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Kripke models and First order structures

@ A Kripke model Z (as defined in the previous slides) is equal
to the pair (F, V) where F is a frame (W,R) and V is a
truth assignment V : P — 2W.

@ A Kripke model can be seen as a first order interpretation
IroL = (AFor, (,)/For) of the following language:

@ a unary predicate P(x) for every proposition P € P Indeed V
associated to each P € P a set of worlds;
o the binary relation r(x, y) for the accessibility relation, which is
a binary relation on the set of worlds.
Intuitively, P(x) represents the facts that P is true in the
world x and r(x,y) represents the fact that the world y is
accessible form the world x.

@ AlFoL = W, i.e., the domain of interpretation is the set of
possible worlds. r'FoL is the accessibility relation R, and P” is
equal to V(P).
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Modal formulas and First order formulas

® /,w |= P means that [ satisfies the atomic formula P in the world
w. In the corresponding first order language, this can be expressed
by the fact that Iro, | P(x)[x := w]

9 /,w = P A Q means that / satisfies the P A Q in the world w. In
the corresponding first order language, this can be expressed by the
fact that Iror = P(x) A Q(X)[x := w]

@ /,w = OP means that / satisfies P in all the worlds w’ accessible
from w. In the corresponding first order language, this can be
expressed by the fact that /ror = Vy(r(x,y) D P(y))[x := w]

® /,w = OP means that / satisfies P in at least one world w’
accessible from w. In the corresponding first order language, this
can be expressed by the fact that Iro; = 3y (r(x,y) A P(y))[x := w]

@ [, w = OOP means that there is a world w’ accessible from w such
that for all worlds w” accessible from w’ w'’ satisfies P. In FOL
this can be expressed by the following formula
Iror = 3y (r(x,y) AVz(r(y,z) D P(2)))
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Standard translation of Modal formulas into First
order formulas

STX(P) = P(x)
STX(AoB) = STX(A) o STX(B) with o € {A,V,D,=}
~ST*(A)

Vy(R(x,y) 5 ST (A))
= Jy(R(x,y) ASTV(A))
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ST*(OOP ADOOQR D OO(P A Q)) is equal to

Vy(r(x,y) D (Vz(r(y,z) D P(2)))) A STX(OOP)
Vy(r(x,y) D (3z(r(y,2) A Q(2)))) D ST(B0Q)
Vy(r(x,y) D (3z(r(y,2) A P(2) A Q(2)))) ST(BO(P A Q))
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The standard translation

Theorem

If1 =((W,R), V) is a Kripke model, Iro, the corresponding first
order interpretation of the translated language, then, for every
modal formula ¢

I = ¢ if and only if IroL = YxST(¢)

Proof.

| A\

The proof is by induction on the complexity of ¢.

Base case Suppose that ¢ is the atomic formula P.

=P iff forallwe W, l,wgEP
iff V(P)= W
iff oL (P) = AlFor
iff  IroL = VxP(x)
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Relation between the expressivity of Logics

Propositional Logic (Prop): Propositional variables py, p,. .., and
propositional connectives A, V, D, =, and —

Modal Logic (Mod) = Prop + modal operators (] and ¢

First-order logic (Fol) = Prop + constants, function, and relations,
and quantifiers V and 3

The following relations between the expressivity of the three logic above
hold:
Prop C Mod C Fol

@ every propositional formula is a formula of modal logic, but not
viceversa. For instance LJP does not have any correspondence in
propositional logic.

@ every modal formula can be translated under the standard
translation into a first order formula with at most 2 variables. On
the other hand there are first order formulas that cannot be
translated back into modal formulas, for instance Vxyz P(x, y, f(z))
or Vxy(P(x,y) V P(y, x)).
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