Mathematical Logic

11. Modal Logics - relation with FOL

Luciano Serafini

FBK-IRST, Trento, Italy

December 4, 2014

Kripke models and First order structures

- A Kripke model \mathcal{I} (as defined in the previous slides) is equal to the pair (F,V) where F is a frame (W,R) and V is a truth assignment $V:\mathcal{P}\to 2^W$.
- A Kripke model can be seen as a first order interpretation $I_{FOL} = (\Delta^{I_{FOL}}, (,)^{I_{FOL}})$ of the following language:
 - a unary predicate P(x) for every proposition $P \in \mathcal{P}$ Indeed V associated to each $P \in \mathcal{P}$ a set of worlds;
 - the binary relation r(x, y) for the accessibility relation, which is a binary relation on the set of worlds.

Intuitively, P(x) represents the facts that P is true in the world x and r(x,y) represents the fact that the world y is accessible form the world x.

• $\Delta^{I_{FOL}} = W$, i.e., the domain of interpretation is the set of possible worlds. $r^{I_{FOL}}$ is the accessibility relation R, and $P^{\mathcal{I}}$ is equal to V(P).

Modal formulas and First order formulas

- $I, w \models P$ means that I satisfies the atomic formula P in the world w. In the corresponding first order language, this can be expressed by the fact that $I_{FOL} \models P(x)[x := w]$
- $I, w \models P \land Q$ means that I satisfies the $P \land Q$ in the world w. In the corresponding first order language, this can be expressed by the fact that $I_{FOL} \models P(x) \land Q(x)[x := w]$
- $I, w \models \Box P$ means that I satisfies P in all the worlds w' accessible from w. In the corresponding first order language, this can be expressed by the fact that $I_{FOL} \models \forall y (r(x, y) \supset P(y))[x := w]$
- $I, w \models \Diamond P$ means that I satisfies P in at least one world w' accessible from w. In the corresponding first order language, this can be expressed by the fact that $I_{FOL} \models \exists y (r(x, y) \land P(y))[x := w]$
- $I, w \models \Diamond \Box P$ means that there is a world w' accessible from w such that for all worlds w'' accessible from w' w'' satisfies P. In FOL this can be expressed by the following formula $I_{FOL} \models \exists y(r(x,y) \land \forall z(r(y,z) \supset P(z)))$

Standard translation of Modal formulas into First order formulas

$$ST^{x}(P) = P(x)$$

$$ST^{x}(A \circ B) = ST^{x}(A) \circ ST^{x}(B) \text{ with } o \in \{\land, \lor, \supset, \equiv\}$$

$$ST^{x}(\neg A) = \neg ST^{x}(A)$$

$$ST^{x}(\Box A) = \forall y(R(x, y) \supset ST^{y}(A))$$

$$ST^{x}(\lozenge A) = \exists y(R(x, y) \land ST^{y}(A))$$

Example

```
\begin{split} \mathsf{ST}^{\mathsf{x}}(\square \square P \wedge \square \lozenge Q \supset \square \lozenge (P \wedge Q)) \text{ is equal to} \\ \forall y(r(x,y) \supset (\forall z(r(y,z) \supset P(z)))) \wedge & \mathsf{ST}^{\mathsf{x}}(\square \square P) \\ \forall y(r(x,y) \supset (\exists z(r(y,z) \wedge Q(z)))) \supset & \mathsf{ST}^{\mathsf{x}}(\square \lozenge Q) \\ \forall y(r(x,y) \supset (\exists z(r(y,z) \wedge P(z) \wedge Q(z)))) & \mathsf{ST}^{\mathsf{x}}(\square \lozenge (P \wedge Q)) \end{split}
```

The standard translation

Theorem

If I = ((W,R),V) is a Kripke model, I_{FOL} the corresponding first order interpretation of the translated language, then, for every modal formula ϕ

$$I \models \phi$$
 if and only if $I_{FOL} \models \forall x ST^{x}(\phi)$

Proof.

The proof is by induction on the complexity of ϕ .

Base case Suppose that ϕ is the atomic formula P.

$$I \models P$$
 iff for all $w \in W$, $I, w \models P$
iff $V(P) = W$
iff $I_{FOL}(P) = \Delta^{I_{FOL}}$
iff $I_{FOL} \models \forall x P(x)$

Relation between the expressivity of Logics

Propositional Logic (Prop): Propositional variables p_1, p_2, \ldots , and propositional connectives $\land, \lor, \supset, \equiv$, and \neg

Modal Logic (Mod) = Prop + modal operators \square and \lozenge

First-order logic (Fol) = Prop + constants, function, and relations, and quantifiers \forall and \exists

The following relations between the expressivity of the three logic above hold:

$$Prop \subset Mod \subset Fol$$

- every propositional formula is a formula of modal logic, but not viceversa. For instance □P does not have any correspondence in propositional logic.
- every modal formula can be translated under the standard translation into a first order formula with at most 2 variables. On the other hand there are first order formulas that cannot be translated back into modal formulas, for instance $\forall xyz \ P(x,y,f(z))$ or $\forall xy(P(x,y) \lor P(y,x))$.