
Mathematical Logics
15. Model theory

Luciano Serafini

Fondazione Bruno Kessler, Trento, Italy

November 20, 2013

Luciano Serafini Mathematical Logics



Σ-structure

A first order interpretation of the language that contains the
signature Σ = {c1, c2, . . . , f1, f2 . . . ,R1,R2, . . . } is called a
Σ-structure, to stress the fact that it is relative to a specific
vocabulary.

Σ-structure

Given a vocabulary/signature
Σ = 〈c1, c2, . . . , f1, f2, . . . ,R1,R2, . . . 〉 a Σ-structure is I is
composed of a non empty set ∆I and an interpretation function
such that

cIi ∈ ∆I

f Ii ∈ (∆I)arity(fi ) −→ ∆I : The set of functions from n-tuples
of elements of ∆I to ∆I with n − arity(fi )

RIi ∈ (∆I)arity(Ri ) the set of n-tuples of elements of ∆I with
n = arity(Ri ).
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Substructures

Substructure

A Σ-structure I is a substructure of a Σ-structure J , in symbols I ⊆ J if

∆I ⊆ ∆J

cI = cJ

f I is the restriction of f J to the set ∆I , i.e., for all a1, . . . , an ∈ ∆I ,
f I(a1, . . . , an) = f J (a1, . . . , an).

RI = RJ ∩ (∆I)n

where n is the arity of f and R.

Example

Let Σ = 〈zero, one, plus(·, ·), positive(·), negative(·)〉

I =
〈
∆I , ·I

〉
J =

〈
∆I , ·I

〉
∆I = {0, 1, 2, 3, . . . } ∆J = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
zeroI = 0, oneI = 1 zeroJ = 0, oneI = 1
plusI(x , y) = x + y plusJ (x , y) = x + y
positiveI = {1, 2, . . . } positiveJ = {1, 2, . . . }
negativeI = ∅ negativeJ = {−1,−2, . . . }

Luciano Serafini Mathematical Logics



Proposition

If I ⊆ J then for every ground formula φ I |= φ iff J |= φ

Proof.
A ground formula is a formula that does not contain individual variables and
quantifiers. So φ is ground if it is a boolean combination of atomic formulas of
the form P(t1, . . . , tn) with ti ’s ground terms, i.e., terms that do not contain
variables.

If t is a ground term then tI = tJ (proof by induction on the construction of t)

if t is the constant c, then by definition cI = cJ

if t is f (t1, . . . , tn), then t is ground implies that each ti is ground. By
induction tIi = tJi ∈ ∆I ⊆ ∆J . Since the definitions of f I and f J

coincide on the elements of ∆I ∩∆J , we have that
f I(tI1 , . . . , t

I
n ) = f I(tI1 , . . . , t

I
n ) and therefore

(f (t1, . . . , tn))I = (f (t1, . . . , tn))J

if φ is P(t1, . . . , tn) with ti ’s ground terms, then, by induction we have that
tIi = tJi ∈ ∆I ⊆ ∆J for 1 ≤ i ≤ n. The fact that PI = PJ ∩ (∆I)n implies
that

I |= P(t1, . . . , tn) iff J |= P(t1, . . . , tn)

the fact that I and J agree on all the atomic ground formulas implies that they
agree also on all the boolean combinations of the ground formulas.
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Minimal substructure

Smallest Σ-substructure

From the previous property, we have that every substructure of a
Σ-structure J , must contain at least enough elements to interpret all the
ground terms, i.e., the terms that can be built starting from constants
and applying the functions.

Given a structure J we can define the smallest Σ-substructure of J
as the structure defined on the domain ∆I ⊆ ∆J recursively
defined as follows:

cJ
1 , c

J
2 , · · · ∈ ∆I

if x1, . . . , xn ∈ ∆I and f ∈ Σ and arity(f ) = n then
f J (x1, . . . , xn) ∈ ∆I

The minimal Σ-substructure of J depends from Σ, the larger Σ the
larger the minimal Σ-substructure of J
if Σ contains only a finite number of constants c1, . . . , cn and no
function symbols, then the minimal Σ-substructure of a Σ-structure
J contains at most n elements. i.e., ∆I = {cJ

1 , . . . , c
J
n }.
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Minimal substructure

Example

1 Let Σ = 〈a, b, f (·, ·),T (·, ·)〉.
2 Let J =

〈
∆J , ·J

〉
be such that

∆J = R (the set of real numbers)
aJ = 0, bJ = 1
f J (x , y) = x + y .
TJ = {〈x , y〉 ∈ R2|x ≤ y}

How does a substructure I =
〈
∆I , ·I

〉
look like?

If ∆I = {1, 2, . . . }, then I 6⊆ J since aI 6∈ ∆I .

if ∆I = {0, 1, 2}, then I 6⊆ J as ∆I is not closed under +
(1 + 2 6∈ ∆I)

∆I = Z of non negative integers constitue a substructure
because:

aJ ∈ Z, bJ ∈ Z
if x , y ∈ Z then f J (x , y) = x + y ∈ Z.
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Smallest Substructure

Let Σ be a countable1 signature 〈c1, c2, . . . , f1, f2, . . . ,R1,R2, . . . , 〉
and J be a Σ-structure. The minimal Σ-substructure of J can be
defined as follows:

∆I0 = {cJ1 , cJ
2 , . . . }

∆In+1 = {f J (x1, . . . , xarity(f ))|xi ∈ ∆Im, m < n, f ∈ Σ}
∆I =

⋃
n≥0 ∆In

RIk = RJ ∩ (∆I)arity(Rk )

Notice that

if there is no function ∆I = ∆I0 and it is finite

if there is at least a function symbol ∆I then you can count
the elements of ∆I .

This implies that the domain of the minimal Σ-structure of a
Σ-structure J is a countable set1

1A set S is called countable if there exists an injective function f : S −→ N
from S to the natural numbers N = {0, 1, 2, 3, . . . }.
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Universal Formulas stay True in Substructures

Definition (Universal formula)

A universal formula, i.e., a formula with only universal quantifiers
(e.g. after Skolemization)

∀x1, . . . , xn.φ(x1, . . . , xn)

where φ is a boolean combination of atomic formulas

Property

If ψ is a universal formula and I ⊆ J, then

J |= ψ =⇒ I |= ψ
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Universal Formulas stay True in Substructures

Proof.

Suppose that ψ is of the form ∀x1, . . . , xn.φ(x1, . . . , xn) If

J |= ∀x1, . . . , xn.φ(x1, . . . , xn)

then for every assignment a to the variable x1, . . . , xn to the elements of ∆J we
have that

J |= φ(x1, . . . , xn)[a] (1)

Since ∆I ⊆ ∆J , we have that for all the assignments a′ of the variables
x1, . . . , xn to the elements of ∆I ,

J |= φ(x1, . . . , xn)[a′] (2)

Since I and J coincides on the elements of ∆I ∩∆J then

I |= φ(x1, . . . , xn)[a′] (3)

with implies that
I |= ∀x1, . . . , xnφ(x1, . . . , xn)[a] (4)
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∃-Formulas do not stay true in substructures

Example ( Σ = 〈zero, one, plus(·, ·), positive(·), negative(·)〉)

I =
〈
∆I , ·I

〉
J =

〈
∆I , ·I

〉
∆I = {0, 1, 2, 3, . . . } ∆J = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
zeroI = 0, oneI = 1 zeroJ = 0, oneI = 1
plusI(x , y) = x + y plusJ (x , y) = x + y
positiveI = {1, 2, . . . } positiveJ = {1, 2, . . . }
negativeI = ∅ negativeJ = {−1,−2, . . . }

Consider the formulas:

∃x .negative(x) ∃x .x + one = zero ∀x .∃y(x + y = zero)

They are satisfiable in J but not in I. In all cases, the existential quantified
variable is instantiated to a negative integer, and in I there is no negative
integers, while J domain contains also negative integers

I 6|= ∃x .negative(x) since there is no element in negativeI

I 6|= ∃x .x + one = zero since x + 1 > 0 for every positive integer x

I 6|= ∀x .∃y(x + y = zero) since if we take x > 0 then for all y ≥ 0,
x + y > 0.
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How can we get rid of ∃-quantifiers?

Removing ∃x in front of a formula

From previous classes we know that the formula ∃xP(x) is satisfiable if the
formula P(c) for some “fresh” constant c is satisfiable. We can extend this
trick: . . .

Removing ∃x after ∀

Consider the formula ∀x∃yFriend(x , y), which means: everybody has at
least a friend.

Therefore for every person p, we can find another person p′ which is
his/her friend.

p′ depends from p. in the sens that for two person p and q, p′ and q′

might be different.

So we cannot replace the existential variable with a constant obtaining
∀x .Friend(x , c).

we have represent this “pic up” action as a function f (·), and the above
formula can be rewritten as

∀x .Friend(x , f (x))
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Skolemization

Property

Let φ(x1, . . . , xn, y) be a formula with no ∃-quantifiers and with
free variables x1, . . . , xn and y .

∀x1, . . . , xn∃y .φ(x1, . . . , xn, y) (5)

is satisfiable if and only if

∀x1, . . . , xn.φ(x1, . . . , xn, f (x1, . . . , xn)) (6)

is satisfiable.
(6) is called the Skolemization of (5).
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Skolemization

Proof.

∀x1, . . . , xn∃y .φ(x1, . . . , xn, y) satisfiable implies that

there is an I, I |= ∀x1, . . . , xn∃y .φ(x1, . . . , xn, y). This implies that

for all assignments a to x1, . . . , xn, I |= ∃y .φ(x1, . . . , xn, y)[a]

which implies that every assignment a for x1, . . . , xn can be extended to
an assignment a′ for y , such that I |= φ(x1, . . . , xn, y)[a′]

let I′ be the interpretation that coincides with I in all symbols and that
interpret a new n-ary function symbol f , as the function returns for every
assignment a(x1), . . . , a(xn) the value a′(y).

I′ |= φ(x1, . . . , xn, f (x1, . . . , xn))[a] for all assignment a, and therefore

I′ |= ∀x1, . . . , xn.φ(x1, . . . , xn, f (x1, . . . , xn))

∀x1, . . . , xn.φ(x1, . . . , xn, f (x1, . . . , xn)) is satisfiable
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Prenex Normal Form

Definition (Prenex Normal Form)

A formula is in prenex normal form if it is in the form

Q1x1 . . .Qnxnφ(x1, . . . , xn)

where φ(x1, . . . , xn) is a quantifier free formula, called matrix, and
Qi ∈ {∀,∃} for 1 ≤ i ≤ n.

Property

Every formula φ can be translated in formula pnf (φ) which is in
prenex normal form and such that

|= φ ≡ pnf (φ)
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Prenex Normal Form

Proof.

Rename quantified variable, so that each quantifier ∀x and ∃x is
defined on a separated variable

∀xP(x) ∧ ∃xP(x) =⇒ ∀x1P(x1) ∧ ∃x2P(x2)

Convert to Negation Normal Form using the propositional rewriting
rules plus the additional rules

¬(∀xA) =⇒ ∃x¬A

¬(∃xA) =⇒ ∀x¬A

Move quantifiers to the front using (provided x is not free in B)

(∀xA) ∧ B ≡ ∀x(A ∧ B)

(∀xA) ∨ B ≡ ∀x(A ∨ B)

and the similar rules for ∃
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Skolemization of a PNF formula

Definition

The Skolemization of a pnf formula φ, denoted by sk(φ) is defined
as follows:

if φ is ∀x1 . . . ∀xnψ, and ψ is a quantifier free formula then

sk(φ) = φ

if φ is ∀x1 . . . ∀xn∃xn+1ψ(x1, . . . , xn, xn+1), then

sk(φ) = ∀x1 . . . ∀xnsk(ψ(x1, . . . , xn, f (x1, . . . , xn)))

for a “fresh” n-ary functional symbol f .

Property

If φ is satisfiable then sk(φ) is also satisfiable.
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Countable Model Theorem

Lemma

A set of universal first-order formulas Γ has a model if and only if
it has a countable model.

Proof.

Let J be a model. Then J induces a countable sub-structure I.
Because all formulas in Γ are universal, J |= Γ implies that
I |= Γ.

Theorem

A set of first-order formulas has a model if and only if it has a
countable model.

Proof.

Let the set of formulas have a model. Transform the formulas into
prenex normal form and skolemize them to eliminate existential
quantifiers, which introduces a countable number of skolem
functions. Then there is a model for the resulting set of universal
formulas as well. By previous lemma, then there is also a countable
model. Ignoring the interpretation of Skolem constants, we obtain
a countable model for the original formula.
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Ground term

A ground term of a signature Σ is a term of Σ that does not
contain any variable.

The set of ground terms of a signature Σ can be recursively
defined as follows:

every constant a of Σ is a ground term

if t1, . . . , tn are ground terms, and f a function symbols of Σ
with arity(f ) = n, then f (t1, . . . , tn) is a ground term

nothing else is a ground term

The set of ground terms on a signature Σ is known as the

Herbrand Universe on Σ
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Herbrand Model: A Generic Countable Model

Observe that if J is Σ-structure that satisfies a formulas φ in PNF,
the domain ∆I of the minimal Σ-substructure I of J , is such that:

∆I contains the interpretations of all the constants in Σ, i.e.,
aJ ∈ ∆I

∆I is closed under the application of f J for every function
symbol f ∈ Σ. i.e., if x1, . . . , xn ∈ ∆I then
f J (x1, . . . , xn) ∈ ∆I , where k = arity(f ).

This implies that all the minimal Σ-substructures of any
interpretation that satisfies a PNF formula φ, are “similar” to some
interpretation defined on the domain of ground terms.

Instead of looking at arbitrary countable domains and functions on
them, we show we can consider a more special class of structures:
called ground term models

In these models the domain the set of expressions built from
constants and function symbols, i.e., the Herbrand universe
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Herbrand Interpretation

Definition (Herbrand interpretation)

A Herbrand interpretation on Σ is a Σ-structure H defined on the
Herbrand universe ∆H such that the following holds:

aH = a for every constant a

for every t1, . . . , tn ∈ ∆H, f H(t1, . . . , tn) = f (t1, . . . , tn) for
f ∈ Σ function symbol with arity(f ) = n,

Herbrand interpretation associated to another interpretation

Starting from any interpretation I we can define the associated
Herbrand interpretation H(I) on the Herbrand Universe as follows:

PH(I) as the set of tuples of terms 〈t1, . . . , tn〉 such that
I |= P(t1, . . . , tn).
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Herbrand’s Theorem

Lemma

Let I be a Σ-structure and H(I) it’s associated Herbrand
interpretation. For every quantifier free formula φ(x1, . . . , xn)

I |= φ(x1, . . . , xn)[a] if and only if H(I) |= φ(x1, . . . , xn)[a′]

where

a is an assignment to variables on ∆I , with a(xk) = tIk , for
1 ≤ k ≤ n

a′(xi ) is an assignment on ∆H(I), with a′(xk) = tk for
1 ≤ k ≤ n.
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Herbrand’s Theorem

Proof of Lemma.

We start by showing that t(x1, . . . , xn)I [a] = t(t1, . . . , tn)I by induction on the
complexity of t(x1, . . . , xn)a

Base case 1: t(x1, . . . , xn) is the constant c, then cI [a] = cI by
definition

Base case 2: If t(x1, . . . , xn) is the variable xi , then xIi [a] = a(xi ) = tI

Step case: if t(x1, . . . , xn) is f (u1(x1, . . . , xn), . . . , uk(x1, . . . , xn)),

By definition

f (u1(x1, . . . , xn), . . . , uk(x1, . . . , xn))I [a] =
f I(u1(x1, . . . , xn)I [a], . . . , uk(x1, . . . , xn)I [a])

By induction for each 1 ≤ h ≤ k,

uh(x1, . . . , xn)I [a] = uh(t1, . . . , tn)I ,

and therefore

f (u1(x1, . . . , xn), . . . , uk(x1, . . . , xn))I [a] =
f I(u1(t1, . . . , tn)I , . . . , uk(t1, . . . , tn)I)

and therefore

f (u1(x1, . . . , xn), . . . , uk(x1, . . . , xn))I [a] =
f (u1(t1, . . . , tn), . . . , uk(t1, . . . , tn))I

aWe use the notation t(x1, . . . , xn) for a term t that contains at most n free
variables among x1, . . . , xn, i.e., not all the variables necessarily occour in t
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Herbrand’s Theorem

Proof of Lemma (cont’d).

Then we show by induction on the complexity of φ(x1, . . . , xn) that

I |= φ(x1, . . . , xn)[a] if and only if H(I) |= φ(x1, . . . , xn)[a′]

Base case: If φ(x1, . . . , xn) is atomic, i.e, it is
P(u1(x1, . . . , xn), . . . , uk(x1, . . . , xn)). Then

I |= P(u1(x1, . . . , xn), . . . , uk(x1, . . . , xn))[a]

if and only if〈
u1(x1, . . . , xn)I [a], . . . , uk(x1, . . . , xn)I [a]

〉
∈ PI

if and only if (by previous part of the proof)〈
u1(t1, . . . , tn)I , . . . , uk(t1, . . . , tn)I

〉
∈ PI

if and only if (by definition of H(I))

〈u1(t1, . . . , tn), . . . , uk(t1, . . . , tn)〉 ∈ PH(I)

if and only if

H(I) |= P(u1(t1, . . . , tn), . . . , uk(t1, . . . , tn))

if and only if (from the fact that a′[xi ] = ti )

H(I) |= P(u1(x1, . . . , xn), . . . , uk(x1, . . . , xn))[a′]
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Herbrand’s Theorem

Proof of Lemma (cont’d).

Step case ∧: if φ(x1, . . . , xn) is of the form
φ1(x1, . . . , xn) ∧ φ2(x1, . . . , xn) then

I |= φ1(x1, . . . , xn) ∧ φ2(x1, . . . , xn)[a]

if and only if (by definition of satisfiability of ∧)

I |= φ1(x1, . . . , xn)[a] and I |= φ2(x1, . . . , xn)[a]

if and only if (by induction)

H(I) |= φ1(x1, . . . , xn)[a′] and H(I) |= φ2(x1, . . . , xn)[a′]

if and only if (by definition of satisfiability of ∧)

H(I) |= φ1(x1, . . . , xn) ∧ φ2(x1, . . . , xn)[a′]

Step case ∨: if φ(x1, . . . , xn) is of the form
φ1(x1, . . . , xn) ∨ φ2(x1, . . . , xn) then . . . reason in analogous way . . .
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Herbrand’s Theorem

Herbrand’s theorem is one of the fundamental theorems of
mathematical logic and allows a certain type of reduction of
first-order logic to propositional logic. In its simplest form it states:

Definition (Ground instance)

A ground instance of the universally quantified formula
∀x1, . . . , xnφ(x1, . . . , xn) is a ground formula φ(t1, . . . , tn) obtained
by replacing x1, . . . , xn with an n-tuple of ground terms t1, . . . , tn.

Theorem (Herbrand)

A set Γ of universally quantified formulas (i.e., formulas of the
form ∀x1, . . . xnφ(x1, . . . , xn) with φ(x1, . . . , xn) quantified free
formula) is unsatisfiable if and only if there is finite set of ground
instances of Γ which is unsatisfiable.
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Herbrand’s theorem

Proof.

Let Γ′ be the set of all grounding formula of the formulas in Γ. Γ′

is a set of propositional formulas, and it is unsatisfiable if and only
if there is a finite subset of Γ′ which is unsatisfiable. (By
compactness theorem for propositional logic). We therefore prove
that

Γ is unsat if and only if Γ′ is unsat
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Herbrand’s theorem

Proof of the ⇒ direction.

We prove the converse i.e.,

if Γ′ is satisfiable, then Γ is satisfiable.

If Γ′ is satisfiable, then there is an Herbrand Interpretation H that
satisfies Γ′. Indeed if Γ′ is satisfiable then there is an interpretation
I |= Γ′. We can taket H = H(I). And by the previous lemma we have
that H(I) |= Γ′.

We show that H |= Γ. Let ∀x1, . . . , xn.φ(x1, . . . , xn) ∈ Γ

We have that, for all n-tuple t1, . . . , tn of elements in ∆H

H |= φ(t1, . . . , tn) since φ(t1, . . . , tn) is a ground instance of
∀x1, . . . , xn.φ(x1, . . . , xn) and it belongs to Γ′ and H |= Γ′

This implies that for all assignments a to x1, . . . , xn of elements of ∆H

(i.e., ground terms t1, . . . , tn) H |= φ(x1, . . . , xn)[a], which implies that,
H |= ∀x1, . . . , xn.φ(x1, . . . , xn).
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Herbrand’s theorem

Proof of the ⇐ direction.

Also in this case we prove the converse. I.e., that if Γ is satisfiable then Γ′ (the
set of groundings of Γ) is also satisfiable:

Let I |= Γ, and let φ(t1, . . . , tn) ∈ Γ′.

φ(t1, . . . , tn) ∈ Γ′ implies that there is a formula
∀x1, . . . , xn.φ(x1, . . . , xn) ∈ Γ, and the fact that I |= Γ implies that

I |= ∀x1, . . . , xn.φ(x1, . . . , xn)

This implies that all assignment a, and in particular for those with
a(xi ) = ti for any ground term ti ∈ ∆H(I)

I |= φ(x1, . . . , xn)[a]

by the previous Lemma we have that

H(I) |= φ(x1, . . . , xn)[a′]

where a′(xi ) = ti , and therefore that

H(I) |= φ(t1, . . . , tn)
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Herbrand’s Theorem - Example of usage

Exercize

Check if the formula φ equal to ∃y∀xP(x , y) ⊃ ∀x∃yP(x , y) is VALID.

solution

We check if the negation of φ is UNSATISFIABLE

¬φ = ¬(∃y∀xP(x , y) ⊃ ∀x∃yP(x , y))

We first rename the variables of ¬φ so that every quantifier quantifies a
different variable.

¬(∃y∀xP(x , y) ⊃ ∀v∃wP(v ,w))
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Herbrand’s Theorem - Example of usage

solution (cont’d)

We transform ¬φ in prenex normal form obtaining as follows

¬φ = ¬(∃y∀xP(x , y) ⊃ ∀v∃wP(v ,w)) ≡
∃y∀xP(x , y) ∧ ¬∀v∃wP(v ,w)) ≡
∃y∀xP(x , y) ∧ ∃v∀w¬P(v ,w) ≡
∃y∃v∀x∀w(P(x , y) ∧ ¬P(v ,w)) = pnf (¬φ)

we can apply Skolemization to pnf (¬φ) eliminating ∃y∃v introducing two
new Skolem constants a and b obtaining

sk(pnf (¬φ) = ∀x∀w(P(x , a) ∧ ¬P(b, y))

sk(pnf (¬φ) is a universally quantified formulas. So we can apply
Herbrand’s Theorem. In orer to prove that it is unsatisfiable we have to
provide a grounding of sk(pnf (¬φ) which is unsatisfiable.

If we ground sk(pnf (¬φ) with x → b and y → a, we obtaine the
grounded formula

(P(b, a) ∧ ¬P(b, a))

which is not satisfiable. We therefore conclude that ¬φ is unsatisfiable
and therefore that φ is valid.Luciano Serafini Mathematical Logics



Definability

We can consider the expressiveness of first order logic by observing
which are the mathematical objects (actually the relations) that
can be defined.
For example we can define the unit circle as the binary relation
{〈x , y〉 |x2 + y 2 = 1} on R. We can also define the symmetry
property for a binary relation R as ∀x∀y(xRy ↔ yRx) which is
satisfied by all symmetric binary relations including the circle
relations.

definability within a fixed Σ-Structure

definability within a class of Σ-Structure.

Luciano Serafini Mathematical Logics



Definability within a structure

Definability of a relation w.r.t. a structure

An n-ary relation R defined over the domain ∆I of a Σ-structure I
is definable in I if there is a formula ϕ that contains n free
variables (in symbols φ(x1, . . . , xn)) such that for every n-tuple of
elements a1, . . . , an ∈ ∆I

〈a1, . . . , an〉 ∈ R iff I |= ϕ(x1, . . . , xn)[a1, . . . an]

¡
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Definability within a structure (cont’d)

Example (Definition of 0 in different structures)

In the structure of ordered natural numbers 〈N, <〉, the singleton set (= unary
relation containing only one element) {0} is defined by the following formula

∀y(y 6= x → x < y)

In the structure of ordered real numbers 〈R, <〉, {0} has no special property that
distinguish it from the other real numbers, and therefore it cannot be defined.

In the structure of real numbers with sum 〈R,+〉, {0} can be defined in two
alternatives way:

∀y(x + y = y) x + x = x

In the structure of real numbers with product 〈R, ·〉, {0} can be defined by the
following formula:

∀y(x · y = x)

Notice that unlike the previous case {0} cannot be defined by x · x = x since
also {1} satisfies this property (1 · 1 = 1)
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(un)Definability of transitive closure in FOL
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Definability within a structure (cont’d)

Example (Definition of reachability relation in a graph)

Consider a graph structure G = 〈V ,E〉, we would like to define the reachability
relation between two nodes. I.e., the relation

Reach = {〈x , y〉 ∈ V 2|there is a path from x to y in G}

We can scompose Reach in the following relations
“y is reachable from x in 1 step” or
“y is reachable from x in 2 steps” or . . . .
And define each single relation for all n ≥ 0 as follows:

reach1(x , y) ≡ E(x , y) (7)

reachn+1(x , y) ≡ ∃z(reachn(x , z) ∧ E(z , y)) (8)

If V is finite, then the relation Reach can be defined by the formula

reach0(x , y) ∨ reach1(x , y) ∨ · · · ∨ reachn(x , y)

Where n is the number of vertexes of the graph.
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Examples on definability in a structure

Example

Let Σ the signature 〈0, s,+〉 and I the standard Σ-structure for
arithmetic, i.e., ∆I = N the set of natural numbers
{0, 1, 2, 3, . . . }, 0I = 0, sI(x) = x + 1 and +I(x , y) = x + y .
Define the following predicates:

x is an Even number ∃y .x = y + y

x is an odd number ∃y .x = s(y + y)

x is greater than y ∃z , x = s(y + z)

Luciano Serafini Mathematical Logics



Definability within a class of structures

Class of structures defined by a (set of) formula(s)

Given a formula ϕ of the alphabet Σ we define mod(φ) as the
class of Σ-structures that satisfies ϕ. i.e.,

mod(ϕ) = {I | I is a Σ-structures and I |= ϕ}

Given a set of formulas T , mod(T ) is the class of Σ structures
that satisfies each formula in T .

Example

mod(∀xy x = y) = {I | ∆I = 1}

The question we would like to answer is: What classes of
Σ-structures can we describe using first order sentences? For
instance can we describe the class of all connected graphs?
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Definability within a class of structures (cont’d)

Example (Classes definable with a single formula)

The class of undirected graphs

ϕUG = ∀x ¬E (x , x) ∧ ∀xy (E (x , y) ≡ E (y , x))

the class of partial orders:

ϕPO =∀xR(x , x) ∧
∀xy(R(x , y) ∧ R(y , x)→ x = y) ∧
∀xyz(R(x , y) ∧ R(y , z)→ R(x , z))

the class of total orders:

ϕTO = ϕPO ∧ ∀xy(R(x , y) ∨ R(y , x))
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Definability within a class of structures (cont’d)

Example (Classes definable with a single formula)

the class of groups:

ϕG =∀x(x + 0 = x ∧ 0 + x = x) ∧
∀x∃y(x + y = 0 ∧ y + x = 0) ∧
∀xyz((x + y) + z = x + (y + z))

the class of abelian groups:

ϕAG = ϕG ∧ ∀xy(x + y = y + x)

the class of structures that contains at most n elements

ϕn = ∀x0 . . . xn
∨

0≤i<j≤n
xi = xj
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Remark

Notice that every class of structures that can be defined with a
finite set of formulas (as e.g., groups, rings, vector spaces, boolean
algebras topological spaces, . . . ) can also be defined by a single
sentence by taking the finite conjunction of the set of formulas.
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Classes of Structures characterizable by an infinite
set of formulas

Theorem

The class of infinite structures is characterizable by the following
infinite set of formulas:

there are at least 2 elements ϕ2 =∃x1x2 x1 6= x2

there are at least 3 elements ϕ3 =∃x1x2x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)

there are at least n elements ϕn =∃x1x2x3 . . . xn
∧

1≤i<j≤n
xi 6= xj
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Finite satisfiability and compactness

Definition (Finite satisfiability)

A set Φ of formulas is finitely satisfiable if every finite subset of Φ
is satisfiable.

Theorem (Compactness)

A set of formulas Φ is satisfiable iff it is finitely satisfiable

Proof.

An indirect proof of the compactness theorem can be obtained by
exploiting the completeness theorem for FOL as follows:
If Φ is not satisfiable, then, by the completeness theorem of FOL,
there Φ ` ⊥. Which means that there is a deduction Π of ⊥ from
Φ. Since Π is a finite structure, it “uses” only a finite subset Φf of
Φ of hypothesis. This implies that Φf ` ⊥ and therefore, by
soundness that Φf is not satisfiable; which contradicts the fact
that all finite subsets of Φ are satisfiable

Luciano Serafini Mathematical Logics



Classes of Structures characterizable by an infinite
set of formulas

Theorem

The class Cinf of infinite structures is not characterizable by a
finite set of formulas.

Proof.

Suppose, by contradiction, that there is a sentence φ with mod(φ) = Cinf .

Then Φ = {¬φ} ∪ {ϕ2, ϕ2, . . . } (as defined in the previous slides) is not
satisfiable,

by compactness theorem Φ is not finitely satisfiable, and therefore there is
an n such that Φf = {¬φ} ∪ {ϕ2, ϕ2, . . . , ϕn} is not satisfiable.

let I be a structure with ∆I = n + 1. Since I is not infinite then
I |= ¬φ, and since it contains more than k elements for every k ≤ n + 1
we have that I |= ϕk for 2 ≤ k ≤ n + 1.

Therefore we have that I |= Φ, i.e., Φ is satisfiable, which contradicts the
fact that Φ was derived to be unsatisfiable.
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First order theory

Theory

A first order theory T over a signature,
Σ = 〈c1, c2, . . . , f1, f2, . . . ,R1,R2, . . . 〉, or more simply a Σ-theory
is a set of sentences over Σa closed logical consequence. I.e

T |= φ ⇒ φ ∈ T

aRemember: a sentence is a closed formula. A closed formula is a formula
with no free variables

Consistency

A Σ-theory is consistency if T has a model, i.e., if there is a
Σ-structure I such that I |= T .
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Theory of a class of Σ-structures

Th(M)

Let M a class of Σ-structure. The Σ-theory of M is the set of
formulas:

th(M) = {α ∈ sent(Σ)|I |= α, for all I ∈M}

Furthermore th(M) has the following two important properties:

th(M) is consistent th(M) 6|= ⊥
th(M) is closed under logical consequence

And therefore is a consistent Σ-theory

Remark

Thus, th(M) consists exarcly of all Σ-sentences that hold in all
structures in I.
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Every theory is a theory for a class of structures

Every Σ-theory T is the Σ-theory of a class M of Σ structure. in
particular I can be defined as follows:

M = {I|I is Σ-structure, and I |= T}
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Axiomatization of a class of Σ-structures

Axiomatization

An (finite) axiomatization of a class of Σ-structures M is a (finite)
set of formulas A such that

th(M) = {φ|A |= φ}

An axiomatization of a (class of) structure(s) I contains a set of
formulas (= axioms) which describes the salient properties of the
symbols in Σ (constant, functions and relations) when they are
interpreted in the structure I. Every other property of the symbols
of Σ in the structure I are logical consequences of the axioms.
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Exercises on axiomatizations

Exercize

Let Σ = 〈root, child(·, ·)〉 axiomatize the class of structures isomorphic to a tree of
depth less or equal to n

Solution (Tree≤n be the set of axioms)

∀x .¬child(x , root)

∀xyz.(child(y , x) ∧ child(z, x) ⊃ z = y)

∀xyz.anchestor(x , y) ≡
child(x , y) ∨ ∃x1.(child(x , x1) ∧ child(x1, y)) ∨ . . . ∨
∃x1, . . . , xn−1(child(x , x1) ∧ child(x1, x2) ∧ · · · ∧ child(xn−1, y))

∀x .¬anchestor(x , x)

∀xy .(anchestor(x , y) ⊃ ¬anchestor(y , x)

∀x .(x 6= root ⊃ anchestor(root, x))

Exercize

Proove that every structure I that satisfies Tree≤n is a tree of depth less or equal to
n. I.e., a structure constituted of a set A and a binary relation T on A such that there
is a vertex v0 ∈ A with the property that there exists a unique path of length less then
or equal to n in T from v0 to every other vertex in A, but no path from v0 to v0.
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