Proofs by induction on the structure of formula

Theorem

Any propositional formula ϕ which does not contain the symbol of negation \neg and of falsehood \bot is satisfiable.

Proof.

Base case Let us assume that ϕ does not contain any propositional connective, then ϕ is an atomic formula p. The interpretation $\mathcal{I}(p) = \text{True satisfies } \phi$.

Inductive step Assume that the statement holds for every ψ containing a number nof connectives and prove that it holds for a formula ϕ containing n + 1 connectives. Three cases

 $\phi = \psi \vee \theta$

If ϕ contains n + 1 connectives, then ψ and θ contain at most n connectives. They do not contain the symbol of negation \neg and of falsehood \bot and are therefore satisfiable. Let I_{ψ} and \mathcal{I}_{θ} the two interpretations that satisfy ψ and θ , respectively.

 $\mathcal{I}(p) = \begin{cases} \mathcal{I}_{\psi}(p) & \text{if } p \text{ occurs in } \psi, \\ \mathcal{I}_{\theta}(p) & \text{if } p \text{ occurs in } \theta \text{ and does not occur in } \psi. \\ \text{satisfies } \phi \end{cases}$

Proofs by induction on the structure of formula

Theorem

Any propositional formula ϕ which does not contain the symbol of negation \neg and of falsehood \bot is satisfiable.

Proof. Inductive step Continued... Three cases • $\phi = \psi \supset \theta$. Strategy similar to \lor • $\phi = \psi \land \theta$. Let \mathcal{I}_{ψ} and \mathcal{I}_{θ} the two interpretations that satisfy ψ and θ . respectively. How do I define \mathcal{I} ? Another strategy of proof is needed. We need to prove a stronger theorem!

Proofs by induction on the structure of formula

Theorem (Stronger theorem)

Any propositional formula ϕ which does not contain the symbol of negation \neg and of falsehood \bot is satisfiable by an assignment that assigns True to all propositional atoms.

Proof.

Base case Let us assume that ϕ does not contain any propositional connective, then ϕ is an atomic formula p.The interpretation $\mathcal{I}(p) =$ True satisfies ϕ and is compliant to our requirement.

Inductive step Assume that the statement holds for every ψ containing a number nof connectives and prove that it holds for a formula ϕ containing n + 1 connectives. Three cases

• $\phi = \psi \lor \theta$.

 ψ and θ contain at most *n* connectives. By induction the are satisfiable by two interpretations \mathcal{I}_{ψ} and \mathcal{I}_{α} that assign all he propositional atoms of ψ and θ to true, respectively. $\mathcal{I} = \mathcal{I}_{\psi} \cup \mathcal{I}_{\theta}$ is the assignment we need to prove the theorem.

Proof.

Inductive step Continued... Three cases

Three case

- $\phi = \psi \supset \theta$. Analogous to the above
- φ = ψ ∧ θ. Analogous to the above

Proofs by induction on the structure of formula

Theorem

Any propositional formula ϕ which contains a subformula at most once once is satisfiable.

Proof.

- Base case Let us assume that ϕ does not contain any propositional connective, then ϕ is an atomic formula p. The interpretation $\mathcal{I}(p) =$ True satisfies ϕ .
- Inductive step Assume that the statement holds for every ψ containing a number nof connectives and prove that it holds for a formula ϕ containing n + 1 connectives. Three cases
 - $\phi = \psi \lor \theta$.

By inductive hypothesis let I_{ψ} and I_{θ} the two interpretations that satisfy ψ and θ , respectively.

Let p be a propositional atom occurring in ϕ , then it either occur in ψ or it occur in θ (but not in both).

 $\mathcal{I} = \mathcal{I}_{\psi} \cup \mathcal{I}_{\theta}$ is the assignment we need to prove the theorem.

Similarly for φ = ψ ⊃ θ and φ = ψ ∧ θ.