Mathematical Logic

Tableaux Reasoning for Propositional Logic

Chiara Ghidini

FBK-IRST, Trento, Italy

Outline of this lecture

- An introduction to Automated Reasoning with Analytic Tableaux;
- Today we will be looking into tableau methods for classical propositional logic (well discuss first-order tableaux later).
- Analytic Tableaux are a a family of mechanical proof methods, developed for a variety of different logics. Tableaux are nice, because they are both easy to grasp for humans and easy to implement on machines.

Tableaux

- Early work by Beth and Hintikka (around 1955). Later refined and popularised by Raymond Smullyan:
 - R.M. Smullyan. First-order Logic. Springer-Verlag, 1968.
- Modern expositions include:
 - M. Fitting. First-order Logic and Automated Theorem Proving. 2nd edition. Springer-Verlag, 1996.
 - M. DAgostino, D. Gabbay, R. Hähnle, and J. Posegga (eds.).
 Handbook of Tableau Methods. Kluwer, 1999.
 - R. Hähnle. Tableaux and Related Methods. In: A. Robinson and A. Voronkov (eds.), Handbook of Automated Reasoning, Elsevier Science and MIT Press, 2001.
 - Proceedings of the yearly Tableaux conference: http://i12www.ira.uka.de/TABLEAUX/

How does it work?

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated *deduction*:

Given : set of premises Γ and conclusion ϕ

Task : prove $\Gamma \models \phi$

How? show $\Gamma \cup \neg \phi$ is not satisfiable (which is equivalent),

i.e. add the complement of the conclusion to the premises

and derive a contradiction (refutation procedure)

Reduce Logical Consequence to (un)Satisfiability

Theorem

 $\Gamma \models \phi$ if and only if $\Gamma \cup \{\neg \phi\}$ is unsatisfiable

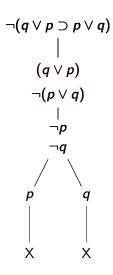
Proof.

- \Rightarrow Suppose that $\Gamma \models \phi$, this means that every interpretation $\mathcal I$ that satisfies Γ , it does satisfy ϕ , and therefore $\mathcal I \not\models \neg \phi$. This implies that there is no interpretations that satisfies together Γ and $\neg \phi$.
- \leftarrow Suppose that $\mathcal{I} \models \Gamma$, let us prove that $\mathcal{I} \models \phi$, Since $\Gamma \cup \{\neg \phi\}$ is not satisfiable, then $\mathcal{I} \not\models \neg \phi$ and therefore $\mathcal{I} \models \phi$.

Constructing Tableau Proofs

- Data structure: a proof is represented as a tableaua binary tree, the nodes of which are labelled with formulas.
- **Start**: we start by putting the premises and the negated conclusion into the root of an otherwise empty tableau.
- **Expansion**: we apply expansion rules to the formulas on the tree, thereby adding new formulas and splitting branches.
- Closure: we close branches that are obviously contradictory.
- Success: a proof is successful iff we can close all branches.

An example



Expansion Rules of Propositional Tableau

α rules

¬¬-Elimination

$$\begin{array}{cccc} -\phi \wedge \psi & \neg(\phi \vee \psi) & \neg(\phi \supset \psi) \\ \hline \phi & \neg \phi & \hline \phi & \hline \phi \\ \psi & \neg \psi & \neg \psi \end{array}$$

$$\frac{\neg(\phi\supset\psi)}{\phi}$$

$$\neg\psi$$

$$\frac{\neg \neg \phi}{\phi}$$

β rules

Branch Closure

$$\frac{\phi}{X}$$

Note: These are the standard ("Smullyan-style") tableau rules.

We omit the rules for \equiv . We rewrite $\phi \equiv \psi$ as $(\phi \supset \psi) \land (\psi \supset \phi)$

Smullyans Uniform Notation

Two types of formulas: conjunctive (α) and disjunctive (β) :

We can now state α and β rules as follows:

$$\begin{array}{c|c} \alpha & \beta \\ \hline \alpha_1 & \beta_1 \mid \beta_2 \end{array}$$

$$\alpha_2$$

Note: α rules are also called deterministic rules. β rules are also called splitting rules.

Some definition for tableaux

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition

Let ϕ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$

Exercises

Exercise

Show that the following are valid arguments:

- $\bullet \models ((P \supset Q) \supset P) \supset P$
- $P \supset (Q \land R), \neg Q \lor \neg R \models \neg P$

Solutions

$$\neg(((P \supset Q) \supset P) \supset P)$$

$$|$$

$$(P \supset Q) \supset P$$

$$\neg P$$

$$|$$

$$|$$

$$(P \supset Q) \qquad P$$

$$|$$

$$|$$

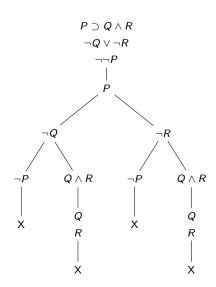
$$P$$

$$\neg Q$$

$$|$$

$$X$$

Solutions



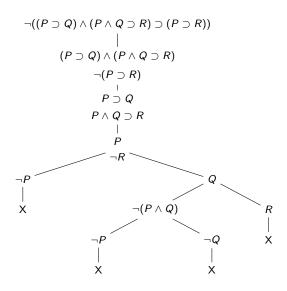
Note: different orderings of expansion rules are possible! But all lead to unsatisfiability.

Exercises

Exercise

Check whether the formula $\neg((P \supset Q) \land (P \land Q \supset R) \supset (P \supset R))$ is satisfiable

Solution



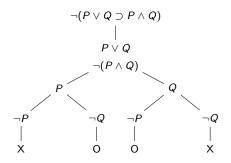
The tableau is closed and the formula is not satisfiable.

Satisfiability: An example

Exercise

Check whether the formula $\neg(P \lor Q \supset P \land Q)$ is satisfiable

Solution



Two open branches. The formula is satisfiable.

The tableau shows us all the possible interpretations ($\{P\}, \{Q\}$) that satisfy the formula.

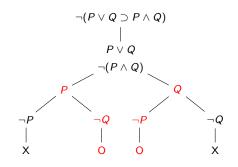
Using the tableau to build interpretations.

For each open branch in the tableau, and for each propositional atom p in the formula we define

$$\mathcal{I}(p) = \begin{cases} \text{True} & \text{if } p \text{ belongs to the branch,} \\ \text{False} & \text{if } \neg p \text{ belongs to the branch.} \end{cases}$$

If neither p nor $\neg p$ belong to the branch we can define $\mathcal{I}(p)$ in an arbitrary way.

Models for $\neg (P \lor Q \supset P \land Q)$



Two models:

- $\mathcal{I}(P) = \mathsf{True}, \mathcal{I}(Q) = \mathsf{False}$
- $\bullet \ \, \mathcal{I}(P) = \mathsf{False}, \mathcal{I}(\mathit{Q}) = \mathsf{True}$

Double-check with the truth tables!

Ρ	Q	$P \lor Q$	$P \wedge Q$	$P \lor Q \supset P \land Q$	$ \neg(P\lor Q\supset P\land Q) $
T	T	T	T	T	F
F	F	F	F	T	F
T	F	Τ	F	T	T
F	T	F T T	F	F	T

Homeworks!

Exercise

Show unsatisfiability of each of the following formulae using tableaux:

Show satisfiability of each of the following formulae using tableaux:

Show validity of each of the following formulae using tableaux:

For each of the following formulae, describe all models of this formula using tableaux:

Establish the equivalences between the following pairs of formulae using tableaux:

$$\bullet$$
 $(p \lor q) \land (p \lor \neg q), p.$

Termination

Assuming we analyse each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever shorter formulas.

Note: Importantly, termination will not hold in the first-order case.

Soundness and Completeness

To actually believe that the tableau method is a valid decision procedure we have to prove:

Theorem (Soundness)

If $\Gamma \vdash \phi$ *then* $\Gamma \models \phi$

Theorem (Completeness)

If $\Gamma \models \phi$ *then* $\Gamma \vdash \phi$

Remember: We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$.

Proof of Soundness

We say that a *branch* is satisfiable iff the set of formulas on that branch is satisfiable.

First prove the following lemma:

Lemma (Satisfiable Branches)

If a non-branching rule is applied to a satisfiable branch, the result is another satisfiable branch. If a branching rule is applied to a satisfiable branch, at least one of the resulting branches is also satisfiable.

Hint for proof: prove it for all the expansion rules!

Proof of Soundness (II)

We prove soundness by contradiction, that is, assume $\Gamma \vdash \phi$ but $\Gamma \not\models \phi$ and try to derive a contradiction.

- If $\Gamma \not\models \phi$ then $\Gamma \cup \{\neg \phi\}$ is satisfiable (see theorem on relation between logical consequence and (un) satisfiability)
- therefore the initial branch of the tableau (the root $\Gamma \cup \{\neg \phi\}$) is satisfiable
- therefore the tableau for this formula will always have a satisfiable branch (see previouls Lemma on satisfiable branches)
- This contradicts our assumption that at one point all branches will be closed ($\Gamma \vdash \phi$), because a closed branch clearly is not satisfiable.
- Therefore we can conclude that $\Gamma \not\models \phi$ cannot be and therefore that $\Gamma \models \phi$ holds.

Decidability

The proof of Soundness and Completeness confirms the decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical propositional logic.

Proof. To check validity of ϕ , develop a tableau for $\neg \phi$. Because of termination, we will eventually get a tableau that is either (1) closed or (2) that has a branch that cannot be closed.

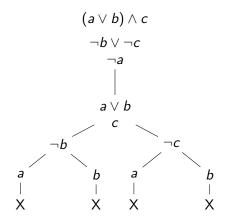
- In case (1), the formula ϕ must be valid (soundness).
- In case (2), the branch that cannot be closed shows that $\neg \phi$ is satisfiable (see completeness proof), i.e. ϕ cannot be valid.

This terminates the proof.

Exercise

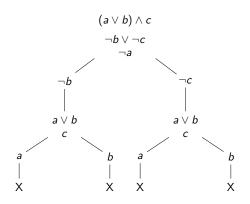
Exercise

Build a tableau for $\{(a \lor b) \land c, \neg b \lor \neg c, \neg a\}$



Another solution

What happens if we first expand the disjunction and then the conjunction?



Expanding β rules creates new branches. Then α rules may need to be expanded in all of them.

Strategies of expansion

- Using the "wrong" policy (e.g., expanding disjunctions first) leads to an increase of size of the tableau, which leads to an increase of time;
- yet, unsatisfiability is still proved if set is unsatisfiable;
- this is not the case for other logics, where applying the wrong policy may inhibit proving unsatisfiability of some unsatisfiable sets.

Finding Short Proofs

- It is an open problem to find an efficient algorithm to decide in all cases which rule to use next in order to derive the shortest possible proof.
- However, as a rough guideline always apply any applicable non-branching rules first. In some cases, these may turn out to be redundant, but they will never cause an exponential blow-up of the proof.

Efficiency

- Are analytic tableaus an efficient method of checking whether a formula is a tautology?
- Remember: using the truth-tables to check a formula involving n propositional atoms requires filling in 2^n rows (exponential = very bad).
- Are tableaux any better?

Exercise

Exercise

Give proofs for the unsatisfiability of the following formula using (1) truth-tables, and (2) Smullyan-style tableaux.

$$(P \lor Q) \land (P \lor \neg Q) \land (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

Smullyan-style Tableaux and Truth-Tables

- Intuitively, one proof system is at least as good as the next iff
 it never requires a longer proof for the same theorem.¹
- Rather surprisingly, we get that "Smullyan-style tableaux cannot p-simulate the truth-table method" ².
- In fact, Smullyan tableaux and truth-tables are incomparable in terms of p-simulation. So neither method is better in all cases. In practice, the tableau method often is very much better than using truth-tables.

¹Formally a proof system A p-simulates another proof system B (deriving the same theorems) iff there is a function g, computable in polynomial time, that maps derivations for any formula ϕ in B to derivations for ϕ in A. We call this notion p-simulation.

²M. DAgostino. Are tableaux an improvement on truth-tables? *Journal of Logic, Language and Information*, 1(3):235252, 1992.