Mathematical Logic
 Exam

15 January 2016

－Verranno valutati solo gli esercizi con soluzione riportata su questi fogli；
－Rispondete utilizzando una penna a inchiostro（no matite）；
－Scrivete in stampatello，in modo chiaro（risposte illeggibili non saranno considerate）；
－Depennate in modo chiaro il lavoro di brutta copia e le risposte che non volete siano considerate；

```
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ 
```


Exercise 1．［5 marks］

Say whether the propositions below are valid（VAL），satisfiable but not valid（SAT）or unsatisfiable （UNSAT）in PL：

a．	$\neg(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow(\mathrm{A} \wedge \neg \mathrm{B})$	$\square \mathrm{VAL}$	$\square \mathrm{SAT}$	$\square \mathrm{UNSAT}$
b．	$(\mathrm{A} \wedge \mathrm{B}) \wedge \neg \mathrm{B}$	$\square \mathrm{VAL}$	$\square \mathrm{SAT}$	$\square \mathrm{UNSAT}$
c．	$(\mathrm{B} \rightarrow \mathrm{A}) \wedge(\neg \mathrm{A} \wedge \mathrm{B})$	$\square \mathrm{VAL}$	$\square \mathrm{SAT}$	\square UNSAT
d．	$((\mathrm{A} \rightarrow \mathrm{B}) \rightarrow \mathrm{A}) \rightarrow \mathrm{A}$	$\square \mathrm{VAL}$	$\square \mathrm{SAT}$	\square UNSAT
e．	$\neg(\mathrm{A} \wedge \mathrm{B}) \rightarrow(\neg \mathrm{A} \wedge \neg \mathrm{B})$	$\square \mathrm{VAL}$	\square SAT	\square UNSAT

Exercise 2. [4 marks]

Provide the formal definition of (a) being true in a model and (b) satisfiability for a proposition P in PL
[2 marks] (a) P is true under v if $v \vDash P$, where $v \vDash P$ iff $v(P)=$ True [2 marks]
[2 marks] (b) P is satisfiable if there is some (at least one) truth valuation v such that $v \vDash P$
Exercise 3. [2 marks]
Say whether the following propositions are "true" or "false".

a)	In PL, the interpretation of the symbol \perp has always the same meaning regardless the interpretation function.	\square True	\square False
b)	In PL, the notation $v \vDash A$ has to be read " v entails A".	\square True	\square False

Exercise 4. [4 marks]

Using the tableaux calculus, determine whether the formula $\neg A \wedge(C \rightarrow A) \wedge B$ is unsatisfiable. Mark each branch as open or closed. Motivate the answer.

Convert the formula in CNF.

Since the first branch is open then it is satisfiable.

Exercise 5. [4 marks]

Provide the steps and the output of the DPLL algorithm (by assuming a version WITHOUT the pure literal step) for the PL formula $(C \rightarrow A) \wedge(C \rightarrow B) \wedge \neg(A \wedge B)$ and say if the formula is satisfiable or not.

Convert the formula in CNF. By implication elimination we obtain the formula: $(\neg \mathrm{C} \vee \mathrm{A}) \wedge$ $(\neg \mathrm{C} \vee \mathrm{B}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{B})$

As we do not have unit clauses, we need to go for the branching literal step.
Let us choose C and first call DPLL for: $(\neg C \vee A) \wedge(\neg C \vee B) \wedge(\neg A \vee \neg B) \wedge C$ By assigning $\mathrm{v}(\mathrm{C})=T$, by propagation we obtain: $\mathrm{A} \wedge \mathrm{B} \wedge(\neg \mathrm{A} \vee \neg \mathrm{B})$

With the branching on A we can choose to call DPLL on: $A \wedge B \wedge(\neg A \vee \neg B) \wedge A$ By assigning $\mathbf{v}(A)=T$, by propagation we obtain: $B \wedge \neg B$ that is clearly inconsistent.

Check for the other branch $(\neg \mathrm{C} \vee \mathrm{A}) \wedge(\neg \mathrm{C} \vee \mathrm{B}) \wedge(\neg \mathrm{A} \vee \neg \mathrm{B}) \wedge \neg \mathrm{C}$
By assigning $\mathrm{v}(\mathrm{C})=\mathrm{F}$, by propagation we obtain $(\neg \mathrm{A} \vee \neg \mathrm{B})$
We need to go for the branching literal step again:
Let us choose C and first call DPLL for: $\neg \mathrm{A} \wedge(\neg \mathrm{A} \vee \neg \mathrm{B})$
By assigning $\mathrm{v}(\mathrm{A})=\mathrm{F}$, by propagation we obtain that the formula is satisfiable.

Exercise 6. [2 marks]

Provide the formal definition of interpretation over an assignment in FOL

$I_{a}(c)=I(c)$	for each constant c
$I_{2}(x)=a(x)$	for each variable x
$I_{a}\left(f^{n}\left(t_{1}, \ldots, t_{n}\right)\right)=I\left(f^{n}\right)\left(I_{a}\left(t_{1}\right), \ldots, I_{a}\left(t_{n}\right)\right)$	for each function f of arity n

Exercise 7．［4 marks］－FOL formalization

Given the following language：
Constants：A，B，C，D，E，F；
Predicates： On^{2} ，Above ${ }^{2}$ ， $\mathrm{Free}^{1}{ }^{1}$ ，Red ${ }^{1}$ ，Green ${ }^{1}$ ．
Translate in FOL the following natural language sentences：
［1 mark］Everything that is free has nothing on it
$\varphi_{1}: ~ \forall \mathrm{x}$ ．（Free（x）$\rightarrow \neg \exists_{\mathrm{y}} . \mathrm{On}(\mathrm{y}, \mathrm{x})$ ）

［1 mark］Everything that is green is free

$\varphi_{2}: ~ \forall \mathrm{x}$ ．（Green（x）\rightarrow Free（x））
［1 mark］There is something that is red and is not free
$\varphi_{3}: \exists \mathrm{x}$ ．（Red $(\mathrm{x}) \wedge \neg$ Free（ x$)$ ）
［1 mark］Everything that is not green and is above B ，is red
$\varphi_{4}: \forall x .(\neg \operatorname{Green}(x) \wedge \operatorname{Above}(x, B) \longrightarrow \operatorname{Red}(x))$

Exercise 8．［4 marks］－FOL interpretation／semantics

Given the language provided in the previous exercise and given the following interpretation：
－ $\mathrm{I}_{1}(\mathrm{~A})=$ hat， $\mathrm{I}_{1}(\mathrm{~B})=$ Joe， $\mathrm{I}_{1}(\mathrm{C})=$ bike， $\mathrm{I}_{1}(\mathrm{D})=$ Jill， $\mathrm{I}_{1}(\mathrm{E})=$ case， $\mathrm{I}_{1}(\mathrm{~F})=$ ground；
－ $\mathrm{I}_{1}(\mathrm{On})=\{\langle$ hat，Joe \rangle,\langle Joe，bike \rangle,\langle bike，ground \rangle,\langle Jill，case \rangle,\langle case，ground $\rangle\}$
－ $\mathrm{I}_{1}($ Above $)=\{\langle$ hat，Joe \rangle,\langle hat，bike \rangle,\langle hat，ground \rangle,\langle Joe，bike \rangle,\langle Joe，ground \rangle,\langle bike， ground 〉，〈 Jill，case〉，〈Jill，ground 〉，〈 case，ground〉\}
－ $\mathrm{I}_{1}($ Free $)=\{\langle$ hat \rangle,\langle jill $\rangle\}, \mathrm{I}_{1}($ Green $)=\{\langle$ hat \rangle,\langle ground $\rangle\}, \mathrm{I}_{1}($ Red $)=\{\langle$ bike \rangle,\langle case $\rangle\}$
For each formula in Exercise 7，check whether it is satisfied by the interpretation I_{1} ．

$\varphi_{\mathbf{1}}$	\square yes	\square no
$\varphi_{\mathbf{2}}$	\square yes	\square no
$\boldsymbol{\varphi}_{\mathbf{3}}$	\square yes	\square no
$\varphi_{\mathbf{4}}$	\square yes	\square no

Exercise 9．［4 marks］－Modal logic

Given the Kripke model $\mathrm{M}=<\mathrm{W}, \mathrm{R}, \mathrm{I}>$ with： $\mathrm{W}=\{1,2,3\}, \mathrm{R}=\{<1,2>,<2,1>,<1,3>,<3$ ， $3>\}, \mathrm{I}(\mathrm{A})=\{1,2\}$ and $\mathrm{I}(\mathrm{B})=\{2,3\}$
a．［2 marks］Say whether the frame $<\mathrm{W}, \mathrm{R}>$ is serial，reflexive，symmetric or transitive． It is serial．
b．［2 marks］Is $M, 1 \vDash \diamond(A \wedge B)$ ？Provide a proof for your response．
Yes，because $A \wedge B$ is true in 2 and 2 is accessible from 1.

