
Mathematical Logics
18 Using Prover9 and Maze4

Luciano Serafini

Fondazione Bruno Kessler, Trento, Italy

November 27, 2013

Luciano Serafini Mathematical Logics

Prover9 Home Page

http://www.cs.unm.edu/ mccune/prover9/

Prover9 and Mace4

Prover9 is an automated theorem prover for first-order and
equational logic,

Mace4 searches for finite models and counterexamples

Luciano Serafini Mathematical Logics

Prover9 GUI

Luciano Serafini Mathematical Logics

Prover9 GUI

Luciano Serafini Mathematical Logics

Prover9’s Proof Method

The primary mode of inference used by Prover9 is resolution.
It repeatedly makes resolution inferences with the aim of
detecting inconsistency
Prover9 will first do some preprocessing on the input file to
convert it into the form it uses for inferencing.

1 First it negates the formula given as a goal
2 It then translates all formulae into clausal form.
3 In some cases it will do some further pre-processing, (but you do

not need to worry about this)

Then it will compute inferences and by default write these
standard output. Unless the input is very simple it will often
generate a large number of inferences.

If it detects an inconsistency it will stop and print out a proof
consisting of the sequence of resolution rules that generated
the inconsistency.

It will also print out various statistics associated with the
proof.

Luciano Serafini Mathematical Logics

Simple example

Example (Reasoning in proposition logic)

Check if p ∧ s, p ⊃ q, q ⊃ r |= r ∨ t holds

Prover9 simple input file

formulas(assumptions).

p & s. % "&" symbol is for conjunction "and"

p -> q. % "->" symbol is for implication "implies"

q -> r.

end_of_list.

formulas(goals).

r | t. % "|" symbol is for distunction "or"

end_of_list.

Luciano Serafini Mathematical Logics

Output of Prover9

============================== prooftrans ============================

Prover9 (32) version Dec-2007, Dec 2007.

Process 71916 was started by luciano on coccobill.local,

Fri Nov 22 11:36:46 2013

The command was "/Users/luciano/Applications/Prover9-Mace4-v05B.app/Contents/Resources/bin-mac-intel/prover9".

============================== end of head ===========================

============================== end of input ==========================

============================== PROOF =================================

% -------- Comments from original proof --------

% Proof 1 at 0.00 (+ 0.00) seconds.

% Length of proof is 11.

% Level of proof is 3.

% Maximum clause weight is 2.

% Given clauses 5.

1 p & s # label(non_clause). [assumption].

2 p -> q # label(non_clause). [assumption].

3 q -> r # label(non_clause). [assumption].

4 r | t # label(non_clause) # label(goal). [goal].

5 p. [clausify(1)].

7 -p | q. [clausify(2)].

8 -q | r. [clausify(3)].

9 -r. [deny(4)].

11 q. [ur(7,a,5,a)].

12 -q. [resolve(9,a,8,b)].

13 $F. [resolve(12,a,11,a)].

============================== end of proof ==========================

Luciano Serafini Mathematical Logics

A slightly more complex example using quantifiers

Example (Transitivity of subset relation)

Show that the containment relation between sets is transitive. I.e.,
For any set A, B, and C

A ⊆ B ∧ B ⊆ C → A ⊆ C

Where A ⊆ B is defined as ∀x(x ∈ A→ x ∈ B)

Prover9 input file

formulas(assumptions).

all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y)))).

end_of_list.

formulas(goals).

all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z)).

end_of_list.

Luciano Serafini Mathematical Logics

Output of Prover9

============================== prooftrans ============================

Prover9 (32) version Dec-2007, Dec 2007.

Process 71873 was started by luciano on coccobill.local,

Fri Nov 22 11:32:23 2013

The command was "/Users/luciano/Applications/Prover9-Mace4-v05B.app/Contents/Resources/bin-mac-intel/prover9".

============================== end of head ===========================

============================== end of input ==========================

============================== PROOF =================================

% -------- Comments from original proof --------

% Proof 1 at 0.00 (+ 0.00) seconds.

% Length of proof is 14.

% Level of proof is 4.

% Maximum clause weight is 6.

% Given clauses 6.

1 (all x all y (subset(x,y) <-> (all z (member(z,x) -> member(z,y))))) # label(non_clause). [assumption].

2 (all x all y all z (subset(x,y) & subset(y,z) -> subset(x,z))) # label(non_clause) # label(goal). [goal].

3 subset(x,y) | member(f1(x,y),x). [clausify(1)].

4 -subset(x,y) | -member(z,x) | member(z,y). [clausify(1)].

5 subset(x,y) | -member(f1(x,y),y). [clausify(1)].

6 subset(c1,c2). [deny(2)].

7 subset(c2,c3). [deny(2)].

8 -subset(c1,c3). [deny(2)].

11 -member(x,c1) | member(x,c2). [resolve(6,a,4,a)].

12 -member(x,c2) | member(x,c3). [resolve(7,a,4,a)].

13 member(f1(c1,c3),c1). [resolve(8,a,3,a)].

14 -member(f1(c1,c3),c3). [resolve(8,a,5,a)].

15 member(f1(c1,c3),c2). [resolve(13,a,11,a)].

18 $F. [ur(12,b,14,a),unit_del(a,15)].

============================== end of proof ==========================Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them.

Also there are some grains, and grains are plants.

Every animal either likes to eat all plants or all animals much
smaller than itself that like to eat some plants.

Caterpillars and snails are much smaller than birds, which are
much smaller than foxes, which are in turn much smaller than
wolves.

Wolves do not like to eat foxes or grains, while birds like to
eat caterpillars but not snails.

Caterpillars and snails like to eat some plants.

Prove there is an animal that likes to eat a grain-eating
animal. (where a grain eating animal is one that eats all
grains)

Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

Wolves, foxes, birds, caterpillars, and snails are animals, and
there are some of each of them.

∀x .(Wolf (x) ∨ Fox(x) ∨ Bird(x) ∨
Caterpillar(x) ∨ Snail(x) ⊃ animal(x))

∃x .Worlf (x) ∧ ∃x .Fox(x) ∧ ∃x .Bird(x) ∧
∃x .Caterpillar(x) ∧ ∃x .Snail(x)

Also there are some grains, and grains are plants.

∃x .Grain(x) ∧ ∀x .(Grain(x) ⊃ Plant(x))

Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

Every animal either likes to eat all plants or all animals, much
smaller than itself that like to eat some plants.

∀x .(Animal(x) ⊃ (∀y .(Plant(y) ⊃ Eats(x , y)) ∨
∀z .(Animal(z) ∧ Smaller(z , x) ∧

(∃u(plant(u) ∧ eats(z , u))) ⊃
Eats(x , z))))

Caterpillars and snails are much smaller than birds, which are much
smaller than foxes, which are in turn much smaller than wolves.

∀x∀y(Caterpillar(x) ∧ Bird(y) ⊃ Smaller(x , y))

∀x∀y(Snail(x) ∧ Bird(y) ⊃ Smaller(x , y))

∀x∀y(Bird(x) ∧ Fox(y) ⊃ Smaller(x , y))

∀x∀y(Fox(x) ∧Wolf (y) ⊃ Smaller(x , y))

Luciano Serafini Mathematical Logics

An even more complex example

Example (Schubert’s “Steamroller” Problem)

Wolves do not like to eat foxes or grains, while birds like to eat
caterpillars but not snails.

∀x∀y .(Wolf (x) ∧ (Fox(y) ∨ Grain(y))→ ¬Eatis(x , y)

∀x∀y .(Bird(x) ∧ Caterpillar(y) ⊃ eats(x , y))

∀x∀y .(Bird(x) ∧ Snail(y) ⊃ ¬eats(x , y))

Caterpillars and snails like to eat some plants.

∀x(Caterpillar(x) ∨ Snail(x) ⊃ ∃y(Plant(y) ∧ Eats(x , y)))

Prove there is an animal that likes to eat a grain-eating animal.
(where a grain eating animal is one that eats all grains)

∃xy .(Animal(x) ∧ Animal(y) ∧ Eats(x , y) ∧
(∀z .(Grain(z) ⊃ Eats(y , z)))

Luciano Serafini Mathematical Logics

Prover9 input file 1/2

formulas(assumptions).

all x (wolf(x) -> animal(x)).

all x (fox(x) -> animal(x)).

all x (bird(x) -> animal(x)).

all x (caterpillar(x) -> animal(x)).

all x (snail(x) -> animal(x)).

all x (grain(x) -> plant(x)).

exists x wolf(x).

exists x fox(x).

exists x bird(x).

exists x caterpillar(x).

exists x snail(x).

exists x grain(x).

all x (animal(x) -> (all y (plant(y) -> eats(x,y)))

|

(all z (animal(z) & smaller(z,x) &

(exists u (plant(u) & eats(z,u)))

->

eats(x,z)))).
Luciano Serafini Mathematical Logics

Prover9 input file 2/2

all x all y (caterpillar(x) & bird(y) -> smaller(x,y)).

all x all y (snail(x) & bird(y) -> smaller(x,y)).

all x all y (bird(x) & fox(y) -> smaller(x,y)).

all x all y (fox(x) & wolf(y) -> smaller(x,y)).

all x all y (bird(x) & caterpillar(y) -> eats(x,y)).

all x (caterpillar(x) -> (exists y (plant(y) & eats(x,y)))).

all x (snail(x) -> (exists y (plant(y) & eats(x,y)))).

all x all y (wolf(x) & fox(y) -> -eats(x,y)).

all x all y (wolf(x) & grain(y) -> -eats(x,y)).

all x all y (bird(x) & snail(y) -> -eats(x,y)).

end_of_list.

formulas(goals).

exists x exists y (animal(x) & animal(y) & eats(x,y) &

(all z (Grain(z) -> eats(y,z)))).

end_of_list.

Luciano Serafini Mathematical Logics

Exercize (A Murder Mystery Problem)

Translate the following sentences into FOL

1 Someone who lives in Dreadbury Mansion killed Aunt Agatha.

2 Agatha, the butler, and Charles live in Dreadbury Mansion, and are
the only people who live therein.

3 A killer always hates his victim, and is never richer than his victim.

4 Charles hates no one that Aunt Agatha hates.

5 Agatha hates everyone except the butler.

6 The butler hates everyone not richer than Aunt Agatha.

7 The butler hates everyone Aunt Agatha hates.

8 No one hates everyone.

9 Agatha is not the butler.

Now use the Prover9 to show

1 prover to deduce who killed Aunt Agatha. (Hint: try for each of the
possibilities).

Luciano Serafini Mathematical Logics

Exercize (A Murder Mystery Problem)

Translate the following sentences into FOL

1 Someone who lives in Dreadbury Mansion killed Aunt Agatha.
exists x (livesin(x,DM) & kills(x,Agatha)).

2 Agatha, the butler, and Charles live in Dreadbury Mansion, and are the only
people who live therein.

livesin(Agatha,DM) & lives(Thebutler,DM) & lives(Charles,DM).

all x (livesin(x,DM) <-> x=Agatha | x=Thebutler | x=Charles).

3 A killer always hates his victim, and is never richer than his victim.
all x all y (kills(x,y) -> hates(x,y) & -richer(x,y)).

4 Charles hates no one that Aunt Agatha hates.
all x all y (hates(Agatha,y) -> -hates(Charles,y)).

5 Agatha hates everyone except the butler.
all x (hates(Agatha,x) <-> -x=Thebutler & -x=Agatha).

6 The butler hates everyone not richer than Aunt Agatha.
all x all y (richer(x,Agatha) -> hates(Thebutler,x)).

7 The butler hates everyone Aunt Agatha hates.
all x (hates(Agatha,x) -> hates(Thebutler,x)).

8 No one hates everyone. all x exists y -hates(x,y).

9 Agatha is not the butler. -Agatha = Thebutler.

10 who killed Aunt Agatha? kills(Thebutler,Agatha).

Luciano Serafini Mathematical Logics

Model generation - Mace4

Prover9 tries to show that Γ |= φ by making attempts to show
that the set of formulas Γ ∪ {¬φ} is not satisfiable.

If Prover9 succeeds ok in showing that Γ ∪ {¬φ} is not
satisfiable, then clearly Γ |= φ.

But what about if Prover9 fails in showing that Γ ∪ {¬φ} is
not satisfiable? i.e., when Γ ∪ {¬φ} is satisfiable?

Can we have a model for Γ ∪ {¬φ}?
Yes, we have to use Mace4.

Luciano Serafini Mathematical Logics

Mace4

Mace4 is a program that searches for finite models of
first-order formulas.

For a given domain size, all instances of the formulas over the
domain are constructed. The result is a set of ground clauses
with equality.

Then, a decision procedure based on ground equational
rewriting is applied. If satisfiability is detected, one or more
models are printed.

Luciano Serafini Mathematical Logics

Mace4 – example

Input file:

arc(x,y) -> node(x) & node(y).

exists x1 exists x2 exists x3 (color(x1) & color(x2) & color(x3) &

x1 != x2 & x2 != x3 & x1 != x3).

color(x1) & color(x2) & color(x3) & color(x4) ->

x1=x2 | x1=x3 | x1=x4 | x2=x3 | x2=x4 | x3=x4.

hascolor(x,y) -> node(x) & color(y).

color(x) -> -node(x).

color(x) | node(x).

node(x) -> exists y hascolor(x,y).

hascolor(x,y1) & hascolor(x,y2) -> y1=y2.

N1 != N2 & N1 != N3 & N1 != N4 & N2 != N3 & N2 != N4 & N3 != N4.

arc(N1,N2).

arc(N2,N3).

arc(N3,N1).

arc(N1,N4).

arc(N2,N4).

% arc(N3,N4).

arc(x,y) -> arc(y,x)

-arc(x,x).

arc(x,y) & hascolor(x,z) -> -hascolor(y,z).
Luciano Serafini Mathematical Logics

Mace4 – example

Produced model:

interpretation(7, [number = 1,seconds = 0], [

function(N1, [0]), function(c1, [4]),

function(N2, [1]), function(c2, [5]),

function(N3, [2]), function(c3, [6]),

function(N4, [3]),

function(f1(_), [4,5,6,6,0,0,0]),

relation(color(_), [0,0,0,0,1,1,1]),

relation(node(_), [1,1,1,1,0,0,0]),

relation(arc(_,_), [relation(hascolor(_,_), [

0,1,1,1,0,0,0, 0,0,0,0,1,0,0,

1,0,1,1,0,0,0, 0,0,0,0,0,1,0,

1,1,0,0,0,0,0, 0,0,0,0,0,0,1,

1,1,0,0,0,0,0, 0,0,0,0,0,0,1,

0,0,0,0,0,0,0, 0,0,0,0,0,0,0,

0,0,0,0,0,0,0, 0,0,0,0,0,0,0,

0,0,0,0,0,0,0]), 0,0,0,0,0,0,0])]).

Luciano Serafini Mathematical Logics

