Mathematical Logic Exam 15 January 2016

- Verranno valutati solo gli esercizi con soluzione riportata su questi fogli;
- Rispondete utilizzando una penna a inchiostro (no matite);
- Scrivete in stampatello, in modo chiaro (risposte illeggibili non saranno considerate);
- Depennate in modo chiaro il lavoro di brutta copia e le risposte che non volete siano considerate;

Exercise 1. [5 marks]

Say whether the propositions below are valid (VAL), satisfiable but not valid (SAT) or unsatisfiable (UNSAT) in PL:

a.	$\neg(\mathbf{A} \to \mathbf{B}) \to (\mathbf{A} \land \neg \mathbf{B})$	□ VAL □ SAT	□ UNSAT
b.	$(A \land B) \land \neg B$	\Box VAL \Box SAT	□ UNSAT
с.	$(\mathbf{B} \to \mathbf{A}) \land (\neg \mathbf{A} \land \mathbf{B})$	\Box VAL \Box SAT	□ UNSAT
d.	$((A \to B) \to A) \to A$	□ VAL □ SAT	□ UNSAT
e.	$\neg(\mathbf{A} \land \mathbf{B}) \rightarrow (\neg \mathbf{A} \land \neg \mathbf{B})$	□ VAL □ SAT	□ UNSAT

A T T T T	4 7 7 7 7	→ (A -> B F T T F F T F T	Ð	(A A ¬B) F T F F F
A T F F	B F T T	(АЛВ) T F F F F	1 (E) (E) (E) (E)	7B F T F T
4 T F F	B F F F	(<u>B</u> → A) T T F T	^ (F) (F) (F)	(-1A ^ B) F F T F

Exercise 2. [4 marks]

Provide the formal definition of (a) being true in a model and (b) satisfiability for a proposition P in PL

[2 marks] (a) P is true under v if $v \models P$, where $v \models P$ iff v(P) = True [2 marks] [2 marks] (b) P is satisfiable if there is some (at least one) truth valuation v such that $v \models P$

Exercise 3. [2 marks]

Say whether the following propositions are "true" or "false".

a)	In PL, the interpretation of the symbol \perp has always the same	□ True	□ False
	meaning regardless the interpretation function.		
b)	In PL, the notation $v \models A$ has to be read "v entails A".	□ True	□ False

Exercise 4. [4 marks]

Using the tableaux calculus, determine whether the formula $\neg A \land (C \rightarrow A) \land B$ is unsatisfiable. Mark each branch as open or closed. Motivate the answer.

Convert the formula in CNF.

$$\neg A \land (\neg C \lor A) \land B$$

$$| \\ \neg A$$

$$| \\ (\neg C \lor A) \land B$$

$$| \\ (\neg C \lor A)$$

$$| \\ B$$

$$/ \land$$

$$\neg C A$$

Since the first branch is open then it is satisfiable.

Exercise 5. [4 marks]

Provide the steps and the output of the DPLL algorithm (by assuming a version WITHOUT the pure literal step) for the PL formula ($C \rightarrow A$) \land ($C \rightarrow B$) $\land \neg(A \land B)$ and say if the formula is satisfiable or not.

Convert the formula in CNF. By implication elimination we obtain the formula: $(\neg C \lor A) \land (\neg C \lor B) \land (\neg A \lor \neg B)$

As we do not have unit clauses, we need to go for the branching literal step. Let us choose C and first call DPLL for: $(\neg C \lor A) \land (\neg C \lor B) \land (\neg A \lor \neg B) \land C$ By assigning v(C) = T, by propagation we obtain: $A \land B \land (\neg A \lor \neg B)$

With the branching on A we can choose to call DPLL on: $A \land B \land (\neg A \lor \neg B) \land A$ By assigning v(A) = T, by propagation we obtain: $B \land \neg B$ that is clearly inconsistent.

Check for the other branch $(\neg C \lor A) \land (\neg C \lor B) \land (\neg A \lor \neg B) \land \neg C$ By assigning v(C) = F, by propagation we obtain $(\neg A \lor \neg B)$ We need to go for the branching literal step again: Let us choose C and first call DPLL for: $\neg A \land (\neg A \lor \neg B)$ By assigning v(A) = F, by propagation we obtain that the formula is satisfiable.

Exercise 6. [2 marks]

Provide the formal definition of interpretation over an assignment in FOL

$\mathbf{I}_{\mathbf{a}}(\mathbf{c}) = \mathbf{I}(\mathbf{c})$	for each constant c
$\mathbf{I}_{\mathbf{a}}(\mathbf{x}) = \boldsymbol{a}(\mathbf{x})$	for each variable x
$I_{a}(f^{n}(t_{1},,t_{n})) = I(f^{n})(I_{a}(t_{1}),,I_{a}(t_{n}))$	for each function f of arity n

Exercise 7. [4 marks] – FOL formalization

Given the following language: Constants: A, B, C, D, E, F; Predicates: On², Above², Free¹, Red¹, Green¹.

Translate in FOL the following natural language sentences:

[1 mark] Everything that is free has nothing on it $\varphi_1 : \forall x.(Free(x) \rightarrow \neg \exists y.On(y, x))$

[1 mark] Everything that is green is free $\varphi_2: \forall x.(Green(x) \rightarrow Free(x))$

[1 mark] There is something that is red and is not free φ_3 : $\exists x.(\text{Red}(x) \land \neg \text{Free}(x))$

[1 mark] Everything that is not green and is above B, is red $\varphi_4: \forall x.(\neg Green(x) \land Above(x, B) \rightarrow Red(x))$

Exercise 8. [4 marks] - FOL interpretation/semantics

Given the language provided in the previous exercise and given the following interpretation:

- $I_1(A) = hat$, $I_1(B) = Joe$, $I_1(C) = bike$, $I_1(D) = Jill$, $I_1(E) = case$, $I_1(F) = ground$;
- $I_1(On) = \{ (hat, Joe), (Joe, bike), (bike, ground), (Jill, case), (case, ground) \} \}$
- I₁(Above) = { (hat, Joe), (hat, bike), (hat, ground), (Joe, bike), (Joe, ground), (bike, ground), (Jill, case), (Jill, ground), (case, ground) }
- $I_1(Free) = \{(hat), (Jill)\}, I_1(Green) = \{(hat), (ground)\}, I_1(Red) = \{(bike), (case)\}$

For each formula in Exercise 7, check whether it is satisfied by the interpretation I_1 .

φ1	□ yes	\Box no
φ2	□ yes	□ no
φ3	□ yes	\Box no
φ4	□ yes	\Box no

Exercise 9. [4 marks] – Modal logic

Given the Kripke model M = <W, R, I> with: W = {1, 2, 3}, R = {<1, 2>, <2, 1>, <1, 3>, <3, 3>}, I(A) = {1, 2} and I(B) = {2, 3}

- a. [2 marks] Say whether the frame <W, R> is serial, reflexive, symmetric or transitive. It is serial.
- **b.** [2 marks] Is M, $1 \models \Diamond(A \land B)$? Provide a proof for your response. Yes, because $A \land B$ is true in 2 and 2 is accessible from 1.