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Modal logic II
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Normal Modal logic

A logic is normal if it contains at least the following axiom
schemata

A1

� � �� � � �

A2

� � � �� � � � � � � � � � � � � � � � � � �

A3

��� � � � � � � � ��� � � � � � � �

MP

� � � �
�

K

� � � � � � � � � � � �� �

Nec
�

� � the necessitation rule
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Basic property of NML

��� � � �

iff

��� � � � ��
iff

��� � � � ��
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VIP axiom schema

(4)

� � � � � � � � � � � �

(T)

� � � � � � � �

(B)

� � � � �

(D)

� � � � �

(3)

� � � �� � � � � � �� � � � � � � � � � � � � � � � �

(L)

� � � � � � � � � �
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Soundness and completeness

K the class of all frames
K4 4 the class of transitive frames
KT T the class of reflexive frames
KB B the class of symmetric frames
KD the class of right unbounded frames
KT4 S4 the class of reflexive and transitive frames
KT4B S5 the class of frames with an equivalence relation
K43 K4.3 The class of transitive frames with

no right branching
KT43 S4.3 The class of reflexive and transitive frames

with no right branching
KL The class of finite transitive trees (weakly complete)
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Remind: Soundness and (strong) completeness

A set of axioms

�

is sound w.r.t., a class of frames

�

Soundness

� � �

implies

��� � �
Weak completeness

��� � �

implies

� � �

Strong completeness
� ��� � �

implies there is a finite (possi-

ble empty) set of formulas

���
	 � � �	 � � �

such that

� � � �� ��
 
 
 �

��� � � �

.
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Completeness as satisfiability

Proposition A set of axioms

�

is strongly complete w.r.t., a
class of frames

�

iff for every

�

-consistent set of formula

�

(i.e.,

� �� � �

), there is a frame

� � �
	 � � � �

, and a world

� � such that

�	 � �� �

.
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Canonical model

(Strong) completeness theorem for a set of axioms

�

can be
proved by constructing a model for any set of

�
-consistent

formulas

�

.

Such a construction is based on the basic and pervasive
idea of

CANONICAL MODEL
Every completeness result in modal logic is based on
canonical models.
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Canonical model

Intuitively a canonical model � � � � �	 � �
�

for
�

, such that

� � � �

�	 � �
�

, such that
each � � � is a maximally

�

-consistent set of
formulas;
if

� � � � then there is a � � � � such that

� � � �

� �
��� � � � � � � � � � �

.
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Canonical model – intuition
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-maximally-consistent-set

A set of formula

�

is

�

-maximally consistent if it is consistent
and any other set

�

, with

� � �

, is inconsistent.
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Lindenbaum’s Lemma

Lindenbaum’s Lemma Any

�

-consistent set of formulas

�

can be extended to an

�

-maximally consistent set of
formulas

�

.
Proof.

Let

��
	 ��
�	 � � � an enumeration of all the formulas of the language

Let

� � � � � � � � � � � � � � , with

� � � � �

� � � � ��� �
If

� � � � ��� �

is consistent

� � otherwise

Let

� � � � � � �
Each

� � is consistent!

�

is maximally consistent!
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Canonical model

The canonical model

�

for a set of axioms
�

is equal

� � �� � �
	 �� 	 ��

with:

�

is the set of all

�

-maximally consistent set of
formulas;

��

is such that � ��� if and only if

� � � �

(

� � � � � � � � � � �

.

� �� � � � � � � � � � � �

.
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Properties of the canonical model

1. � ��� if and only if for all

�

,

� � � � implies
� � � .

2.

� � � implies that there is a � � , such that � ��� and� � �

3.

�
	 � ��� �

if and only if

� � �.
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Canonical Model Theorem

Canonical model theorem Any set of axioms
�

is strongly
complete w.r.t., its canonical model

Proof. We have to prove that,

� �

-consistent implies that there is a model
and a world � such that 	 � ��� �

. We use the canonical model

Suppose

�

is

�

-consistent,
by Lindenbaum’s lemma there is a

�
-maximally consistent set

�

, with� � �

,
Therefore there is a � � �

, such that � � �

, and

� � � .
By the previous properties

�
	 � ��� �

.
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Completeness via canonical model

To prove strongly completeness of KX w.r.t., the class of
frames with a property

�

, it is enough to show that the
canonical model KX has the property

�
If

�

is KX-consistent than it has a model (the canonical
model KX which has the property

�
.

Suppose that

� �� ��� �

, where
��� is the class of frames

with property

�

.

Suppose by contradiction that

� ��

KX

�

,

then

� � � � � �

is KX-consistent

then there is a model (the canonical model) with
property

�
that satisfies

� � � � � �

contradiction with the fact that

� �� � �
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Completeness via canonical model – Example

Prove that the relation K4 is transitive.

Suppose that � �K4 � and � �K4 �,

(remind) � �K4 � iff

� � � �.

suppose that

� � �, then

� � � � , then

� � � � �

(remind) K4 � � � � � � �

.

by K4

� � � �,

which implies that
�

� � �

and therefore � �K4 �.
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Stong completeness

Assignment Prove strong completeness for the following
cases
K the class of all frames
KT T the class of reflexive frames
KB B the class of symmetric frames
KD the class of right unbounded frames
KT4 S4 the class of reflexive and transitive frames
KT4B S5 the class of frames with an equivalence relation
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Basic model theory for modal logics

We study operations on models which preserves some
properties.

The invariant property

The most important invariant property we study is

���

satisfaction.

Operations on models
Disjoint union
Generated submodels
Bisimulation
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Disjoint union � � – intuition

M M

M U M 

1 2

1 2
+
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Disjoint union � �

Two models � and � are disjoint if � � � � �

.
The disjoint union of � and � , � � � � is defined

� � � �

� � �� � ��

� �� � � �� ��� � � �
�

��� �

Disjoint union can be generalized to any set of models

� � � �� �

� � �

�
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Invariant property for disjoint union

For any

� � �

and � � �

�	 � ��� �

iff

� � �

�	 � �� �

Satisfaction is invariant under disjoint union.
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Generated submodels

This is not a generated submodel

This is a generated submodel
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Generated submodel

�

is a generated submodel of , in symbols
� � iff

the following three condition holds

1.

� �

2.

� � � � � ��� �

3. if

� � � � � �

(i.e., � ��� and � � �

implies � � �

).

If conditions 1. and 2. hold then

�

is a submodel of .
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Invariant property for generated submodels

If

� � then for each � � �

and for each
�

	 � �� �

iff

�
	 � ��� �

Satisfaction is invariant under generated submodel.

Logics for knowledge representation – 2005 – p.26/41



Bsimulation

bisimulation is a very general relation between models,
which preserves satisfaction.

a bisimulation between and

�

is a relation

� � � �

� � � � intuitively means that any computation starting
from � can be simulated by a computation starting from

� � and viceversa.
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Bisimulation – intuition

Models describes the possible evolution of a finite state
machine;

Two models and

�

bisimulate, if any computation
described in can be simulated in

�

and viceversa.
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Bisimulation – formal definition

Given two models and

�

, a relation

� � � �

is a
bisimulation if and only if the following conditions hold:

1. � � � � implies that � � � ��� �

iff � � � � �� �
for all primitive

propositions � � �

(i.e., � and � � agree on the
interpretations of all the propositional formulas).

2. � � � � and � ��� then there is a � � � �

such that � � � �

3. (the converse of 2) � � � � and � � �� �

implies that there is a

� � such that � � �
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Bisimulation

Disjoint union is a special case of bisimulation.

� � � � �	 � � � � � � �

�

is a bisimulation between � and � � � �

Generated submodel is a special case of bisimulation
too.

� � � � �	 � � � � � � �

�

is a bisimulation betwen the model

�

generated from
.
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Invariant property for bisimulation

if

�

is a bisimulation betwen and

�

then

� � � � implies that for all

� 	 � �� �
iff

� � � ��� �

Proof. By induction on

�

.

�

is � . 	 � �� � iff � � � ��� �

iff (by condition 1 of bisimulation)

� � � � �� �

iff

� � � ��� �

�

is

�� � ��
� . . .

�

is

�� 	 � ��� ��

iff there is a � with � �� and 	 � ��� �

. By
condition 2 of bisimulation there is a � �

with � � �� �

and � � � �

. By
induction � � ��� �

. This implies that

� � � �� ��

.
For the vice-versa we reason similarly, using the converse condition
on the definition of bisimulation (condition 3)
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Invariant property for bisimulation

What about the converse?

For all

� 	 � �� �

implies � � � �

NO!!
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Finite models

Finite model property tells us that a formula
�

is
satisfiable by any (possibly infinite) model, iff it is
satisfiable by a finite model

Finite model property is very important in order to define
a decision procedure for satisfiability in modal logics
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Finite models – the intuition

Build a model that satisfies the following formula

� ��� � � ��� � ��� � � � ��� �
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Finite models – the intuition

Build a model that satisfies the following formula

� ��� � � ��� � ��� � � � ��� �
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Finite models — formal definition

Finite Model Property A class of frames

�

has the finite
model property iff for every formula

�

is satisfiability in

�

if
and only if there is a finite

� � �

such that
�

is satisfiabile in

�

.
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Finite model property via filtration

Large model with
property

� � � filtration � � finite model with
property

�

Given a set of formulas

�

and a model and two worlds

�	 � �

� �� �
if and only if for all

� � �

, 	 � �� �
iff

�
	 � ��� �

.
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Filtration – formal definition

The filtration of w.r.t,

�

, denoted with
�

� �

�

� 	 � �

� 	 � �

�

where

�

� � � ��

if � �� then

� � � � �

� � � �

� �

� ��� � � � � � � � � � � ��� � �

.

Logics for knowledge representation – 2005 – p.38/41



Filtration theorem

Proposition on finiteness If

�

is finite and closed under
subformula, then

�

� has at most

�
� � �

nodes

Filtration theorem IF

�

is closed under subformula then, for
all

� � �

	 � �� �

iff
�

� 	
� � � ��� �
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Finite model property via Filtration

If

�

is satisfiable then it is satisfiable in a model which has at
most

�
� � �

, where

� � �

is the number of subformulas of

�

.
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Grazie a tutti e buon week end!!!!!
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