Mathematical Logic 11. Modal Logics - relation with FOL

Luciano Serafini

FBK-IRST, Trento, Italy

September 18, 2013

Kripke models and First order structures

- A Kripke model \mathcal{I} (as defined in the previous slides) is equal to the pair (F, V) where F is a frame (W, R) and V is a truth assignment $V : \mathcal{P} \to 2^W$.
- A Kripke model can be seen as a first order interpretation $I_{FOL} = (\Delta^{I_{FOL}}, (,)^{I_{FOL}})$ of the following language:
 - a unary predicate P(x) for every proposition P ∈ P Indeed V associated to each P ∈ P a set of worlds;
 - the binary relation r(x, y) for the accessibility relation, which is a binary relation on the set of worlds.

Intuitively, P(x) represents the facts that P is true in the world x and r(x, y) represents the fact that the world y is accessible form the world x.

• $\Delta^{I_{FOL}} = W$, i.e., the domain of interpretation is the set of possible worlds. $r^{I_{FOL}}$ is the accessibility relation R, and $P^{\mathcal{I}}$ is equal to V(P).

Modal formulas and First order formulas

- *I*, *w* ⊨ *P* means that *I* satisfies the atomic formula *P* in the world *w*. In the corresponding first order language, this can be expressed by the fact that *I_{FOL}* ⊨ *P*(*x*)[*x* := *w*]
- *I*, *w* ⊨ *P* ∧ *Q* means that *I* satisfies the *P* ∧ *Q* in the world *w*. In the corresponding first order language, this can be expressed by the fact that *I_{FOL}* ⊨ *P*(*x*) ∧ *Q*(*x*)[*x* := *w*]
- *I*, *w* ⊨ □*P* means that *I* satisfies *P* in all the worlds *w'* accessible from *w*. In the corresponding first order language, this can be expressed by the fact that *I_{FOL}* ⊨ ∀*y*(*r*(*x*, *y*) ⊃ *P*(*y*))[*x* := *w*]
- *I*, w ⊨ ◊*P* means that *I* satisfies *P* in at least one world w' accessible from w. In the corresponding first order language, this can be expressed by the fact that *I_{FOL}* ⊨ ∃y(r(x, y) ∧ P(y))[x := w]
- $I, w \models \Diamond \Box P$ means that there is a world w' accessible from w such that for all worlds w'' accessible from w' w'' satisfies P. In FOL this can be expressed by the following formula $I_{FOL} \models \exists y(r(x, y) \land \forall z(r(y, z) \supset P(z)))$

Standard translation of Modal formulas into First order formulas

$$ST^{x}(P) = P(x)$$

$$ST^{x}(A \circ B) = ST^{x}(A) \circ ST^{x}(B) \text{ with } o \in \{\land, \lor, \supset, \equiv\}$$

$$ST^{x}(\neg A) = \neg ST^{x}(A)$$

$$ST^{x}(\Box A) = \forall y(R(x, y) \supset ST^{y}(A))$$

$$ST^{x}(\Diamond A) = \exists y(R(x, y) \land ST^{y}(A))$$

Example

 $\begin{aligned} \mathsf{ST}^{\mathsf{x}}(\Box\Box P \land \Box \Diamond Q \supset \Box \Diamond (P \land Q)) \text{ is equal to} \\ & \forall y(r(x,y) \supset (\forall z(r(y,z) \supset P(z)))) \land \qquad \mathsf{ST}^{\mathsf{x}}(\Box\Box P) \\ & \forall y(r(x,y) \supset (\exists z(r(y,z) \land Q(z)))) \supset \qquad \mathsf{ST}^{\mathsf{x}}(\Box \Diamond Q) \\ & \forall y(r(x,y) \supset (\exists z(r(y,z) \land P(z) \land Q(z)))) \qquad \mathsf{ST}^{\mathsf{x}}(\Box \Diamond (P \land Q)) \end{aligned}$

The standard translation

Theorem

If I = ((W, R), V) is a Kripke model, I_{FOL} the corresponding first order interpretation of the translated language, then, for every modal formula ϕ

$$I \models \phi$$
 if and only if $I_{FOL} \models \forall x ST^{x}(\phi)$

Proof.

The proof is by induction on the complexity of ϕ .

Base case Suppose that ϕ is the atomic formula *P*.

$$I \models P \quad iff \quad \text{for all } w \in W, \ I, w \models P$$
$$iff \quad V(P) = W$$
$$iff \quad I_{FOL}(P) = \Delta^{I_{FOL}}$$
$$iff \quad I_{FOL} \models \forall x P(x)$$

Relation between the expressivity of Logics

Propositional Logic (Prop): Propositional variables $p_1, p_2, ...,$ and propositional connectives $\land, \lor, \supset, \equiv$, and \neg

Modal Logic (Mod) = Prop + modal operators \Box and \Diamond

First-order logic (Fol) = Prop + constants, function, and relations, and quantifiers \forall and \exists

The following relations between the expressivity of the three logic above hold:

 $\textit{Prop} \subset \textit{Mod} \subset \textit{Fol}$

- every propositional formula is a formula of modal logic, but not viceversa. For instance □P does not have any correspondence in propositional logic.
- every modal formula can be translated under the standard translation into a first order formula with at most 2 variables. On the other hand there are first order formulas that cannot be translated back into modal formulas, for instance $\forall xyz \ P(x, y, f(z))$ or $\forall xy(P(x, y) \lor P(y, x))$.