Logics for knowledge representation A course of the ICT International Doctrorate School

Luciano Serafini

serafini@itc.it

ITC-IRST, Trento, Italy

Logics for knowledge representation - 2005 - p.1/47

Modal logic II

A logic is normal if it contains at least the following axiom schemata

A1	$\phi \supset (\psi \supset \phi)$
A2	$(\phi \supset (\psi \supset \theta)) \supset ((\phi \supset \psi) \supset (\phi \supset \theta)$
A3	$(\neg\psi\supset\neg\phi)\supset((\neg\psi\supset\phi)\supset\phi)$
MP	$\frac{\phi \phi \supset \psi}{\psi}$
Κ	$\Box(\phi \supset \psi) \supset (\Box \phi \supset \Box \psi)$
Nec	$rac{\phi}{\Box \phi}$ the necessitation rule

Basic property of NML

 $\vdash_A \phi \equiv \psi$ iff $\vdash_A \Diamond \phi \equiv \Diamond \psi$ iff $\vdash_A \Box \phi \equiv \Box \psi$

VIP axiom schema

- (4) $\Diamond \Diamond \phi \supset \Diamond \phi$ $\Box \phi \supset \Box \Box \phi$
- (T) $\phi \supset \Diamond \phi$ $\Box \phi \supset \phi$
- (B) $\phi \supset \Box \Diamond \phi$
- (D) $\Box \phi \supset \Diamond \phi$
- (3) $\Diamond \phi \land \Diamond \psi \supset \Diamond (\phi \land \Diamond \psi) \lor \Diamond (\phi \land \psi) \lor \Diamond (\Diamond \phi \land \psi)$
- (L) $\Box(\Box\phi\supset\phi)\supset\Box\phi$

Soundness and completeness

- K the class of all frames
- **K4 4** the class of transitive frames
- **KT T** the class of reflexive frames
- **KB B** the class of symmetric frames
- **KD** the class of right unbounded frames
- **KT4 S4** the class of reflexive and transitive frames
- **KT4B S5** the class of frames with an equivalence relat
- K43 K4.3 The class of transitive frames with no right branching
- **KT43 S4.3** The class of reflexive and transitive frames with no right branching
- KL The class of finite transitive trees (weakly co

Remind: Soundness and (strong) completene

A set of axioms A is sound w.r.t., a class of frames F

Soundness $\vdash_A \phi$ implies $\models_F \phi$

Weak completeness $\models_F \phi$ implies $\vdash_A \phi$

Strong completeness $\Gamma \models_F \phi$ implies there is a finite (possible empty) set of formulas $\phi_1, \ldots, \phi \in \Gamma$ such that $\vdash_F (\phi_1 \land \cdots \land \phi_n) \supset \phi$.

Completeness as satisfiability

Proposition A set of axioms *A* is strongly complete w.r.t., a class of frames *F* iff for every *A*-consistent set of formula Γ (i.e., $\Gamma \not\vdash_A \bot$), there is a frame $\mathcal{F} = \langle W, R \rangle \in F$, and a world $w \in W$ such that $\mathcal{F}, w \models \Gamma$.

(Strong) completeness theorem for a set of axioms A can be proved by constructing a model for any set of A-consistent formulas Γ .

Such a construction is based on the basic and pervasive idea of

CANONICAL MODEL

Every completeness result in modal logic is based on canonical models.

Intuitively a canonical model $\mathcal{M}_c = \langle \mathcal{F}_c, \mathcal{I}_c \rangle$ for A, such that

- $\mathcal{F}_c = \langle W_c, R_c \rangle$, such that
 - each $w \in W_c$ is a maximally A-consistent set of formulas;
 - $\mbox{ \ \ }$ if $\Diamond\phi\in w$ then there is a wRw' such that $\phi\in w'$
- $\mathcal{I}_c(p) = \{ w \in W | p \in w \}.$

Canonical model – intuition

Logics for knowledge representation - 2005 - p.11/4

A-maximally-consistent-set

A set of formula Γ is *A*-maximally consistent if it is consistent and any other set Σ , with $\Gamma \subset \Sigma$, is inconsistent. **Lindenbaum's Lemma** Any *A*-consistent set of formulas Σ can be extended to an *A*-maximally consistent set of formulas Γ .

Proof.

- Let ϕ_1, ϕ_2, \ldots an enumeration of all the formulas of the language
- Let $\Sigma = \Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \ldots$, with

 $\Sigma_{n+1} = \begin{cases} \Sigma_n \cup \{\phi_n\} & \text{If } \Sigma_n \cup \{\phi_n\} \text{ is consistent} \\ \Sigma_n & \text{otherwise} \end{cases}$

Let $\Gamma = \bigcup_{n \ge 1} \Sigma_n$

- Each Σ_n is consistent!
- Γ is maximally consistent!

The canonical model \mathcal{M}^A for a set of axioms A is equal

$$\mathcal{M}^{A} = \left\langle \mathcal{F}^{A} = \left\langle W^{A}, R^{A} \right\rangle, \mathcal{I}^{A} \right\rangle$$

with:

- W^A is the set of all A-maximally consistent set of formulas;
- R^A is such that wRv if and only if $\Diamond v \subseteq w$ $(\Diamond X = \{ \Diamond \phi | \phi \in X \}.$
- $\mathcal{I}(p) = \{ w \in W^A | p \in w \}.$

Properties of the canonical model

- **1.** wRv if and only if for all ϕ , $\Box \phi \in w$ implies $\phi \in v$.
- **2.** $\phi \in w$ implies that there is a $v \in W$, such that wRv and $\phi \in v$
- **3.** $\mathcal{M}^A, w \models \phi$ if and only if $\phi \in w$.

Canonical model theorem Any set of axioms *A* is strongly complete w.r.t., its canonical model

Proof. We have to prove that, ΓA -consistent implies that there is a model \mathcal{M} and a world w such that $\mathcal{M}, w \models \Gamma$. We use the canonical model

Suppose Γ is *A*-consistent,

by Lindenbaum's lemma there is a A-maximally consistent set $\Sigma,$ with $\Gamma\in\Sigma,$

Therefore there is a $w \in W^A$, such that $w = \Sigma$, and $\Gamma \subseteq w$. By the previous properties $\mathcal{M}^A, w \models \Gamma$.

Completeness via canonical model

To prove strongly completeness of **KX** w.r.t., the class of frames with a property P, it is enough to show that the canonical model \mathcal{M}^{KX} has the property P

If Γ is **KX**-consistent than it has a model (the canonical model \mathcal{M}^{KX} which has the property P.

- Suppose that $\Gamma \models_{F_P} \phi$, where F_P is the class of frames with property *P*.
- Suppose by contradiction that $\Gamma \not\vdash_{\mathbf{KX}} \phi$,
- then $\Gamma \cup \{\neg \phi\}$ is **KX**-consistent
- then there is a model (the canonical model) with property *P* that satisfies $\Gamma \cup \{\neg \phi\}$
- contradiction with the fact that $\Gamma \models_P \phi$

Completeness via canonical model – Exampl

Prove that the relation \mathcal{M}^{K4} is transitive.

- Suppose that $wR^{\mathbf{K4}}v$ and $vR^{\mathbf{K4}}u$,
- (remind) $wR^{\mathbf{K4}}v$ iff $\Diamond v \subseteq w$.
- suppose that $\phi \in u$, then $\Diamond \phi \in v$, then $\Diamond \Diamond \phi \in w$
- (remind) $\mathbf{K4} = \Diamond \Diamond \phi \supset \Diamond \phi$.
- by K4 $\Diamond \phi \in w$,
- which implies that $\Diamond u \in w$
- and therefore $wR^{K4}u$.

Stong completeness

Assignment Prove strong completeness for the following cases

- K the class of all frames
- **KT T** the class of reflexive frames
- **KB B** the class of symmetric frames
- **KD** the class of right unbounded frames
- **KT4 S4** the class of reflexive and transitive frames
- KT4B S5 the class of frames with an equivalence relatio

Basic model theory for modal logics

- We study operations on models which preserves some properties.
- The invariant property
- The most important invariant property we study is ⊨ satisfaction.
- Operations on models
 - Disjoint union
 - Generated submodels
 - Bisimulation

Disjoint union $\mathcal{M}_1 \uplus \mathcal{M}_2$ – intuition

Logics for knowledge representation - 2005 - p.21/47

Disjoint union $\mathcal{M}_1 \uplus \mathcal{M}_2$

Two models \mathcal{M}_1 and \mathcal{M}_2 are disjoint if $W_1 \cap W_2 = \emptyset$. The disjoint union of \mathcal{M}_1 and \mathcal{M}_2 , $\mathcal{M} = \mathcal{M}_1 \uplus \mathcal{M}_2$ is defined

- $\bullet \ W = W_1 \cup W_2$
- $R = R_2 \cup R_2$

• $\mathcal{I}(p) = \mathcal{I}_1(p) \cup \mathcal{I}_2(p)$

Disjoint union can be generalized to any set of models $\{\mathcal{M}_i\}_{i\in I}$

$$\biguplus_{i\in I}\mathcal{M}_i$$

Invariant property for disjoint union

For any $i \in I$ and $w \in W_i$

$$\mathcal{M}_i, w \models \phi \quad \text{iff} \quad \biguplus_{i \in I} \mathcal{M}_i, w \models \phi$$

Satisfaction is invariant under disjoint union.

Generated submodels

 \mathcal{M}' is a generated submodel of $\mathcal{M},$ in symbols $\mathcal{M}'\rightarrowtail \mathcal{M}$ iff the following three condition holds

- **1.** $W' \subseteq W$
- **2.** $R' = R \cap W' \times W'$
- **3.** if $R(W') \subseteq W'$ (i.e., wRv and $w \in W'$ implies $v \in W'$).

If conditions 1. and 2. hold then \mathcal{M}' is a submodel of \mathcal{M} .

Invariant property for generated submodels

If $\mathcal{M}' \rightarrow \mathcal{M}$ then for each $w \in W'$ and for each ϕ

$$\mathcal{M}, w \models \phi \quad \text{iff} \quad \mathcal{M}', w \models \phi$$

Satisfaction is invariant under generated submodel.

Bsimulation

- bisimulation is a very general relation between models, which preserves satisfaction.
- a bisimulation between \mathcal{M} and \mathcal{M}' is a relation $Z \subseteq W \times W'$
- wZw' intuitively means that any computation starting from w can be simulated by a computation starting from w' and viceversa.

Bisimulation – intuition

- Models describes the possible evolution of a finite state machine;
- Two models \mathcal{M} and \mathcal{M}' bisimulate, if any computation described in \mathcal{M} can be simulated in \mathcal{M}' and viceversa.

Bisimulation – formal definition

Given two models \mathcal{M} and \mathcal{M}' , a relation $Z \subseteq W \times W'$ is a bisimulation if and only if the following conditions hold:

- 1. wZw' implies that $w \in \mathcal{I}(p)$ iff $w' \in \mathcal{I}(p)$ for all primitive propositions $p \in P$ (i.e., w and w' agree on the interpretations of all the propositional formulas).
- **2.** wZw' and wRv then there is a $v' \in W'$ such that vZv'
- **3.** (the converse of 2) wZw' and w'Rv' implies that there is a $v \in W$ such that wZv

Disjoint union is a special case of bisimulation.

$$Z = \{ \langle w, w \rangle \, | w \in W_i \}$$

Z is a bisimulation between \mathcal{M}_i and $\biguplus_{i \in I} \mathcal{M}_i$

 Generated submodel is a special case of bisimulation too.

$$Z = \{ \langle w, w \rangle \, | w \in W' \}$$

 ${\it Z}$ is a bisimulation betwen the model ${\cal M}'$ generated from ${\cal M}.$

Invariant property for bisimulation

if ${\it Z}$ is a bisimulation betwee ${\cal M}$ and ${\cal M}'$ then

wZw' implies that for all ϕ $\mathcal{M}, w \models \phi$ iff $\mathcal{M}'w' \models \phi$

Proof. By induction on ϕ .

- $\begin{array}{l} \phi \text{ is } p \ . \ \mathcal{M}, w \models p \text{ iff } w \in \mathcal{I}(p) \text{ iff (by condition 1 of bisimulation)} \\ w' \in \mathcal{I}(p) \text{ iff } \mathcal{M}'w' \models p \end{array}$
- ϕ is $\phi_1 \wedge \phi_2 \ \dots$

 ϕ is $\Diamond \psi$ $\mathcal{M}, w \models \Diamond \psi$ iff there is a v with wRv and $\mathcal{M}, v \models \phi$. By condition 2 of bisimulation there is a v' with w'Rv' and vZv'. By induction $v' \models \psi$. This implies that $\mathcal{M}'w' \models \Diamond \psi$. For the vice-versa we reason similarly, using the converse condition on the definition of bisimulation (condition 3)

Invariant property for bisimulation

What about the converse?

For all $\phi \mathcal{M}, w \models \phi$ implies wZw'

NO!!

Finite models

- Finite model property tells us that a formula φ is satisfiable by any (possibly infinite) model, iff it is satisfiable by a finite model
- Finite model property is very important in order to define a decision procedure for satisfiability in modal logics

Finite models – the intuition

Build a model that satisfies the following formula

 $\Diamond (p \land \Diamond (p \land \Diamond q) \land \neg \Diamond r)$

Finite models – the intuition

Build a model that satisfies the following formula

 $\Diamond (p \land \Diamond (p \land \Diamond q) \land \neg \Diamond r)$

Finite Model Property A class of frames *F* has the finite model property iff for every formula ϕ is satisfiability in *F* if and only if there is a finite $\mathcal{F} \in F$ such that ϕ is satisfiabile in \mathcal{F} .

Finite model property via filtration

Large model with property P \longrightarrow filtration \longrightarrow finite model with property PGiven a set of formulas Σ and a model \mathcal{M} and two worlds $w, v \in W$

 $w \nleftrightarrow_{\Sigma} v$

if and only if for all $\phi \in \Sigma$, $\mathcal{M}, w \models \phi$ iff $\mathcal{M}', v \models \phi$.

Filtration – formal definition

The filtration of \mathcal{M} w.r.t, Σ , denoted with $\mathcal{M}_{\Sigma}^{f} = \left\langle W_{\Sigma}^{f}, R_{\Sigma}^{f}, \mathcal{I}_{\Sigma}^{f} \right\rangle$ where

- $\ \, {\cal M}^f_{\Sigma} = W/ \leftrightsquigarrow_{\Sigma}$
- if wRv then $[w]R^f_{\Sigma}[v]$
- $\mathcal{I}^f_{\Sigma}(p) = \{[w] | w \in \mathcal{I}(p)\}.$

Proposition on finiteness If Σ is finite and closed under subformula, then \mathcal{M}^f_{Σ} has at most $2^{|\Sigma|}$ nodes

Filtration theorem IF Σ is closed under subformula then, for all $\phi \in \Sigma$

$$\mathcal{M}, w \models \phi \quad \text{iff} \quad \mathcal{M}^f_{\Sigma}, [w] \models \phi$$

Finite model property via Filtration

If ϕ is satisfiable then it is satisfiable in a model which has at most $2^{|\phi|}$, where $|\phi|$ is the number of subformulas of ϕ .

Grazie a tutti e buon week end!!!!!