Mathematical Logic

First order logic: syntax and semantics

Luciano Serafini

FBK-IRST, Trento, Italy
November 4, 2013

Outline

- Why First Order Logic (FOL)?
- Syntax and Semantics of FOL;
- First Order Theories;
- ... and in between few examples;

Expressivity of propositional logic - I

Question

Try to express in Propositional Logic the following statements:

- Mary is a person
- John is a person
- Mary is mortal
- Mary and John are siblings

A solution

Through atomic propositions:

- Mary-is-a-person
- John-is-a-person
- Mary-is-mortal
- Mary-and-John-are-siblings
- Mary-is-a-person
- John-is-a-person
- Mary-is-mortal
- Mary-and-John-are-siblings

How do we link Mary of the first sentence to Mary of the third sentence? Same with John. How do we link Mary and Mary-and-John?

Expressivity of propositional logic - II

Question

Try to express in Propositional Logic the following statements:

- All persons are mortal;
- There is a person who is a spy.

A solution

We can give all people a name and express this fact through atomic propositions:

- Mary-is-mortal \wedge John-is-mortal \wedge Chris-is-mortal $\wedge . . \wedge$ Michael-is-mortal
- Mary-is-a-spy VJohn-is-a-spy VChris-is-a-spy V...V Michael-is-a-spy
- Mary-is-mortal \wedge John-is-mortal \wedge Chris-is-mortal $\wedge . . \wedge$ Michael-is-mortal
- Mary-is-a-spy V John-is-a-spy V Chris-is-a-spy V...V Michael-is-a-spy

The representation is not compact and generalization patterns are difficult to express.
What is we do not know all the people in our "universe"? How can we express the statement independently from the people in the "universe"?

Expressivity of propositional logic - III

Question

Try to express in Propositional Logic the following statements:

- Every natural number is either even or odd

A solution

We can use two families of propositions even ${ }_{i}$ and odd ${ }_{i}$ for every $i \geq 1$, and use the set of formulas

$$
\left\{\text { odd }_{i} \vee \text { even }_{i} \mid i \geq 1\right\}
$$

Problem with previous solution

$$
\left\{\text { odd }_{i} \vee \text { even }_{i} \mid i \geq 1\right\}
$$

What happens if we want to state this in one single formula? To do this we would need to write an infinite formula like:

$$
\left(\text { odd }_{1} \vee \text { even }_{1}\right) \wedge\left(\text { odd }_{2} \vee \text { even }_{2}\right) \wedge \ldots
$$

and this cannot be done in propositional logic.

Expressivity of propositional logic -IV

Question

Express the statements:

- the father of Luca is Italian

Solution (Partial)

- mario-is-father-of-luca \supset mario-is-italian
- michele-is-father-of-luca \supset michele-is-italian - ...
- mario-is-father-of-luca \supset mario-is-italian
- michele-is-father-of-luca \supset michele-is-italian
- . .

This statement strictly depend from a fixed set of people. What happens if we want to make this statement independently of the set of persons we have in our universe?

Why first order logic?

Because it provides a way of representing information like the following one:
(1) Mary is a person;
(2) John is a person;
(3) Mary is mortal;
(9) Mary and John are siblings
(6) Every person is mortal;
(6) There is a person who is a spy;
(1) Every natural number is either even or odd;
(8) The father of Luca is Italian
and also to infer the third one from the first one and the fifth one.

First order logic

Whereas propositional logic assumes world contains facts, first-order logic (like natural language) assumes the world contains:

- Constants: mary, john, 1, 2, 3, red, blue, world war 1, world war 2, 18th Century...
- Predicates: Mortal, Round, Prime, Brother of, Bigger than, Inside, Part of, Has color, Occurred after, Owns, Comes between, ...
- Functions: Father of, Best friend, Third inning of, One more than, End of, ...

Constants and Predicates

- Mary is a person
- John is a person
- Mary is mortal
- Mary and John are siblings

In FOL it is possible to build an atomic propositions by applying a predicate to constants

- Person(mary)
- Person(john)
- Mortal(mary)
- Siblings(mary,john)

Quantifiers and variables

- Every person is mortal;
- There is a person who is a spy;
- Every natural number is either even or odd;

In FOL it is possible to build propositions by applying universal (existential) quantifiers to variables. This allows to quantify to arbitrary objects of the universe.

- $\forall x$. Person $(x) \supset \operatorname{Mortal}(x)$;
- $\exists x . \operatorname{Person}(x) \supset \operatorname{Spy}(x)$;
- $\forall x .(\operatorname{Odd}(x) \vee \operatorname{Even}(x))$

Functions

- The father of Luca is Italian.

In FOL it is possible to build propositions by applying a function to a constant, and then a predicate to the resulting object.

- Italian(fatherOf(Mario))

Syntax of FOL

The alphabet of FOL is composed of two sets of symbols:

Logical symbols

- the logical constant \perp
- propositional logical connectives $\wedge, \vee, \supset, \neg, \equiv$
- the quantifiers \forall, \exists
- an infinite set of variable symbols x_{1}, x_{2}, \ldots
- the equality symbol $=$. (optional)

Non Logical symbols

- a set c_{1}, c_{2}, \ldots of constant symbols
- a set f_{1}, f_{2}, \ldots of functional symbols each of which is associated with its arity (i.e., number of arguments)
- a set P_{1}, P_{2}, \ldots of relational symbols each of which is associated with its arity (i.e., number of arguments)

Non logical symbols - Example

Non logical symbols depends from the domain we want to model. Their must have an intuitive interpretation on such a domain.

Example (Domain of arithmetics)

symbols	type	arity	intuitive interpretation
0	constant	0^{*}	the smallest natural number
$\operatorname{succ}(\cdot)$	function	1	the function that given a number returns its successor
$<(\cdot, \cdot)$	function	2	the function that given two numbers re- turns the number corresponding to the sum of the two the less then relation between natural numbers

* A constant can be considered as a function with arity equal to 0

Non logical symbols - Example

Example (Domain of arithmetics - extended)

The basic language of arithmetics can be extended with further symbols e.g:

symbols	type	arity	intuitive interpretation
0	constant	0	the smallest natural number
$\operatorname{succ}(\cdot)$	function	1	the function that given a number returns its successor
$+(\cdot, \cdot)$	function	2	the function that given two numbers returns the number corresponding to the sum of the two
$*(\cdot, \cdot)$	function	2	the function that given two numbers returns the number corresponding to the product of the two
$<(\cdot, \cdot)$	relation	2	the less then relation between natural numbers
$\leq(\cdot, \cdot)$	relation	2	the less then or equal relation between natural numbers

Non logical symbols - Example

Example (Domain of strings)

symbols	type	arity	intuitive interpretation
ϵ	constant	0	The empty string "a", "b",
constants	0	The strings containing one single char- acter of the latin alphabet	
$\operatorname{subst}(\cdot, \cdot, \cdot)$	function	2	the function that given two strings re- turns the string which is the concatena- tion of the two
$<$	3	The function that replaces all the occur- rence of a string with another string in a third one	
$\operatorname{substring}(\cdot, \cdot)$	relation	2	Alphabetic order on the strings a relation that states if a string is con- tained in another string

Terms and formulas of FOL

Terms

- every constant c_{i} and every variable x_{i} is a term;
- if t_{1}, \ldots, t_{n} are terms and f_{i} is a functional symbol of arity equal to n, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Well formed formulas

- if t_{1} and t_{2} are terms then $t_{1}=t_{2}$ is a formula
- If t_{1}, \ldots, t_{n} are terms and P_{i} is relational symbol of arity equal to n, then $P_{i}\left(t_{1}, \ldots, t_{n}\right)$ is formula
- if A and B are formulas then $\perp, A \wedge B, A \supset B, A \vee B \neg A$ are formulas
- if A is a formula and x a variable, then $\forall x . A$ and $\exists x . A$ are formulas.

Examples of terms and formulas

Example (Terms)

- x_{i},
- c_{i},
- $f_{i}\left(x_{j}, c_{k}\right)$, and
- $f(g(x, y), h(x, y, z), y)$

Example (formulas)

- $f(a, b)=c$,
- $P\left(c_{1}\right)$,
- $\exists x(A(x) \vee B(y))$, and
- $P(x) \supset \exists y . Q(x, y)$.

An example of representation in FOL

Example (Language)

constants	functions (arity)	Predicate (arity)
Aldo	mark (2)	attend (2)
Bruno	best-friend (1)	friend (2)
Carlo		student (1)
MathLogic		course (1)
DataBase		less-than (2)
$0,1, \ldots, 10$		

Example (Terms)

Intuitive meaning
an individual named Aldo
the mark 1
Bruno's best friend
anything
Bruno's mark in MathLogic
somebody's mark in DataBase
Bruno's best friend mark in MathLogic

```
term
    Aldo
    1
    best-friend(Bruno)
    x
    mark(Bruno,MathLogic)
    mark(x,DataBase)
    mark(best-friend(Bruno),MathLogic)
```


An example of representation in FOL (cont'd)

Example (Formulas)

Intuitive meaning	Formula
Aldo and Bruno are the same person	Aldo $=$ Bruno
Carlo is a person and MathLogic is a course	person(Carlo $) \wedge$ course (MathLogic)
Aldo attends MathLogic	attend(Aldo, MathLogic)
Courses are attended only by students	$\forall x(\operatorname{attend}(x, y) \supset \operatorname{course}(y) \supset \operatorname{student}(x))$
every course is attended by somebody	$\forall x(\operatorname{course}(x) \supset \exists y$ attend $(y, x))$
every student attends something	$\forall x(\operatorname{student}(x) \supset \exists y$ attend $(x, y))$
a student who attends all the courses	$\exists x(\operatorname{student}(x) \wedge \forall y(\operatorname{course}(y) \supset$ attend $(x, y))$)
every course has at least two attenders	$\forall x(\operatorname{course}(x) \supset \exists y \exists z(\operatorname{attend}(y, x) \wedge$ attend $(z, x) \wedge \neg y=z))$
Aldo's best friend attend the same courses attended by Aldo	$\forall x($ attend $($ Aldo,$x) \supset$ attend(best-friend(Aldo), $x)$)
best-friend is symmetric	$\forall x($ best-friend $($ best-friend $(x))=x)$
Aldo and his best friend have the same mark in MathLogic	mark(best-friend(Aldo), MathLogic) $=$ mark(Aldo, MathLogic)
A student can attend at most two courses	$\begin{aligned} & \forall x \forall y \forall z \forall w(\operatorname{attend}(x, y) \wedge \text { attend }(x, z) \wedge \text { attend }(x, w) \supset \\ & \quad(y=z \vee z=w \vee y=w)) \end{aligned}$

Common Mistakes

- Use of \wedge with \forall
$\forall x($ WorksAt $(F B K, x) \wedge \operatorname{Smart}(x))$ means "Everyone works at FBK and everyone is smart"
"Everyone working at FBK is smart" is formalized as $\forall x($ WorksAt $(F B K, x) \supset \operatorname{Smart}(x))$
- Use of \supset with \exists
$\exists x($ WorksAt $(F B K, x) \supset \operatorname{Smart}(x))$ mans "There is a person so that if (s)he works at FBK then (s)he is smart" and this is true as soon as there is at last an x who does not work at FBK
"There is an FBK-working smart person" is formalized as $\exists x($ WorksAt $(F B K, x) \wedge \operatorname{Smart}(x))$

Representing variations quantifiers in FOL

Example

Represent the statement at least 2 students attend the KR course

$$
\exists x_{1} \exists x_{2}\left(\operatorname{attend}\left(x_{1}, K R\right) \wedge \operatorname{attend}\left(x_{2}, K R\right)\right)
$$

The above representation is not enough, as x_{1} and x_{2} are variable and they could denote the same individual, we have to guarantee the fact that x_{1} and x_{2} denote different person. The correct formalization is:

$$
\exists x_{1} \exists x_{2}\left(\operatorname{attend}\left(x_{1}, K R\right) \wedge \operatorname{attend}\left(x_{2}, K R\right) \wedge x_{1} \neq x_{2}\right)
$$

At least n...

$$
\exists x_{1} \ldots x_{n}\left(\bigwedge_{i=1}^{n} \phi\left(x_{i}\right) \wedge \bigwedge_{i \neq j=1}^{n} x_{i} \neq x_{j}\right)
$$

Representing variations of quantifiers in FOL

Example

Represent the statement at most 2 students attend the KR course

$$
\begin{gathered}
\forall x_{1} \forall x_{2} \forall x_{3}\left(\operatorname{attend}\left(x_{1}, K R\right) \wedge \operatorname{attend}\left(x_{2}, K R\right) \wedge \operatorname{attend}\left(x_{2}, K R\right) \supset\right. \\
\left.x_{1}=x_{2} \vee x_{2}=x_{3} \vee x_{1}=x_{3}\right)
\end{gathered}
$$

At most $n .$.

$$
\forall x_{1} \ldots x_{n+1}\left(\bigwedge_{i=1}^{n+1} \phi\left(x_{i}\right) \supset \bigvee_{i \neq j=1}^{n+1} x_{i}=x_{j}\right)
$$

FOL interpretation for a language L

A first order interpretation for the language
$L=\left\langle c_{1}, c_{2}, \ldots, f_{1}, f_{2}, \ldots, P_{1}, P_{2}, \ldots\right\rangle$ is a pair $\langle\Delta, \mathcal{I}\rangle$ where

- Δ is a non empty set called interpretation domain
- \mathcal{I} is is a function, called interpretation function
- $\mathcal{I}\left(c_{i}\right) \in \Delta$ (elements of the domain)
- $\mathcal{I}\left(f_{i}\right): \Delta^{n} \rightarrow \Delta$ (n-ary function on the domain)
- $\mathcal{I}\left(P_{i}\right) \subseteq \Delta^{n}$ (n-ary relation on the domain)
where n is the arity of f_{i} and P_{i}.

Example of interpretation

Example (Of interpretation)

Symbols
Constants: alice, bob, carol, robert
Function: mother-of (with arity equal to 1)
Predicate: friends (with arity equal to 2)

Domain $\Delta=\{1,2,3,4, \ldots\}$
Interpretation $\mathcal{I}($ alice $)=1, \mathcal{I}(b o b)=2, \mathcal{I}($ carol $)=3$,

$$
\mathcal{I}(\text { robert })=2
$$

$$
\begin{gathered}
\begin{array}{l}
M(1)=3 \\
M(2)=1 \\
M(3)=4 \\
M(n)=n+1 \text { for } n \geq 4 \\
M(n) r-o f)=M, \\
\mathcal{I}(\text { friends })=F=\left\{\begin{array}{lll}
\langle 1,2\rangle, & \langle 2,1\rangle, & \langle 3,4\rangle, \\
\langle 4,3\rangle, & \langle 4,2\rangle, & \langle 2,4\rangle, \\
\langle 4,1\rangle, & \langle 1,4\rangle, & \langle 4,4\rangle
\end{array}\right\}
\end{array} .\left\{\begin{array}{l}
\\
\hline
\end{array}\right)
\end{gathered}
$$

Example (cont'd)

Interpretation of terms

Definition (Assignment)

An assignment a is a function from the set of variables to Δ.
$a[x / d]$ denotes the assignment that coincides with a on all the variables but x, which is associated to d.

Definition (Interpretation of terms)

The interpretation of a term t w.r.t. the assignment a, in symbols $\mathcal{I}(t)[a]$ is recursively defined as follows:

$$
\begin{aligned}
\mathcal{I}\left(x_{i}\right)[a] & =a\left(x_{i}\right) \\
\mathcal{I}\left(c_{i}\right)[a] & =\mathcal{I}\left(c_{i}\right) \\
\mathcal{I}\left(f\left(t_{1}, \ldots, t_{n}\right)\right)[a] & =\mathcal{I}(f)\left(\mathcal{I}\left(t_{1}\right)[a], \ldots, \mathcal{I}\left(t_{n}\right)[a]\right)
\end{aligned}
$$

FOL Satisfiability of formulas

Definition (Satisfiability of a formula w.r.t. an assignment)

An interpretation \mathcal{I} satisfies a formula ϕ w.r.t. the assignment a according to the following rules:

$$
\begin{array}{rll}
\mathcal{I} \models t_{1}=t_{2}[a] & \text { iff } & \mathcal{I}\left(t_{1}\right)[a]=\mathcal{I}\left(t_{2}\right)[a] \\
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right)[a] & \text { iff } & \left\langle\mathcal{I}\left(t_{1}\right)[a], \ldots, \mathcal{I}\left(t_{n}\right)[a]\right\rangle \in \mathcal{I}(P) \\
\mathcal{I} \models \phi \wedge \psi[a] & \text { iff } & \mathcal{I} \models \phi[a] \text { and } \mathcal{I} \models \psi[a] \\
\mathcal{I} \models \phi \vee \psi[a] & \text { iff } & \mathcal{I} \models \phi[a] \text { or } \mathcal{I} \models \psi[a] \\
\mathcal{I} \models \phi \supset \psi[a] & \text { iff } & \mathcal{I} \not \models \phi[a] \text { or } \mathcal{I} \models \psi[a] \\
\mathcal{I} \models \neg \phi[a] & \text { iff } & \mathcal{I} \not \models \phi[a] \\
\mathcal{I} \models \phi \equiv \psi[a] & \text { iff } & \mathcal{I} \models \phi[a] \text { iff } \mathcal{I} \models \psi[a] \\
\mathcal{I} \models \exists x \phi[a] & \text { iff } & \text { there is a } d \in \Delta \text { such that } \mathcal{I} \models \phi[a[x / d]] \\
\mathcal{I} \models \forall x \phi[a] & \text { iff } & \text { for all } d \in \Delta, \mathcal{I} \models \phi[a[x / d]]
\end{array}
$$

Example (cont'd)

Exercise

Check the following statements, considering the interpretation \mathcal{I} defined few slides ago:
(1) $\mathcal{I} \models$ Alice $=\operatorname{Bob}[a]$
(2) $\mathcal{I} \models$ Robert $=\operatorname{Bob}[a]$
(3) $\mathcal{I} \models x=\operatorname{Bob}[a[x / 2]]$

Example (cont'd)

$$
\begin{aligned}
& \mathcal{I}(\text { mother-of(alice }))[a]=3 \\
& \mathcal{I}(\text { friends }(x, x))=\begin{array}{|c|}
\hline x:= \\
\hline 4 \\
\hline
\end{array} \\
& \mathcal{I}(\text { mother-of }(x))[a[x / 4]]=5 \\
& \mathcal{I}(\text { friends }(x, y))=\begin{array}{|c|c|c|c|}
\hline x:= & y:= \\
\hline 1 & \mathcal{I}(\text { friends }(x, y) \wedge x=y) & =\begin{array}{|c|c|}
\hline x:= & y:= \\
\hline 2 & 1 \\
4 & 1 \\
1 & 4 \\
4 & 2 \\
2 & 4 \\
4 & 3 \\
3 & 4 \\
4 & 4
\end{array} & \mathcal{I}(\exists x \text { friends }(x, y)) \\
\hline
\end{array}
\end{aligned}
$$

Analogy with Databases

When the language \mathcal{L} and the domain of interpretation Δ are finite, and \mathcal{L} does not contains functional symbols (relational language), there is a strict analogy between first order logics and databases.

- Non logical simbols of \mathcal{L} correspond to database schema (tables)
- Δ corresponds to the set of values which appears in the tables (active domain)
- the interpretation \mathcal{I} corresponds to the tuples that belongs to each relation
- Formulas on \mathcal{L} corresponds to query over the database
- Interpretation of formulas of \mathcal{L} correspond to answers.

Analogy with Databases

FOL	DB
friends	CREATE TABLE FRIENDS(friend INTEGER friend2 : INTEGER)
friends (x, y)	SELECT * FROM FRIENDS
friends (x, x)	SELECT friend1 FROM FRIENDS WHERE friends1 = friends2
friends $(x, y) \wedge x=y$	SELECT * FROM FRIENDS WHERE friends1 = friends2
$\exists x . f r i e n d s(x, y)$	SELECT friend2 FROM FRIENDS
friends $(x, y) \wedge$ friends (y, z)	```SELECT * FROM FRIENDS as FRIEND1 FRIENDS as FRIEND2 WHERE FRIENDS1.friends2 = FRIENDS2.friends1```

Free variables

Intuition

A free occurrence of a variable x is an occurrence of x which is not bounded by a (universal or existential) quantifier.

Definition (Free occurrence)

- any occurrence of x in t_{k} is free in $P\left(t_{1}, \ldots, t_{k}, \ldots, t_{n}\right)$
- any free occurrence of x in ϕ or in ψ is also fee in $\phi \wedge \psi$, $\psi \vee \phi, \psi \supset \phi$, and $\neg \phi$
- any free occurrence of x in ϕ, is free in $\forall y . \phi$ and $\exists y . \phi$ if y is distinct from x.

Definition (Ground/Closed Formula)

A formula ϕ is ground if it does not contain any variable. A formula is closed if it does not contain free occurrences of variables.

A variable x is free in ϕ (denote by $\phi(x)$) if there is at least a free occurrence of x in ϕ.
Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- x is free in friends(alice, x).
- x is free in $P(x) \supset \forall x . Q(x)$ (the occurrence of x in red is free the one in green is not free.

Intuitively.

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y$.Friends(Bob, y) no free variables
- $\operatorname{Sum}(x, 3)=12 \quad x$ free
- $\exists x .(\operatorname{Sum}(x, 3)=12)$ no free variables
- $\exists x \cdot(\operatorname{Sum}(x, y)=12) \quad y$ free

Definition (Term free for a variable)

A term t is free for a variable x in formula ϕ, if and only if all the occurrences of x in ϕ do not occur within the scope of a quantifier of some variable occurring in t.

Example

The term x is free for y in $\exists z$.hates (y, z). We can safely replace y with x obtaining $\exists z$.hates (x, z) without changing the meaning of the formula.
However, the term z is not free for y in $\exists z$.hates (y, z). In fact y occurs within the scope of a quantifier of z. Thus, we cannot substitute z for y in this sentence without changing the meaning of the sentence as we obtain \exists z.hates (z, z).

Free variables and free terms - example

An occurrence of a variable x can be safely instantiated by a term free for x in a formula ϕ,
If you replace x with a terms which is not free for x in ϕ, you can have unexpected effects:
E.g., replacing x with mother-of (y) in the formula $\exists y$.friends (x, y) you obtain the formula

$$
\exists y . f r i e n d s(m o t h e r-o f(y), y)
$$

Satisfiability and Validity

Definition (Model, satisfiability and validity)

An interpretation \mathcal{I} is a model of ϕ under the assignment a, if

$$
\mathcal{I} \models \phi[a]
$$

A formula ϕ is satisfiable if there is some \mathcal{I} and some assignment a such that $\mathcal{I} \models \phi[a]$.
A formula ϕ is unsatisfiable if it is not satisfiable.
A formula ϕ is valid if every \mathcal{I} and every assignment a $\mathcal{I} \models \phi[a]$

Definition (Logical Consequence)

A formula ϕ is a logical consequence of a set of formulas Γ, in symbols $\Gamma \models \phi$, if for all interpretations \mathcal{I} and for all assignment a

$$
\mathcal{I} \models \Gamma[a] \quad \Longrightarrow \quad \mathcal{I} \models \phi[a]
$$

where $\mathcal{I} \models \Gamma[a]$ means that \mathcal{I} satisfies all the formulas in Γ under a.

Excercises

Say where these formulas are valid, satisfiable, or unsatisfiable

- $\forall x P(x)$
- $\forall x P(x) \supset \exists y P(y)$
- $\forall x . \forall y .(P(x) \supset P(y))$
- $P(x) \supset \exists y P(y)$
- $P(x) \vee \neg P(y)$
- $P(x) \wedge \neg P(y)$
- $P(x) \supset \forall x . P(x)$
- $\forall x \exists y \cdot Q(x, y) \supset \exists y \forall x Q(x, y)$
- $x=x$
- $\forall x \cdot P(x) \equiv \forall y \cdot P(y)$
- $x=y \supset \forall x \cdot P(x) \equiv \forall y . P(y)$
- $x=y \supset(P(x) \equiv P(y))$
- $P(x) \equiv P(y) \supset x=y$

$$
\begin{aligned}
& \forall x P(x) \\
& \forall x P(x) \supset \exists y P(y) \\
& \forall x \cdot \forall y \cdot(P(x) \supset P(y)) \\
& P(x) \supset \exists y P(y) \\
& P(x) \vee \neg P(y) \\
& P(x) \wedge \neg P(y) \\
& P(x) \supset \forall x \cdot P(x) \\
& \forall x \exists y \cdot Q(x, y) \supset \exists y \forall x Q(x, y) \\
& x=x \\
& \forall x \cdot P(x) \equiv \forall y \cdot P(y) \\
& x=y \supset \forall x \cdot P(x) \equiv \forall y \cdot P(y) \\
& x=y \supset(P(x) \equiv P(y)) \\
& P(x) \equiv P(y) \supset x=y
\end{aligned}
$$

Satisfiable
Valid
Satisfiable
Valid
Satisfiable
Satisfiable
Satisfiable
Satisfiable
Valid
Valid
Valid
Valid
Satisfiable

Properties of quantifiers

Proposition

The following formulas are valid

- $\forall x(\phi(x) \wedge \psi(x)) \equiv \forall x \phi(x) \wedge \forall x \psi(x)$
- $\exists x(\phi(x) \vee \psi(x)) \equiv \exists x \phi(x) \vee \exists x \psi(x)$
- $\forall x \phi(x) \equiv \neg \exists x \neg \phi(x)$
- $\forall x \exists x \phi(x) \equiv \exists x \phi(x)$
- $\exists x \forall x \phi(x) \equiv \forall x \phi(x)$

Proposition

The following formulas are not valid

- $\forall x(\phi(x) \vee \psi(x)) \equiv \forall x \phi(x) \vee \forall x \psi(x)$
- $\exists x(\phi(x) \wedge \psi(x)) \equiv \exists x \phi(x) \wedge \exists x \psi(x)$
- $\forall x \phi(x) \equiv \exists x \phi(x)$
- $\forall x \exists y \phi(x, y) \equiv \exists y \forall x \phi(x, y)$

Expressing properties in FOL

What is the meaning of the following FOL formulas?
(1) $\exists x($ bought $($ Frank,$x) \wedge d v d(x))$
(2) $\exists x$.bought $($ Frank, $x)$
(3) $\forall x$. $(\operatorname{bought}($ Frank, $x) \rightarrow \operatorname{bought}($ Susan, $x))$
(9) $(\forall x$.bought $($ Frank, $x)) \rightarrow(\forall x$.bought $($ Susan,$x))$
(3) $\forall x \exists y$.bought (x, y)
(0) $\exists x \forall y$.bought (x, y)
(1) "Frank bought a dvd."
(2) "Frank bought something."
(3) "Susan bought everything that Frank bought."
(9) "If Frank bought everything, so did Susan."
(0 "Everyone bought something."
© "Someone bought everything."

Expressing properties in FOL

Define an appropriate language and formalize the following sentences using FOL formulas.
(1) All Students are smart.
(2) There exists a student.
(3) There exists a smart student.
(9) Every student loves some student.
(3) Every student loves some other student.
(0) There is a student who is loved by every other student.
(1) Bill is a student.
(8) Bill takes either Analysis or Geometry (but not both).
(9) Bill takes Analysis and Geometry.
(10) Bill doesn't take Analysis.
(1) No students love Bill.

Expressing properties in FOL

(1) $\forall x$. $(\operatorname{Student}(x) \rightarrow \operatorname{Smart}(x))$
(2) $\exists x$.Student (x)
(3) $\exists x$. $(\operatorname{Student}(x) \wedge \operatorname{Smart}(x))$
(9) $\forall x$. $($ Student $(x) \rightarrow \exists y$. $(\operatorname{Student}(y) \wedge \operatorname{Loves}(x, y)))$
(3) $\forall x$. $(\operatorname{Student}(x) \rightarrow \exists y$. $(\operatorname{Student}(y) \wedge \neg(x=y) \wedge \operatorname{Loves}(x, y)))$
(0 $\exists x$. $(\operatorname{Student}(x) \wedge \forall y$. $(\operatorname{Student}(y) \wedge \neg(x=y) \rightarrow \operatorname{Loves}(y, x)))$
(1) Student(Bill)
(8) Takes(Bill, Analysis) $\leftrightarrow \neg$ Takes(Bill, Geometry)
(0) Takes(Bill, Analysis) \wedge Takes(Bill, Geometry)
(10) \neg Takes(Bill, Analysis)
(1) $\neg \exists x$. $($ Student $(x) \wedge \operatorname{Loves}(x$, Bill $))$

Expressing properties in FOL

For each property write a formula expressing the property, and for each formula writhe the property it formalises.

- Every Man is Mortal

$$
\forall x . \operatorname{Man}(x) \supset \operatorname{Mortal}(x)
$$

- Every Dog has a Tail

$$
\forall x \cdot \operatorname{Dog}(x) \supset \exists y(\operatorname{PartOf}(x, y) \wedge \operatorname{Tail}(y))
$$

- There are two dogs

```
\existsx,y(Dog}(x)\wedge\operatorname{Dog}(y)\wedgex\not=y
```

- Not every dog is white $\neg \forall x . \operatorname{Dog}(x) \supset$ White (x)
- $\exists x \cdot \operatorname{Dog}(x) \wedge \exists y \cdot \operatorname{Dog}(y)$

There is a dog

- $\forall x, y(\operatorname{Dog}(x) \wedge \operatorname{Dog}(y) \supset x=y)$

There is at most one dog

Open and Closed Formulas

- Note that for closed formulas, satisfiability, validity and logical consequence do not depend on the assignment of variables.
- For closed formulas, we therefore omit the assignment and write $\mathcal{I} \models \phi$.
- More in general $\mathcal{I} \models \phi[a]$ if and only if $\mathcal{I} \models \phi\left[a^{\prime}\right]$ when [a] and [a^{\prime}] coincide on the variables free in ϕ (they can differ on all the others)

(un)satisfiability/validity of a FOL formula - examples

Example

Decide whether or not $\forall x(P(x) \supset Q(x)) \supset(\forall x P(x) \supset \forall x Q(x))$ is valid.

- The above formula is valid when $\mathcal{I} \models \forall x(P(x) \supset Q(x)) \supset(\forall x P(x) \supset \forall x Q(x))[a]$ for all assignment a. Which is equivalent to say that
- if $\mathcal{I} \models \forall x(P(x) \supset Q(x))[a]$ then $\mathcal{I} \models(\forall x P(x) \supset \forall x Q(x))[a]$; which is the same as:
- if $\mathcal{I} \models \forall x(P(x) \supset Q(x))[a]$ and $\mathcal{I} \models \forall x P(x)[a]$ then $\mathcal{I} \models \forall x Q(x)[a]$.
- To show the previous fact, suppose that:
(H1) $\mathcal{I} \models \forall x(P(x) \supset Q(x))[a]$, and that
(H2) $\mathcal{I} \models \forall x P(x)[a]$.
- From the hypothesis (H1), we have that for all $d \in \Delta^{\mathcal{I}}$,
$\mathcal{I} \models P(x) \supset Q(x)[a[x / d]]$
- from the hypothesis $(\mathrm{H} 2)$, we have that for all $d \in \Delta^{\mathcal{I}}, \mathcal{I} \models P(x)[a[x / d]]$
- by the definition of satisfiability of implication we have that for all $d \in \Delta^{\mathcal{I}}$, $\mathcal{I} \models Q(x)[a[x / d]]$
- which implies that $\mathcal{I} \models \forall Q(x)[a]$.

(un)satisfiability/validity of a FOL formula - examples

Example

Check if the formula $(\forall x P(x) \supset \forall x Q(x)) \supset \forall x(P(x) \supset Q(x))$ is valid:

- This time we try to show that the formula is not valid.
- For this we have to find an interpretation \mathcal{I} such that $\mathcal{I} \models \forall x P(x) \supset \forall x Q(x)$ [a] but $\mathcal{I} \not \vDash \forall x(P(x) \supset Q(x))[a]$.
- in order to have that $\mathcal{I} \models \forall x P(x) \supset \forall x Q(x)[a]$, we can choose to falsify the premise of the implication, i.e., to build an interpretation such that $\mathcal{I} \not \vDash \forall x P(x)[a]$.
- we need an element d in the domain of interpretation $\Delta^{\mathcal{I}}$, such that $\mathcal{I} \not \vDash P(x)[a[x / d]]$.
- In order to have that $\mathcal{I} \not \vDash \forall x(P(x) \supset Q(x))[a]$, we need an element d^{\prime} of the domain $\Delta^{\mathcal{I}}$ such that $\mathcal{I} \models P(x)\left[a\left[x / d^{\prime}\right]\right]$ and $\mathcal{I} \not \vDash Q(x)\left[a\left[x / d^{\prime}\right]\right]$.
- at this point we can build the interpretation \mathcal{I} on the domain $\Delta^{\mathcal{I}}=\left\{d, d^{\prime}\right\}$ with $P^{\mathcal{I}}=\left\{d^{\prime}\right\}$ and $Q^{\mathcal{I}}=\emptyset$.

