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Goal

In these slides we present an overview of the basic proof techniques
adopted in mathematics and computer science to prove theorems.
We consider:

1 direct proof

2 proof by “reductio ad absurdum”, or, indirect proof

3 proof under hypothesis

4 proof by cases

5 proof of a universal statement

6 proof of an existential statement

7 proof of a universal implication

8 proof by induction
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Direct proof of a fact A

Theorem

the fact A is true

Schema of a direct proof (example).

from axiom A1 it follows that A2,

from axiom B1 it follows B2,

form A2 and B2 it follows C

from C we can conclude that either C1 or C2, then

from C1 it follows that A

and also from C2 it follows that A.

So we can conclude that A is true.
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Direct proof of a fact A

Remark

Axioms (A1 and B1) are facts that are accepted to be true
without a proof.

from axioms we can infer other facts (e.g., A2, B2)

form inferred facts we can infer other facts (e.g., C )

from a fact we can infer some alternative facts (e.g., either C1

or C2),

alternatives can be treated separately, to prove the theorem.
In this case we have to show that it is true in all the possible
alternatives (see proof by cases).

Chiara Ghidini Mathematical Logic



Example of direct proof

Theorem

The sum of two even integers is always even.

Proof.

Let x and y two arbitrary even numbers.
They can be written as

x = 2a and y = 2b

Then the sum x + y = 2a + 2b = 2(a + b)

From this it is clear that 2 is a factor of x + y .

So, the sum of two even integers is always an even number.
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Proof by “reductio ad absurdum”

Theorem

It is the case that A is true

By reductio ad absurdum.

Suppose that A is not the case, then by reasoning, you try to reach
an impossible situation.
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Example of proof by “reductio ad absurdum”

Theorem
√

2 is not a rational number

Proof.

1 Suppose that
√

2 is a rational number

2 then there are two coprime integers n and m such that
√

2 = n/m (n/m is an
irreducible fraction)

3 which means that 2 = n2/m2

4 which implies that n2 = 2 ∗m2.

5 This implies that n is an even number and there exists k such that n = 2 ∗ k.

6 From n2 = 2m2 (step 4), we obtain that (2 ∗ k)2 = 2 ∗m2

7 which can be rewritten in m2 = 2 ∗ k2.

8 Similarly to above this means that m2 is even, and that m is even.

9 but this contradicts the hypothesis that n and m are coprime, and is therefore
impossible.

10 Therefore
√

2 is not a rational number
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Proof under hypothesis

Theorem

if A then B

Schema 1: Direct proof.

If A is true, then A1 is also true, then . . .An is true, and therefore
B is true.

Schema 2: Proof by reductio ad absurdum.

Suppose that B is not the case, then B1 is the case, then . . . , then
Bn is the case, and therefore A is not the case
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Proof of an “if . . . then. . . ” theorem

Theorem

If A ∪ B = A then B ⊆ A

Direct Proof.

Suppose that A ∪ B = A, then

x ∈ B implies that x ∈ A ∪ B.

This implies that x ∈ A,

and therefore B ⊆ A.
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Proof of an “if . . . then. . . ” theorem

Theorem

If A ∪ B = A then B ⊆ A

Proof by reductio ad absurdum.

Suppose that B 6⊆ A

This implies that there exists x ∈ B such that x 6∈ A.

This implies that x ∈ A ∪ B such that x 6∈ A,

and therefore A ∪ B 6= A.
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Proof by cases

Theorem

If A then B

Proof.

If A then either A1 or A2 or . . . or An. Then, let us consider all the
cases one by one

if A1, then . . . then B

if A2, then . . . then B

. . .

if An, then . . . then B

So in all the cases we managed to proof the same conclusion B.
This implies that the theorem is correct.
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Example of proof by cases

Theorem

If n is an integer then n2 ≥ n.

Proof.
If n is an integer then we have three cases:

1 n = 0,

2 n > 0,

3 n < 0

1 n = 0, then n2 = 0, and therefore n2 ≥ n.

2 n ≥ 1, then by multiplying the inequality for a positive integer n, we have that
n2 ≥ n.

3 if n ≤ −1, then since n2 is always positive we have that n2 ≥ n.

Since in all the cases we have conclude that n2 ≥ n we can conclude that the theorem
is correct.
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Proof of a universal statement

Theorem

The property A holds for all x.a

aIn symbols, ∀xA(x).

Proof Schema.

Consider a generic element x and try to show that it satisfies
property A.
In doing that you are not allowed to make any additional
assumptions on the nature of x . If you make some extra
assumption on x , say for instance that x has the property B, then
you have proved a different theorem which is “for every x , if x has
the property B then it has the property A”.
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Example of a universal statement

Theorem

For any integer a, if a is odd then a2 is also odd.

Proof (direct proof in this case).

1 If a is odd, then a = 2m+ 1 for some integer m (By definition)

2 Then a2 = (2m + 1)2 = 4m2 + 4m + 1 = 2(2m2 + 2m) + 1

3 Let z = 2m2 + 2m. z is an integer (trivial proof because of
the fact that m is an integer).

4 Then a2 = 2z + 1 for an integer z , which means, by
definition, that a2 is an odd number.
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Proof of an existential statement

Theorem

There is an x that has a property A.a

aIn symbols, ∃x .A(x)

Schema 1: Constructive proof.

1 Construct a special element x (usually by means of a
procedure (a set of steps))

2 Show that x has the property A

Schema 2: Non Constructive proof (reductio ad absurdum).

Assume that there is no such an x such that the property A holds
for x and try to reach an inconsistent (absurd) situation.
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Example of an existential statement

Theorem

There is an integer n > 5 such that 2n − 1 is a prime number.

Proof (constructive).

1 Examine all integers n > 5.

2 n = 6. 26 − 1 = 64− 1 = 63. NO!

3 n = 7. 27 − 1 = 128− 1 = 127. YES!
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Universal and existential statements

Disproving universal statements reduces in proving an
existential one.

Dont try to construct a general argument when a single
specific counterexample would be sufficient!

Example

For every rational number q, there is a rational number r such that
qr = 1

This statement is false. In fact 0 has no inverse.
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Universal and existential statements

Disproving an existential statement needs proving a universal
one.

Example

There is an integer k such that k2 + 2k + 1 < 0

This statement is false. Indeed it can be proved that
k2 + 2k + 1 ≥ 0

Chiara Ghidini Mathematical Logic

Universal and existential statements

Disproving an existential statement needs proving a universal
one.

Example

There is an integer k such that k2 + 2k + 1 < 0

This statement is false. Indeed it can be proved that
k2 + 2k + 1 ≥ 0

Chiara Ghidini Mathematical Logic

Proof of a universal implication

Theorem

For all x, if x has a property A, then x has the property B.a

aIn symbols, ∀x(A(x) ⇒ B(x)).

Proof.

The proof is a combination of the proof method for universal statements, and the
proof for implication statements.
Take an arbitrary x that satisfies the property A. then show, either with a direct proof
or by reductio ad absurdum, that if x has property A, then x has property B as
well.

Remark

If there is no such an x that has a property A, the theorem ∀x(A(x)⇒ B(x)) is true.
For instance the statement

“For every number x (if x > y for all y , then y = 23)”

is a theorem.
The proof consists in showing that there is no x which is greater than all the numbers.
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Proof by induction

The simplest and most common form of mathematical induction
infers that a statement involving a natural number n holds for all
values of n.
The proof consists of two steps:

1 The basis (base case): prove that the statement holds for the
first natural number n. Usually, n = 0 or n = 1.

2 The inductive step: prove that, if the statement holds for
some natural number n, then the statement holds for n + 1.

The hypothesis in the inductive step that the statement holds for
some n is called the inductive hypothesis.
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Proof by induction: example

Theorem

0 + 1 + . . . + x =
x(x + 1)

2
[x Natural Number]

proof

Base case Show that the statement holds for n = 0.

0 =
0(0 + 1)

2
.

Inductive step Show that if the statement holds for n, then it holds for n + 1.

Assume that 0 + 1 + . . . + n =
n(n + 1)

2
, we have to show that

0 + 1 + . . . + n + (n + 1) =
(n + 1)((n + 1) + 1)

2
.
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Proof by induction: example - cont’d

1 0 + 1 + . . . + n + (n + 1) =
n(n + 1)

2
+ (n + 1) from the

inductive hypothesis

2 Algebraically,
n(n + 1)

2
+ (n + 1) =

n(n + 1) + 2(n + 1)

2

3 =
n2 + n + 2n + 2

2

4 =
(n + 1)(n + 2)

2

5 =
(n + 1)(n + 1 + 1)

2

6 =
(n + 1)((n + 1) + 1)

2
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(n + 1)(n + 1 + 1)

2

6 =
(n + 1)((n + 1) + 1)

2
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Induction on inductively defined sets.

Main idea

Prove a statement of the form

forall x, x has the property A

when x is an element of a set which is inductively defined.

Definition (Inductive definition of A)

The set A is inductively defined as follows:

Base: a1 ∈ A, a2 ∈ A, . . . , an ∈ A

Step 1: if y1 . . . yk1 ∈ A, then S1(y1, . . . yk1) ∈ A

Step 2: if y1 . . . yk2 ∈ A, then S2(y1, . . . yk2) ∈ A

...

Step m: if y1 . . . ykm ∈ A, then Sm(y1, . . . ykm) ∈ A

Closure: Nothing else is contained in A
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Example of set defined by induction

Definition

We inductively define a set P of strings, built starting from the
Latin alphabet, as follows:

Base 〈a〉, 〈b〉, . . . , 〈z〉 ∈ P

Step 1 if x ∈ P then concat(x , x) ∈ P

Step 2 if x , y ∈ P, then concat(x , y , x) ∈ P

Closure nothing else is in P

where concat(〈x1 . . . xn〉, 〈y1 . . . yn〉) = 〈x1 . . . xny1 . . . yn〉.
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Example of proof by induction on sets defined by
induction.

Theorem

For any x ∈ P, x is a palindrome, i.e., x = 〈x1 . . . xn〉 ∈ P and for all 1 ≤ k ≤ n,
xk = xn−k+1.

Proof.

Base case We have to prove that x is palindrome for all strings in the Base set.

If x belongs to P because of the base case definition, then it is either
〈a〉 or . . . 〈z〉, then it is of the form x = 〈x1〉, then n = 1 and for all
k ≤ 1 ≤ 1, i.e., for k = 1 we have that x1 = x1−1+1.

Inductive step Show that if the statement holds for a certain P, then it holds also
for P enriched by the strings at steps 1 and 2.

Step 1. If x ∈ P because of step 1, then x is of the form
concat(y , y), for some y ∈ P. From the definition of “concat”, x is
of the form 〈y1 . . . yn/2y1 . . . yn/2〉, where 〈y1 . . . yn/2〉 ∈ P (i.e., is
palindrome).
By induction for all 1 ≤ k ≤ n/2, yk = yn/2−k+1.
This implies that, for all 1 ≤ k ≤ n, if k ≤ n/2, then
xk = yk = yn/2−k+1 = xn/2+n/2−k+1 = xn−k+1.
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Example of proof by induction on sets defined by
induction.

Proof.

Inductive step Show that if the statement holds for a certain P, then it holds also
for P enriched by the strings at steps 1 and 2.

Step 2. If x ∈ P because of step 2, then x is of the form
concat(z, y , z), for some z, y ∈ P. From the definition of “concat”,
x is of the form 〈z1 . . . zly1 . . . yhz1 . . . zl 〉, where 〈z1 . . . zl 〉 ∈ P and
〈y1 . . . yh〉 ∈ P (i.e., are palindrome).
By induction for all 1 ≤ k ≤ l , zk = zl−k+1 and for all 1 ≤ k ≤ h,
yk = yh−k+1.
This implies that for all 1 ≤ k ≤ n we have that:
Case 1 if k ≤ l , then xk = zk = zl−k+1 = xl+h+l−k+1 = xn−k+1.
Case 2 if l + 1 ≤ k ≤ l + 1 + h/2, then
xk = yk−l = yh−k+l+1 = xh−k+l+l+1 = xn−k+1.
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