\right\rangle$, for every $i \geq 0$.
- Since $\mathcal{I} \models \forall x \forall y \forall z(R(x, y) \wedge R(y, z) \supset R(x, z))$, then for all $i<j,\left\langle d_{i}, d_{j}\right\rangle \in R^{\mathcal{I}}$.
- suppose, by contradiction, that $\left|\Delta^{\mathcal{I}}\right|=k$ for some finite number k. This means there is an i, j with $0 \leq i<j \leq k+1$ such that $d_{i}=d_{j}$.
- The fact that $\left\langle d_{i}, d_{j}\right\rangle \in R^{\mathcal{I}}$ implies that $\left\langle d_{i}, d_{i}\right\rangle \in R^{\mathcal{I}}$. But this contradicts the fact that $\mathcal{I} \models \forall x \neg R(x, x)$.

