Mathematical Logic First Order Logic and Propositinal Logic

Luciano Serafini

FBK-IRST, Trento, Italy

September 28, 2015

Finite domain

If we are interested in representing facts on a finite domain that contains n elements we can use the following theorem:

Theorem

The formula

$$\phi_{|\Delta|=n} = \exists x_1, \dots, x_n \left(\bigwedge_{i\neq j=1}^n x_i \neq x_j \land \forall x \left(\bigvee_{i=1}^n x_i = x \right) \right)$$

is true in $\mathcal{I}=\left\langle \Delta^{\mathcal{I}},\cdot^{\mathcal{I}}\right\rangle$ if and only if $|\Delta^{\mathcal{I}}|=n$, i.e., the cardinality of Δ is equal to n, i.e., $\Delta^{\mathcal{I}}$ contains exactly n elements.

Finite domain

Proof.

We show that if then

- **1** If then there are $d_1, \ldots, d_n \in \Delta^{\mathcal{I}}$ s.t.
- $2 \mathcal{I} \models \bigwedge_{i\neq i=1}^n x_i \neq x_j \land \forall x \left(\bigvee_{i=1}^n x_i = x\right) \left[a[x_1 := d_1, \dots, x_n := d_n]\right]$
- **4** From 3 we have that for all $1 \le i \ne j \le n$, $\mathcal{I} \models x_i \ne x_j [a[x_i := d_i, x_j = d_j]]$
- **5** this implies that $d_i \neq d_j$ for $1 \leq i \neq j \leq n$.
- **6** since $d_1, \ldots, d_n \in \Delta^{\mathcal{I}}$, we have that
- from 2 we have $\mathcal{I} \models \forall x \left(\bigvee_{i=1}^n x_i = x \right) \left[a[x_1 := d_1, \dots, x_n := d_n] \right]$
- 1 this implies that for any $d \in \Delta^{\mathcal{I}}$, $\mathcal{I} \models \bigvee_{i=1}^{n} x_i = x[a[x_1 := d_1, \dots, x_n := d_n, x := d]]$
- **9** which implies that for some i, $I \models x_i = x[a[x_i := d_i, x = d]]$, i.e., $d_i = d$ for some $1 \le i \le n$.
- **①** Since this is true for all $d \in \Delta^{\mathcal{I}}$, then

Finite domain, with names for every element

Unique Name Assumption (UNA)

Is the assumption under which the language contains a name for each element of the domain, i.e., the language contains the constant c_1, \ldots, c_n , and each constant is the name of one and only one domain element.

Theorem

The formula

$$\phi_{\Delta=\{c_1,\ldots,c_n\}} = \bigwedge_{i\neq j=1}^n c_i \neq c_j \land \forall x \left(\bigvee_{i=1}^n c_i = x\right)$$

 $\phi_{\Delta=\{c_1,\ldots,c_n\}}$ is also called Unique Name Assumption.

Proof.

The proof is similar to the one of the previous theorem. Try it by

Finite domain - Grounding

Under the hypothesis of finite domain with a constant name for every elements, First order formulas can be propositionalized, aka grounded as follows:

$$\phi_{\Delta=\{c_1,\ldots,c_n\}} \models \forall x \phi(x) \equiv \phi(c_1) \wedge \cdots \wedge \phi(c_n)$$
 (1)

$$\phi_{\Delta = \{c_1, \dots, c_n\}} \models \exists x \phi(x) \equiv \phi(c_1) \lor \dots \lor \phi(c_n)$$
 (2)

Generalizing:

$$\phi_{\Delta=\{c_1,\ldots,c_n\}} \models \forall x_1\ldots x_k \phi(x_1,\ldots,x_k) \equiv \bigwedge_{\substack{c_{i_1},\ldots,c_{i_k} \in \\ \{c_1,\ldots,c_n\}}} \phi(c_{i_1},\ldots,c_{i_k})$$
 (3)

$$\phi_{\Delta = \{c_1, \dots, c_n\}} \models \exists x_1 \dots x_k \phi(x_1, \dots, x_k) \equiv \bigvee_{\substack{c_{i_1}, \dots, c_{i_k} \in \\ \{c_1, \dots, c_n\}}} \phi(c_{i_1}, \dots, c_{i_k})$$
 (4)

Finite predicate extension

The assumption that states that a predicate P is true only for a finite set of objects for which the language contains a name, can be formalized by the following formulas:

$$\forall x (P(x) \equiv x = c_1 \vee \cdots \vee x = c_n)$$

Example

• The days of the week are: Monday, Tuesday, ..., Sunday.

$$\forall x (\mathsf{WeekDay}(x) \equiv x = \mathsf{Mon} \lor x = \mathsf{Tue} \lor \cdots \lor x = \mathsf{Sun})$$

The WorkingDays Monday, Tuesday, ..., Friday:

$$\forall x (\mathsf{WorkingDay}(x) \equiv x = \mathsf{Mon} \lor x = \mathsf{Tue} \lor \cdots \lor x = \mathsf{Fri})$$

Infinite domain

Is it possible to write a (set of) formula(s) that are satisfied only by an interpretation with infinite domain

Theorem

Let $\phi_{inf-dom}$ be the formula:

$$\phi_{\textit{inf-dom}} = \forall x \neg R(x, x) \land \\ \forall x \forall y \forall z (R(x, y) \land R(y, z) \supset R(x, z)) \land \\ \forall x \exists y R(x, y)$$

If
$$\mathcal{I} \models \phi_{\mathit{inf-dom}}$$
 then $|\Delta^{\mathcal{I}}| = \infty$.

Observe that:

- $\forall x \forall y \forall z (R(x,y) \land R(y,z) \supset R(x,z))$ represents the fact that R is interpreted in a transitive relation
- $\forall x \neg R(x, x)$ represents the fact that R is anti-reflexive

Infinite domain

Proof.

- By definition there is a $d_0 \in \Delta^{\mathcal{I}}$. Since $\mathcal{I} \models \forall x \exists y R(x,y)$, there must be a $d_1 \in \Delta^{\mathcal{I}}$ such that $\langle d_0, d_1 \rangle \in R^{\mathcal{I}}$. For the same reason there must be a $d_2 \in \Delta^{\mathcal{I}}$, such that $\langle d_1, d_2 \rangle \in R^{\mathcal{I}}$. And so on This means that there must be an infinite sequence d_0, d_1, d_2, \ldots such that $\langle d_i, d_{i+1} \rangle$, for every $i \geq 0$.
- Since $\mathcal{I} \models \forall x \forall y \forall z (R(x,y) \land R(y,z) \supset R(x,z))$, then for all $i < j, \ \langle d_i, d_j \rangle \in R^{\mathcal{I}}$.
- suppose, by contradiction, that $|\Delta^{\mathcal{I}}| = k$ for some finite number k. This means there is an i,j with $0 \le i < j \le k+1$ such that $d_i = d_j$.
- The fact that $\langle d_i, d_j \rangle \in R^{\mathcal{I}}$ implies that $\langle d_i, d_i \rangle \in R^{\mathcal{I}}$. But this contradicts the fact that $\mathcal{I} \models \forall x \neg R(x, x)$.

