Mathematical Logic

Tableaux Reasoning for Propositional Logic

Chiara Ghidini
FBK-IRST, Trento, Italy

- An introduction to Automated Reasoning with Analytic Tableaux;
- Today we will be looking into tableau methods for classical propositional logic (well discuss first-order tableaux later).
- Analytic Tableaux are a a family of mechanical proof methods, developed for a variety of different logics. Tableaux are nice, because they are both easy to grasp for humans and easy to implement on machines.
- Early work by Beth and Hintikka (around 1955). Later refined and popularised by Raymond Smullyan:
- R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
- Modern expositions include:
- M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
- M. DAgostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.). Handbook of Tableau Methods. Kluwer, 1999.
- R. Hähnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
- Proceedings of the yearly Tableaux conference: http://i12www.ira.uka.de/TABLEAUX/

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated deduction:

Given: set of premises Γ and conclusion ϕ
Task: prove $\Gamma \neq \phi$
How? show $\Gamma \cup \neg \phi$ is not satisfiable (which is equivalent), i.e. add the complement of the conclusion to the premises and derive a contradiction (refutation procedure)

Theorem

$\Gamma \models \phi$ if and only if $\Gamma \cup\{\neg \phi\}$ is unsatisfiable

Proof.

\Rightarrow Suppose that $\Gamma \models \phi$, this means that every interpretation \mathcal{I} that satisfies Γ, it does satisfy ϕ, and therefore $\mathcal{I} \not \models \neg \phi$. This implies that there is no interpretations that satisfies together Γ and $\neg \phi$.
\Leftarrow Suppose that $\mathcal{I} \models \Gamma$, let us prove that $\mathcal{I} \models \phi$, Since $\Gamma \cup\{\neg \phi\}$ is not satisfiable, then $\mathcal{I} \not \models \neg \phi$ and therefore $\mathcal{I} \models \phi$.

- Data structure: a proof is represented as a tableau - i.e., a binary tree - the nodes of which are labelled with formulas.
- Start: we start by putting the premises and the negated conclusion into the root of an otherwise empty tableau.
- Expansion: we apply expansion rules to the formulas on the tree, thereby adding new formulas and splitting branches.
- Closure: we close branches that are obviously contradictory.
- Success: a proof is successful iff we can close all branches.

An example

Expansion Rules of Propositional Tableau

\[

\]

Note: These are the standard ("Smullyan-style") tableau rules.
We omit the rules for \equiv. We rewrite $\phi \equiv \psi$ as $(\phi \supset \psi) \wedge(\psi \supset \phi)$

Two types of formulas: conjunctive (α) and disjunctive (β) :

α	α_{1}	α_{2}
$\phi \wedge \psi$	ϕ	ψ
$\neg(\phi \vee \psi)$	$\neg \phi$	$\neg \psi$
$\neg(\phi \supset \psi)$	ϕ	$\neg \psi$

β	β_{1}	β_{2}
$\phi \vee \psi$	ϕ	ψ
$\neg(\phi \wedge \psi)$	$\neg \phi$	$\neg \psi$
$\phi \supset \psi$	$\neg \phi$	ψ

We can now state α and β rules as follows:

$$
\quad \begin{aligned}
& \beta_{1} \\
& \beta_{2}
\end{aligned}
$$

Note: α rules are also called deterministic rules. β rules are also called splitting rules.

Some definition for tableaux
 Exercises

Definition (type-alpha and type- β formulae)

- Formulae of the form $\phi \wedge \psi, \neg(\phi \vee \psi)$, and $\neg(\phi \supset \psi)$ are called type- α formulae.
- Formulae of the form $\phi \vee \psi, \neg(\phi \wedge \psi)$, and $\phi \supset \psi$ are called type- β formulae

Note: type-alpha formulae are the ones where we use α rules. type- β formulae are the ones where we use β rules.

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Exercise

Show that the following are valid arguments:

$$
\begin{aligned}
& \text { - } \models((P \supset Q) \supset P) \supset P \\
& \text { - } P \supset(Q \wedge R), \neg Q \vee \neg R \models \neg P
\end{aligned}
$$

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition (Derivation $\Gamma \vdash \phi$)

Let ϕ and $\mathrm{\Gamma}$ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup\{\neg \phi\}$

Note: different orderings of expansion rules are possible! But all lead to unsatisfiability.

Exercises

Solution

Exercise

Check whether the formula $\neg((P \supset Q) \wedge(P \wedge Q \supset R) \supset(P \supset R))$ is satisfiable

The tableau is closed and the formula is not satisfiable.

Exercise

Check whether the formula $\neg(P \vee Q \supset P \wedge Q)$ is satisfiable

Two open branches. The formula is satisfiable.
The tableau shows us all the possible interpretations ($\{P\},\{Q\}$) that satisfy the formula.

Using the tableau to build interpretations.
 Models for $\neg(P \vee Q \supset P \wedge Q)$

For each open branch in the tableau, and for each propositional atom p in the formula we define

$$
\mathcal{I}(p)= \begin{cases}\text { True } & \text { if } p \text { belongs to the branch } \\ \text { False } & \text { if } \neg p \text { belongs to the branch. }\end{cases}
$$

If neither p nor $\neg p$ belong to the branch we can define $\mathcal{I}(p)$ in an arbitrary way.

Two models:

- $\mathcal{I}(P)=$ True, $\mathcal{I}(Q)=$ False
- $\mathcal{I}(P)=$ False, $\mathcal{I}(Q)=$ True

P	Q	$P \vee Q$	$P \wedge Q$	$P \vee Q \supset P \wedge Q$	$\neg(P \vee Q \supset P \wedge Q)$
T	T	T	T	T	F
F	F	F	F	T	F
T	F	T	F	F	T
F	T	T	F	F	T

Exercise
Show unsatisfiability of each of the following formulae using tableaux:

- $(\rho \equiv q) \equiv(\neg q \equiv p)$;
- $\neg((\neg q \supset \neg p) \supset((\neg q \supset p) \supset q))$

Show satisfiability of each of the following formulae using tableaux:

- $(p \equiv q) \supset(\neg q \equiv p)$:
- $\neg(p \vee q \supset((\neg p \wedge q) \vee p \vee \neg q))$.

Show validity of each of the following formulae using tableaux:

- $(p \supset q) \supset((p \supset \neg q) \supset \neg p)$;
- $(p \supset r) \supset(p \vee q \supset r \vee q)$.

For each of the following formulae, describe all models of this formula using tableaux:

- $(q \supset(p \wedge r)) \wedge \neg(p \vee r \supset q)$;
- $\neg((p \supset q) \wedge(p \wedge q \supset r) \supset(\neg p \supset r))$.

Establish the equivalences between the following pairs of formulae using tableaux:

- ($\rho \supset \neg \rho), \neg p$:
- $(p \supset q),(\neg q \supset \neg p)$:
- $(p \vee q) \wedge(p \vee \neg q), p$.

Termination

Chiara Ghidini Mathematical Logic

Assuming we analyse each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever shorter formulas.

Note: Importantly, termination will not hold in the first-order case.

Termination

Hint of proof:
Base case Assume that we have a formula with $n=0$ connectives. Then it is a propositional atom and no expansion rules are applicable.
Inductive step Assume that the theorem holds for any formula with at most n connectives and prove it with a formula θ with $n+1$ connectives.
Three cases:

- θ is a type α formula (of the form $\phi \wedge \psi, \neg(\phi \vee \psi)$, or $\neg(\phi \supset \psi)$) We have to apply an α-rule
and we mark the formula θ as analysed once.
Since α_{1} and α_{2} contain less connectives than θ we can apply the inductive hypothesis and say that we can build a propositional tableau such that each hypothesis and say that we can build a propositional tableau such that each expansion rules will be applicable.

Three cases:

- θ is a type- β formula (of the form $\phi \vee \psi, \neg(\phi \wedge \psi)$, or $\phi \supset \psi$)

We have to apply a β-rule

- θ is of the form $\neg \neg \phi$.

We have to apply the $\neg \neg$-Elimination rule

and we mark the formula $\neg \neg \phi$ as analysed once.
Since ϕ contains less connectives than $\neg \neg \phi$ we can apply the inductive hypothesis and say that we can build a propositional tableaux for it such that each formula is analysed at most once and after a finite number of steps no more expansion rules will be applicable.

We concatenate the 2 trees and the proof is done.

Soundness and Completeness

Proof of Soundness - preliminary definitions

To actually believe that the tableau method is a valid decision procedure we have to prove:

Theorem (Soundness)

If $\Gamma \vdash \phi$ then $\Gamma \models \phi$

Theorem (Completeness)

If $\Gamma \models \phi$ then $\Gamma \vdash \phi$

Remember: We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup\{\neg \phi\}$.

Definition (Literal)

A literal is an atomic formula p or the negation $\neg p$ of an atomic formula.

Definition (Saturated propositional tableau)

A branch of a propositional tableau is saturated if all the (non-literal) formulae occurring in the branch have been analysed. A tableau is saturated if all its branches are saturated.

Definition (Satisfiable branch)

A branch β of a tableaux τ is satisfiable if the set of formulas that occurs in β is satisfiable. I.e., if there is an interpretation \mathcal{I}, such that $\mathcal{I} \models \phi$ for all $\phi \in \beta$.

First prove the following lemma:

Lemma (Satisfiable Branches)

- If a non-branching rule is applied to a satisfiable branch, the result is another satisfiable branch.
- If a branching rule is applied to a satisfiable branch, at least one of the resulting branches is also satisfiable.

Propositional α-rules: the example of \wedge

$$
\frac{\phi \wedge \psi}{\phi}
$$

- let \mathcal{I} be such that $\mathcal{I} \models s b$
- since $\phi \wedge \psi \in s b$ then $\mathcal{I} \models \phi \wedge \psi$
- which implies that $\mathcal{I} \models \phi$ and $\mathcal{I} \models \psi$
- which implies that $\mathcal{I} \models s b^{\prime}$ with $s b^{\prime}=s b \cup\{\phi, \psi\}$.

Hint for proof: prove for all the expansion rules that they extend a satisfiable branch $s b$ to (at least) a branch $s b^{\prime}$ which is consistent.

Propositional β-rules: the example of V

$$
\frac{\phi \vee \psi}{\phi \mid \psi}
$$

- let \mathcal{I} be such that $\mathcal{I} \models s b$
- since $\phi \vee \psi \in s b$ then $\mathcal{I} \models \phi \vee \psi$
- which implies that $\mathcal{I} \models \phi$ or $\mathcal{I} \models \psi$
- which implies that $\mathcal{I} \models s b^{\prime}$ with $s b^{\prime}=s b \cup\{\phi\}$ or $\mathcal{I} \models s b^{\prime \prime}$ with $s b^{\prime \prime}=s b \cup\{\psi\}$.

Proof of Soundness (II)

We have to show that $\Gamma \vdash \phi$ implies $\Gamma \models \phi$. We prove it by contradiction, that is, assume $\Gamma \vdash \phi$ but $\Gamma \not \vDash \phi$ and try to derive a contradiction.

- If $\Gamma \not \vDash \phi$ then $\Gamma \cup\{\neg \phi\}$ is satisfiable (see theorem on relation between logical consequence and (un) satisfiability)
- therefore the initial branch of the tableau (the root $\Gamma \cup\{\neg \phi\}$) is satisfiable
- therefore the tableau for this formula will always have a satisfiable branch (see previouls Lemma on satisfiable branches)
- This contradicts our assumption that at one point all branches will be closed $(\Gamma \vdash \phi)$, because a closed branch clearly is not satisfiable.
- Therefore we can conclude that $\Gamma \not \vDash \phi$ cannot be and therefore that $\Gamma \models \phi$ holds.

Definition (Hintikka set)

A set of propositional formulas Γ is called a Hintikka set provided the following hold:
(1) not both $p \in H$ and $\neg p \in H$ for all propositional atoms p;
(2) if $\neg \neg \phi \in H$ then $\phi \in H$ for all formulas ϕ;
(3) if $\phi \in H$ and ϕ is a type- α formula then $\alpha_{1} \in H$ and $\alpha_{2} \in H$;
(0) if $\phi \in H$ and ϕ is a type- β formula then either $\beta_{1} \in H$ or $\beta_{2} \in H$.

Remember:

- type- α formulae are of the form $\phi \wedge \psi, \neg(\phi \vee \psi)$, or $\neg(\phi \supset \psi)$
- type- β formulae are of the form $\phi \vee \psi, \neg(\phi \wedge \psi)$, or $\phi \supset \psi$

Lemma (Hintikka Lemma)

Every Hintikka set is satisfiable

Proof:

- We construct a model $\mathcal{I}: \mathcal{P} \rightarrow\{$ True, False $\}$ from a given Hintikka set H as follows:
Let \mathcal{P} be the set of propositional variables occurring in literals of H,

$$
\mathcal{I}(p)= \begin{cases}\text { True } & \text { if } p \in H \\ \text { False } & \text { if } p \notin H\end{cases}
$$

- We now prove that \mathcal{I} is a propositional model that satisfies all the formulae in H. That is, if $\phi \in H$ then $\mathcal{I} \models \phi$.

Base case We investigate literal formulae.
Let p be an atomic formula in H. Then $\mathcal{I}(p)=$ True by definition of \mathcal{I}. Thus, $\mathcal{I} \models p$
Let $\neg p$ be a negation of an atomic formula in H. From the property (1) of Hintikka set, the fact that $\neg p$ belongs to H implies that $p \notin H$. Therefore from the definition of \mathcal{I} we have that $\mathcal{I}(p)=$ False, and therefore $\mathcal{I} \models \neg p$
Proof of Completeness - Hintikkas Lemma (c'nd) A last definition - Fairness

Inductive step We prove the theorem for all non-literal formulae.

- Let θ be of the form $\neg \neg \phi$.

Then because of the property (2) of Hintikka sets $\phi \in H$. Therefore $\mathcal{I} \models \phi$ because of the inductive hypothesis. Then $\mathcal{I} \mid \vDash \neg \phi$ and \mathcal{I} models $\neg \neg \phi$ because of the definition of propositonal satisfiability of \neg.

- Let θ be a type- α formula. Then, its components α_{1} and α_{2} belong to H begause of property (3) of the Hintikka set. We can apply the inductive hypothesis to α_{1} and α_{2} and derive that $\mathcal{I} \models \alpha_{1}$ and $\mathcal{I} \models \alpha_{2}$
It is now easy to prove that $\mathcal{I} \models \theta$
- Let θ be a type- β formula. Then, at least one of its components β_{1} or β_{2} belong to H because of property (4) of the Hintikka set.
We can apply the inductive hypothesis to β_{1} or β_{2} and derive that $\mathcal{I} \models \beta_{1}$ or $\mathcal{I} \models \beta_{2}$
It is now easy to prove that $\mathcal{I} \models \theta$

Definition (Fairness)

We call a propositional tableau fair if every non-literal of a branch gets eventually analysed on this branch.

Completeness proof (sketch).

- We show that $\Gamma \nvdash \phi$ implies $\Gamma \not \vDash \phi$.
- Suppose that there is no proof for $\Gamma \cup\{\neg \phi\}$
- Let τ a fair tableaux that start with $\Gamma \cup\{\neg \phi\}$,
- The fact that $\Gamma \nvdash \phi$ implies that there is at least an open branch ob.
- fairness condition implies that the set of formulas in $o b$ constitute an Hintikka set $H_{o b}$
- From Hintikka lemma we have that there is an interpretation $\mathcal{I}_{o b}$ that satisfies ob.
- since every branch of τ contains its root we have that $\Gamma \cup\{\neg \phi\} \subseteq o b$ and therefore $\mathcal{I}_{o b} \models \Gamma \cup\{\neg \phi\}$.
- which implies that $\Gamma \not \vDash \phi$.

The proof of Soundness and Completeness confirms the decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical propositional logic.

Proof. To check validity of ϕ, develop a tableau for $\neg \phi$. Because of termination, we will eventually get a tableau that is either (1) closed or (2) that has a branch that cannot be closed.

- In case (1), the formula ϕ must be valid (soundness).
- In case (2), the branch that cannot be closed shows that $\neg \phi$ is satisfiable (see completeness proof), i.e. ϕ cannot be valid.
This terminates the proof.

Another solution

Exercise

Build a tableau for $\{(a \vee b) \wedge c, \neg b \vee \neg c, \neg a\}$

What happens if we first expand the disjunction and then the conjunction?

Expanding β rules creates new branches. Then α rules may need to be expanded in all of them.

- Using the "wrong" policy (e.g., expanding disjunctions first) leads to an increase of size of the tableau, which leads to an increase of time;
- yet, unsatisfiability is still proved if set is unsatisfiable;
- this is not the case for other logics, where applying the wrong policy may inhibit proving unsatisfiability of some unsatisfiable sets.
- It is an open problem to find an efficient algorithm to decide in all cases which rule to use next in order to derive the shortest possible proof.
- However, as a rough guideline always apply any applicable non-branching rules first. In some cases, these may turn out to be redundant, but they will never cause an exponential blow-up of the proof.

Efficiency

Exercise

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2^{n} rows (exponential = very bad).
- Are tableaux any better?
- In the worst case no, but if we are lucky we may skip some of the 2^{n} rows !!!

Exercise

Give proofs for the unsatisfiability of the following formula using (1) truth-tables, and (2) Smullyan-style tableaux.

$$
(P \vee Q) \wedge(P \vee \neg Q) \wedge(\neg P \vee Q) \wedge(\neg P \vee \neg Q)
$$

