In these slides we present an overview of the basic proof techniques adopted in mathematics and computer science to prove theorems. Mathematical Logic We consider: An overview of Proof methods direct proof 9 proof by "reductio ad absurdum", or, indirect proof Chiara Ghidini proof under hypothesis proof by cases FBK-IRST, Trento, Italy proof of a universal statement September 28, 2014 proof of an existential statement proof of a universal implication proof by induction

Goal

	100 S (S) (S) (S) (S)		<	(4) (2) (2) (2)	2 00	.0
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic			
Direct proof of a fact A		Direct proof of a fact A				

Theorem	Remark
Schema of a direct proof (example).	 Axioms (A₁ and B₁) are facts that are accepted to be true without a proof.
• from axiom A ₁ it follows that A ₂ ,	• from axioms we can infer other facts (e.g., A_2 , B_2) a form inferred facts we can infer other facts (e.g., C)
• from axiom B_1 it follows B_2 , e form A_2 and B_2 it follows C	• from a fact we can infer some alternative facts (e.g., either C_1
 from C we can conclude that either C₁ or C₂, then 	or <i>C</i> ₂),
• from C ₁ it follows that A	 alternatives can be treated separately, to prove the theorem. In this case we have to show that it is true in all the possible
 and also from C₂ it follows that A. 	alternatives (see proof by cases).
So we can conclude that A is true.	

Chiara Ghidini

101 100 121 121 21 2000

The sum of two even integers is always even.

Proof.

 Let x and y two arbitrary even numbers. They can be written as

$$x = 2a$$
 and $y = 2b$

Theorem

The sum of two even integers is always even.

	(日) (日) (日) (日) (日) (日)		(0) (0) (2) (2) (2) (0) (0)
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Example of direct proof		Example of direct proof	

Theorem

The sum of two even integers is always even.

Proof.

 Let x and y two arbitrary even numbers. They can be written as

x = 2a and y = 2b

- Then the sum x + y = 2a + 2b = 2(a + b)
- From this it is clear that 2 is a factor of x + y.

Chiara Ghidini

Theorem

The sum of two even integers is always even.

Proof.

 Let x and y two arbitrary even numbers. They can be written as

$$x = 2a$$
 and $y = 2b$

From this it is clear that 2 is a factor of x + y.

So, the sum of two even integers is always an even number.

Mathematical I	onic					
	< 🗆 🗵	1 CP - 2	1.2.1	1.2.2.2	 *) ((*	

Chiara Ghidini Mathematical Logic

101 100 121 121 21 2000

Proof by "reductio ad absurdum"	Example of proof by "reductio ad absurdum"
	Theorem $\sqrt{2}$ is not a rational number
Theorem It is the case that A is true	Proof. \bullet Suppose that $\sqrt{2}$ is a rational number
By reductio ad absurdum. Suppose that A is not the case, then by reasoning, you try to reach an impossible situation.	
(D) (Ø) (2) (2) 2 090	
Chiara Ghidini Mathematical Logic	Chlara Ghidini Mathematical Logic

Example of proof by "reductio ad absurdum"

Example of proof by "reductio ad absurdum"

Theorem Theorem $\sqrt{2}$ is not a rational number $\sqrt{2}$ is not a rational number Proof. Proof. ()Suppose that $\sqrt{2}$ is a rational number **()** Suppose that $\sqrt{2}$ is a rational number (a) then there are two coprime integers n and m such that $\sqrt{2} = n/m$ (n/m is an (a) then there are two coprime integers n and m such that $\sqrt{2} = n/m$ (n/m is an irreducible fraction) irreducible fraction) (3) which means that $2 = n^2/m^2$ Chiara Ghidini Chiara Ghidini Mathematical Logic Mathematical Logic

Example of proof by "reductio ad absurdum"

Example of proof by "reductio ad absurdum"

Theorem

 $\sqrt{2}$ is not a rational number

Example of proof by "reductio ad absurdum"

Theorem

 $\sqrt{2}$ is not a rational number

Proof.

(1) Suppose that $\sqrt{2}$ is a rational number

- (2) then there are two coprime integers n and m such that $\sqrt{2} = n/m$ (n/m is an irreducible fraction)
- (a) which means that $2 = n^2/m^2$
- () which implies that $n^2 = 2 * m^2$.
- This implies that n is an even number and there exists k such that n = 2 * k.
- G From $n^2 = 2m^2$ (step 4), we obtain that $(2 * k)^2 = 2 * m^2$

Theorem

Theorem

 $\sqrt{2}$ is not a rational number

 $\sqrt{2}$ is not a rational number

Proof.

(1) Suppose that $\sqrt{2}$ is a rational number (2) then there are two coprime integers n and m such that $\sqrt{2} = n/m$ (n/m is an irreducible fraction)

- () which means that $2 = n^2/m^2$
- (a) which implies that $n^2 = 2 * m^2$
- This implies that n is an even number and there exists k such that n = 2 * k.
- G From $n^2 = 2m^2$ (step 4), we obtain that $(2 * k)^2 = 2 * m^2$
- which can be rewritten in m² = 2 * k².

Chiara Ghidini Mathematical Logic

Example of proof by "reductio ad absurdum"

Theorem

 $\sqrt{2}$ is not a rational number

Example of proof by "reductio ad absurdum"

Theorem

 $\sqrt{2}$ is not a rational number

Proof.

() Suppose that $\sqrt{2}$ is a rational number

- (2) then there are two coprime integers n and m such that $\sqrt{2}=n/m$ $\left(n/m \text{ is an irreducible fraction}\right)$
- (a) which means that $2 = n^2/m^2$
- () which implies that $n^2 = 2 * m^2$.
- This implies that n is an even number and there exists k such that n = 2 * k.
- From n² = 2m² (step 4), we obtain that (2 * k)² = 2 * m²
- which can be rewritten in m² = 2 * k².
- Similarly to above this means that m² is even, and that m is even.

Chiara Ghidini

- \bigcirc but this contradicts the hypothesis that *n* and *m* are coprime, and is therefore impossible.
- **(1)** Therefore $\sqrt{2}$ is not a rational number

Theorem

if A then B

Schema 1: Direct proof.

Proof under hypothesis

If A is true, then A_1 is also true, then $\ldots A_n$ is true, and therefore B is true.

Chiara Ghidini

Example of proof by "reductio ad absurdum"

Theorem

 $\sqrt{2}$ is not a rational number

I heorem			
if A then B			
Schema 1: Direct proof.			
If A is true, then A_1 is also true, then $\dots A_n$ is true, and therefore B is true.			
Schema 2: Proof by reductio ad absurdum.			
Suppose that B is not the case, then B_1 is the case, then, then			
B_n is the case, and therefore A is not the case			

If $A \cup B = A$ then $B \subseteq A$

(日) (書) (そ) (そ) (そ) (の)		(日) (費) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Chiara Ghidini Mathematical Logic	Chiara Ghidini	Mathematical Logic
Proof of an "if then" theorem	Proof of an "if then	." theorem

Theorem	Theorem
If $A \cup B = A$ then $B \subseteq A$	If $A \cup B = A$ then $B \subseteq A$
Direct Proof.	Direct Proof.
• Suppose that $A \cup B = A$, then	• Suppose that $A \cup B = A$, then
• $x \in B$ implies that $x \in A \cup B$.	• $x \in B$ implies that $x \in A \cup B$.
	 This implies that x ∈ A,

Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic		
	100 S (S) (S) (S) (S)		· 프 · · · 클 · · · 클 · · · 클 ·	8	200

Chiara Ghidini

Theorem	· E
If $A \cup B = A$ then $B \subseteq A$	h
Direct Proof.	
• Suppose that $A \cup B = A$, then	
• $x \in B$ implies that $x \in A \cup B$.	
 This implies that x ∈ A, 	
• and therefore $B \subseteq A$.	

Theorem	
If $A \cup B = A$ then $B \subseteq A$	
Proof by reductio ad absurdum	
rioor by reductio da absardam.	
 Suppose that B ⊈ A 	

<ロト <置ト <きト <き・ き・ 少への	〈ロ〉〈療〉〈と〉〈を〉」を、のなび
Chiara Ghidini Mathematical Logic	Chiara Ghidini Mathematical Logic
Proof of an "if then" theorem	Proof of an "if then" theorem

Theorem	Theorem
If $A \cup B = A$ then $B \subseteq A$	If $A \cup B = A$ then $B \subseteq A$
Proof by reductio ad absurdum.	Proof by reductio ad absurdum.
 Suppose that B ⊈ A 	• Suppose that $B \not\subseteq A$
• This implies that there exists $x \in B$ such that $x \notin A$.	• This implies that there exists $x \in B$ such that $x \notin A$.
	• This implies that $x \in A \cup B$ such that $x \notin A$,
0	

		 	_	
)U((

Proof	hv	Casos
11001	Dy	Cases

20	0		

If $A \cup B = A$ then $B \subseteq A$

Proof by reductio ad absurdum.

- Suppose that $B \not\subseteq A$
- This implies that there exists x ∈ B such that x ∉ A.
- This implies that x ∈ A ∪ B such that x ∉ A,
- and therefore $A \cup B \neq A$.

Theorem

If A then B

Proof.

If A then either A_1 or A_2 or ... or A_n . Then, let us consider all the cases one by one

- if A1, then ... then B
- if A_2 , then ... then B
- ...
- if A_n , then ... then B

So in all the cases we managed to proof the same conclusion B. This implies that the theorem is correct.

	(日) (費) (き) (き) き の(の		(日)(費)(注)(注)(注)(注)(注)(注)(
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Example of proof by cases	;	Example of proof by case	5

Theorem If *n* is an integer then $n^2 \ge n$. **Proof.** If *n* is an integer then we have three cases: \bigcirc n = 0, \bigcirc n > 0, \bigcirc n > 0, \bigcirc n < 0 \bigcirc n = 0, then $n^2 = 0$, and therefore $n^2 \ge n$. Since in all the cases we have conclude that $n^2 \ge n$ we can conclude that the theorem is correct.

Theorem

If n is an integer then $n^2 \ge n$.

Proof.

If *n* is an integer then we have three cases: n = 0, n > 0, n > 0, n < 0, n < 0, n < 0, then $n^2 = 0$, and therefore $n^2 \ge n$. $n \ge 1$, then by multiplying the inequality for a positive integer *n*, we have that $n^2 \ge n$. Since in all the cases we have conclude that $n^2 \ge n$ we can conclude that the theorem is correct.

(D) (B) (2) (2) (2) (2) (0)

101 (B) (2) (2) (2) 2 000

Chiara Ghidini Mathematical Logic Chiara Ghidini Mathematical Logic	Chiara Ghidini Mathematical Logic
---	-----------------------------------

Example of proof by cases

Proof of a universal statement

Theorem

If n is an integer then $n^2 \ge n$.

Proof.

Theorem

The property A holds for all x.ª

"In symbols, $\forall xA(x)$.

Proof Schema.

Consider a generic element x and try to show that it satisfies property A.

In doing that you are not allowed to make any additional assumptions on the nature of x. If you make some extra assumption on x, say for instance that x has the property B, then you have proved a different theorem which is "for every x, if x has the property B then it has the property A'.

	(a) (B) (2) (2) (2) (2) (2) (0)		(a) (B) (2) (2) (2) (2)
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Example of a universal statement		Example of a universal sta	atement

Theorem

For any integer a, if a is odd then a² is also odd.

Proof (direct proof in this case).

() If a is odd, then a = 2m + 1 for some integer m (By definition)

Theorem

For any integer a, if a is odd then a² is also odd.

Proof (direct proof in this case).

- If a is odd, then a = 2m + 1 for some integer m (By definition)
- **3** Then $a^2 = (2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1$

For any integer a, if a is odd then a² is also odd.

Proof (direct proof in this case).

- If a is odd, then a = 2m + 1 for some integer m (By definition)
- **2** Then $a^2 = (2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1$
- Let $z = 2m^2 + 2m$. z is an integer (trivial proof because of the fact that m is an integer).

Theorem

For any integer a, if a is odd then a² is also odd.

Proof (direct proof in this case).

- If a is odd, then a = 2m + 1 for some integer m (By definition)
- **3** Then $a^2 = (2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1$
- Let z = 2m² + 2m. z is an integer (trivial proof because of the fact that m is an integer).
- Then $a^2 = 2z + 1$ for an integer z, which means, by definition, that a^2 is an odd number.

	(日)(周)(さ)(さ)(さ) きつののの		(日)(御)(名)(名) 名(句)
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Proof of an existential sta	atement	Proof of an existential sta	atement

Theorem

There is an x that has a property A.ª

"In symbols, $\exists x.A(x)$

Schema 1: Constructive proof.

 Construct a special element x (usually by means of a procedure (a set of steps))

Chiara Ghidini

Show that x has the property A

Theorem

There is an x that has a property A.^a

"In symbols, $\exists x.A(x)$

Schema 1: Constructive proof.

- Construct a special element x (usually by means of a procedure (a set of steps))
- Show that x has the property A

Schema 2: Non Constructive proof (reductio ad absurdum).

Assume that there is no such an x such that the property A holds for x and try to reach an inconsistent (absurd) situation.

<ロン イボン イモン イモン モーのへの Mathematical Logic

Chiara Ghidini	Mathematical Logic	
----------------	--------------------	--

10111001100110011001

There is an integer n > 5 such that $2^n - 1$ is a prime number.

Chiara Ghidini

Theorem

There is an integer n > 5 such that $2^n - 1$ is a prime number.

	(日)(四)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)		くロン (聞) (言) (言) きいのうの
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Example of an existential	statement	Universal and existential	statements

 Disproving universal statements reduces in proving an existential one.

Dont try to construct a general argument when a single specific counterexample would be sufficient!

For every rational number q, there is a rational number r such that qr=1

Chiara Ghidini

101 100 121 121 121 2 0000

Universal and existential statements

 Disproving universal statements reduces in proving an existential one.

Dont try to construct a general argument when a single specific counterexample would be sufficient!

Example

For every rational number q, there is a rational number r such that qr = 1

This statement is false. In fact 0 has no inverse.

 Disproving an existential statement needs proving a universal one.

Example

There is an integer k such that $k^2 + 2k + 1 < 0$

	(D) (D) (2) (2) (2) (2) (2) (3) (4)		(D) (B) (2) (2) (2) (2) (2) (0)
Chiara Ghidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
Universal and existential statements		Proof of a universal impli	cation

 Disproving an existential statement needs proving a universal one.

Example

There is an integer k such that $k^2 + 2k + 1 < 0$

This statement is false. Indeed it can be proved that $k^2 + 2k + 1 \ge 0$

Theorem

For all x, if x has a property A, then x has the property B.^a

"In symbols, $\forall x(A(x) \Rightarrow B(x))$.

Proof.

The proof is a combination of the proof method for universal statements, and the proof for implication statements.

Take an arbitrary x that satisfies the property A. then show, either with a direct proof or by reductio ad absurdum, that if x has property A, then x has property B as well.

101 100 121 121 121 2 0000

Proof of a universal implication

Theorem

For all x, if x has a property A, then x has the property B.ª

^aIn symbols, $\forall x(A(x) \Rightarrow B(x))$.

Proof.

The proof is a combination of the proof method for universal statements, and the proof for implication statements.

Take an arbitrary x that satisfies the property A. then show, either with a direct proof or by reductio ad absurdum, that if x has property A, then x has property B as well.

Remark

If there is no such an x that has a property A, the theorem $\forall x(A(x)\Rightarrow B(x))$ is true. For instance the statement

"For every number x (if x > y for all y, then y = 23)"

is a theorem.

The proof consists in showing that there is no x which is greater than all the numbers.

Proof by induction

The simplest and most common form of mathematical induction infers that a statement involving a natural number n holds for all values of n.

The proof consists of two steps:

- The basis (**base case**): prove that the statement holds for the first natural number *n*. Usually, *n* = 0 or *n* = 1.
- The inductive step: prove that, if the statement holds for some natural number n, then the statement holds for n + 1.

The hypothesis in the inductive step that the statement holds for some n is called the **inductive hypothesis**.

Chara GMale Mathematical Legic Chara GMale Mathematical Legic Chara GMale Mathematical Legic Chara GMale Chara GMa

Theorem

$$0+1+\ldots+x=\frac{x(x+1)}{2}$$
 [x Natural Number]

proof

Base case Show that the statement holds for n = 0.

$$0 = \frac{0(0+1)}{2}$$
.

Inductive step Show that if the statement holds for n, then it holds for n + 1.

Chiara Ghidini

Assume that $0 + 1 + \ldots + n = \frac{n(n+1)}{2}$, we have to show that $0 + 1 + \ldots + n + (n+1) = \frac{(n+1)((n+1)+1)}{2}$.

Mathematical Logic

•
$$0+1+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)$$
 from the

inductive hypothesis

(D) (B) (E) (E) (E) (D)

Chiara Ghidini	Mathematical Logic
----------------	--------------------

Proof by induction: example - cont'd

•
$$0 + 1 + \ldots + n + (n + 1) = \frac{n(n + 1)}{2} + (n + 1)$$
 from the
inductive hypothesis
• Algebraically, $\frac{n(n + 1)}{2} + (n + 1) = \frac{n(n + 1) + 2(n + 1)}{2}$
• Algebraically, $\frac{n(n + 1)}{2} + (n + 1) = \frac{n(n + 1) + 2(n + 1)}{2}$
• $0 + 1 + \ldots + n + (n + 1) = \frac{n(n + 1) + 2(n + 1)}{2} + (n + 1) = \frac{n(n + 1) + 2(n + 1)}{2}$
• $0 = \frac{n^2 + n + 2n + 2}{2}$

• 0+1+...+n+(n+1) =
$$\frac{n(n+1)}{2}$$
+(n+1) from the
inductive hypothesis
• Algebraically, $\frac{n(n+1)}{2}$ +(n+1) = $\frac{n(n+1)+2(n+1)}{2}$
• = $\frac{n^2+n+2n+2}{2}$
• = $\frac{(n+1)(n+2)}{2}$

Chiara

• 0 + 1 + ... + n + (n + 1) =
$$\frac{n(n+1)}{2}$$
 + (n + 1) from the
inductive hypothesis
• Algebraically, $\frac{n(n+1)}{2}$ + (n + 1) = $\frac{n(n+1)+2(n+1)}{2}$
• = $\frac{n^2 + n + 2n + 2}{2}$
• = $\frac{(n+1)(n+2)}{2}$
• = $\frac{(n+1)(n+1+1)}{2}$

(D) (B) (E) (E) (E) (D)

900 5 (5) (5) (5) (0)

hidini	Mathematical Logic	Chiara Ghidini	Mathematical Logic
--------	--------------------	----------------	--------------------

Proof by induction: example - cont'd

• $0 + 1 + + n + (n + 1) = \frac{n(n + 1)}{2} + (n + 1)$ from the inductive hypothesis
• Algebraically, $\frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2}$
$\Theta = \frac{n^2 + n + 2n + 2}{2}$
$\mathbf{O} = \frac{(n+1)(n+2)}{2}$
$\Theta = \frac{(n+1)(n+1+1)}{2}$
$ = \frac{(n+1)((n+1)+1)}{2} $

D > < # > < 2 > < 2 > 2 = 00

Example of set defined by induction

Chiara Ghidini

Mathematical Logi

Definition

We inductively define a set P of strings, built starting from the Latin alphabet, as follows:

Base
$$\langle a \rangle, \langle b \rangle, \dots, \langle z \rangle \in P$$

Step 1 if
$$x \in P$$
 then $concat(x, x) \in B$

Step 2 if
$$x, y \in P$$
, then $concat(x, y, x) \in P$

Closure nothing else is in P

where
$$concat(\langle x_1 \dots x_n \rangle, \langle y_1 \dots y_n \rangle) = \langle x_1 \dots x_n y_1 \dots y_n \rangle.$$

Chiara Ghidini

Induction on inductively defined sets.

Main idea

Prove a statement of the form forall x, x has the property A

when x is an element of a set which is inductively defined.

Definition (Inductive definition of A)

The set A is inductively defined as follows:

Chiara Ghidini Mathematical Logic

Example of proof by induction on sets defined by induction.

Theorem

For any $x\in P,$ x is a palindrome, i.e., $x=\langle x_1\dots x_n\rangle\in P$ and for all $1\leq k\leq n,$ $x_k=x_{n-k+1}.$

Proof.

Base case	We have to prove that \boldsymbol{x} is palindrome for all strings in the Base set.
	If x belongs to P because of the base case definition, then it is either (a) or (z), then it is of the form $x = \langle x_1 \rangle$, then $n = 1$ and for all $k \leq 1 \leq 1$, i.e., for $k = 1$ we have that $x_1 = x_{1-1+1}$.
ductive step	Show that if the statement holds for a certain P , then it holds also for P enriched by the strings at steps 1 and 2.
	Step 1. If $x \in P$ because of step 1, then x is of the form $concat(y, y)$, for some $y \in P$. From the definition of "concat", x is of the form $\langle y_1 \dots y_n/2y_1 \dots y_n/2 \rangle$, where $\langle y_1 \dots y_n/2 \rangle \in P$ (i.e., is palindrome).
	By induction for all $1 \le k \le n/2$, $y_k = y_{n/2-k+1}$.
	This implies that, for all $1 \le k \le n$, if $k \le n/2$, then
	$x_k = y_k = y_{n/2-k+1} = x_{n/2+n/2-k+1} = x_{n-k+1}.$

Mathematic	al Lonic					
	< D >	- 1 1 7 1 1	1.2.5	이 문 가	- 2	4) Q (*

Example of proof by induction on sets defined by induction.

Proof.	
Inductive step	Show that if the statement holds for a certain P , then it holds also for P enriched by the strings at steps 1 and 2.
	$\begin{array}{l} \begin{array}{l} \textbf{Step 2. } I \neq c \ P \ \text{because of step 2, then x is of the form} \\ concart(x,y,z), for some $x,y \in P$. From the definition of "concat", x is of the form (x_2,\ldots,x_y,\ldots,x_{2k},\ldots,x_{k}), where (x_2,\ldots,x_{k}) \in P and (y_1\ldots,y_k) \in P (i.e., are palindrome). By induction for all 1 \le k \le h,$
	$\begin{array}{l} y_k=y_{h-k+1}.\\ \text{This implies that for all }1\leq k\leq n \text{ we have that:}\\ \text{Case 1 if }k\leq l, \text{ then }x_k=z_k=z_{l-k+1}=x_{l+h+l-k+1}=x_{n-k+1}.\\ \text{Case 2 if }l+1\leq k\leq l+1+h/2, \text{ then} \end{array}$
	$x_k = y_{k-l} = y_{h-k+l+1} = x_{h-k+l+l+1} = x_{n-k+1}.$

900 S 151 151 101 101

Chiara Ghidini Mathematical Logic