Outline Set Theory Relations Functions

Mathematical Logic Practical Class: Set Theory

Chiara Ghidini

FBK-IRST, Trento, Italy

2013/2014

- 1 Set Theory
 - Basic Concepts
 - Operations on Sets
 - Operation Properties
- 2 Relations
 - Properties
 - Equivalence Relation
- 3 Functions
 - Properties

Sets: Basic Concepts

- The concept of set is considered a primitive concept in math
- A set is a collection of elements whose description must be unambiguous and unique: it must be possible to decide whether an element belongs to the set or not.
- Examples:
 - the students in this classroom
 - the points in a straight line
 - the cards in a playing pack
- are all sets, while
 - students that hates math
 - amusing books

are not sets.

Describing Sets

- In set theory there are several description methods:
 - Listing: the set is described listing all its elements Example: $A = \{a, e, i, o, u\}$.
 - Abstraction: the set is described through a property of its elements
 Example: A = {x | x is a vowel of the Latin alphabet }.
 - Eulero-Venn Diagrams: graphical representation that supports the formal description

Sets: Basic Concepts (2)

- Empty Set: ∅, is the set containing no elements;
- Membership: $a \in A$, element a belongs to the set A;
 - Non membership: a ∉ A, element a doesn't belong to the set A;
- Equality: A = B, iff the sets A and B contain the same elements;
 - inequality: $A \neq B$, iff it is not the case that A = B;
- Subset: $A \subseteq B$, iff all elements in A belong to B too;
- Proper subset: $A \subset B$, iff $A \subseteq B$ and $A \neq B$.

Power set

- We define the power set of a set A, denoted with P(A), as the set containing all the subsets of A.
- **Example**: if $A = \{a, b, c\}$, then $P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \}$
- If A has n elements, then its power set P(A) contains 2ⁿ elements.
 - Exercise: prove it!!!

Operations on Sets

- Union: given two sets A and B we define the union of A and B as the set containing the elements belonging to A or to B or to both of them, and we denote it with $A \cup B$.
 - **Example**: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A \cup B = \{a, b, c, d, e\}$
- Intersection: given two sets A and B we define the intersection of A and B as the set containing the elements that belongs both to A and B, and we denote it with $A \cap B$.
 - **Example**: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A \cap B = \{a\}$

Operations on Sets (2)

- Difference: given two sets A and B we define the difference of A and B as the set containing all the elements which are members of A, but not members of B, and denote it with A B.
 - **Example**: if $A = \{a, b, c\}$, $B = \{a, d, e\}$ then $A B = \{b, c\}$
- Complement: given a universal set U and a set A, where $A \subseteq U$, we define the complement of A in U , denoted with \overline{A} (or C_UA), as the set containing all the elements in U not belonging to A.
 - Example: if U is the set of natural numbers and A is the set
 of even numbers (0 included), then the complement of A in U
 is the set of odd numbers.

Sets: Examples

• Examples:

- Given $A = \{a, e, i, o, \{u\}\}$ and $B = \{i, o, u\}$, consider the following statements:

 - **2** $(B \{i, o\}) \in A$ **OK**

 - **6** $B A = \emptyset$ **NO!** $B A = \{u\}$
 - $0 i \in A \cap B$ OK
 - **6** $\{i, o\} = A \cap B$ **OK**

Sets: Exercises

• Exercises:

- Given $A = \{t, z\}$ and $B = \{v, z, t\}$ consider the following statements:
 - $\mathbf{0}$ $A \in B$
 - **②** *A* ⊂ *B*
 - $\mathbf{0}$ $z \in A \cap B$
 - $\mathbf{0}$ $\mathbf{v} \subset \mathbf{B}$
 - $\{v\} \subset B$
 - $\mathbf{0} \quad v \in A B$
- Given $A = \{a, b, c, d\}$ and $B = \{c, d, f\}$
 - find a set X s.t. $A \cup B = B \cup X$; is this set unique?
 - there exists a set Y s.t. $A \cup Y = B$?

Sets: Exercises (2)

Exercises:

- Given $A = \{0, 2, 4, 6, 8, 10\}$, $B = \{0, 1, 2, 3, 4, 5, 6\}$ and $C = \{4, 5, 6, 7, 8, 9, 10\}$, compute:
 - $A \cap B \cap C$, $A \cup (B \cap C)$, A (B C)
 - $(A \cup B) \cap C$, (A B) C, $A \cap (B C)$
- Describe 3 sets A, B, C s.t. $A \cap (B \cup C) \neq (A \cap B) \cup C$

Sets: Operation Properties

- $A \cap A = A,$ $A \cup A = A$
- $A \cap B = B \cap A$, $A \cup B = B \cup A$ (commutative)
- $A \cap \emptyset = \emptyset$, $A \cup \emptyset = A$
- $(A \cap B) \cap C = A \cap (B \cap C)$, $(A \cup B) \cup C = A \cup (B \cup C)$ (associative)

Sets: Operation Properties(2)

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributive)
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$, $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (De Morgan laws)
- Exercise: Prove the validity of all the properties.

Cartesian Product

• Given two sets A and B, we define the Cartesian product of A and B as the set of ordered couples (a, b) where $a \in A$ and $b \in B$; formally,

$$A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$$

• Notice that: $A \times B \neq B \times A$

Cartesian Product (2)

- Examples:
 - given $A = \{1, 2, 3\}$ and $B = \{a, b\}$, then $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$ and $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}.$
 - Cartesian coordinates of the points in a plane are an example of the Cartesian product $\Re\times\Re$
- The Cartesian product can be computed on any number n of sets A_1, A_2, \ldots, A_n , $A_1 \times A_2 \times \ldots \times A_n$ is the set of ordered n-tuple (x_1, \ldots, x_n) where $x_i \in A_i$ for each $i = 1 \ldots n$.

Relations

- A relation R from the set A to the set B is a subset of the Cartesian product of A and B: $R \subseteq A \times B$; if $(x, y) \in R$, then we will write xRy for 'x is R-related to y'.
- A binary relation on a set A is a subset $R \subseteq A \times A$
- Examples:
 - given $A = \{1, 2, 3, 4\}$, $B = \{a, b, d, e, r, t\}$ and aRb iff in the Italian name of a there is the letter b, then $R = \{(2, d), (2, e), (3, e), (3, r), (3, t), (4, a), (4, r), (4, t)\}$
 - given $A = \{3,5,7\}$, $B = \{2,4,6,8,10,12\}$ and aRb iff a is a divisor of b, then $R = \{(3,6),(3,12),(5,10)\}$
- Exercise: in prev example, let aRb iff a + b is an even number R = ?

Relations (2)

- Given a relation R from A to B,
 - the domain of R is the set $Dom(R) = \{a \in A \mid \text{there exists a } b \in B, aRb\}$
 - the co-domain of R is the set $Cod(R) = \{b \in B \mid \text{there exists}$ an $a \in A, aRb\}$
- Let R be a relation from A to B. The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ where $R^{-1} = \{(b, a) \mid (a, b) \in R\}$

Relation properties

- Let R be a binary relation on A. R is
 - reflexive iff aRa for all $a \in A$;
 - symmetric iff aRb implies bRa for all $a, b \in A$;
 - transitive iff aRb and bRc imply aRc for all $a, b, c \in A$;
 - anti-symmetric iff aRb and bRa imply a = b for all $a, b \in A$;

Equivalence Relation

- Let *R* be a binary relation on a set *A*. *R* is an equivalence relation iff it satisfies all the following properties:
 - reflexive
 - symmetric
 - transitive
- ullet an equivalence relation is usually denoted with \sim or \equiv

Set Partition

- Let A be a set, a partition of A is a family F of non-empty subsets of A s.t.:
 - the subsets are pairwise disjoint
 - the union of all the subsets is the set A
- Notice that: each element of A belongs to exactly one subset in F.

Equivalence Classes

- Let A be a set and \equiv an equivalence relation on A, given an $x \in A$ we define equivalence class X the set of elements $x' \in A$ s.t. $x' \equiv x$, formally $X = \{x' \mid x' \equiv x\}$
- Notice that: any element x is sufficient to obtain the equivalence class X, which is denoted also with [x]
 - $x \equiv x'$ implies [x] = [x'] = X
- We define quotient set of A with respect to an equivalence relation ≡ as the set of equivalence classes defined by ≡ on A, and denote it with A/ ≡

Equivalence Classes (2)

• Theorem: Given an equivalence relation \equiv on A, the equivalence classes defined by \equiv on A are a partition of A. Similarly, given a partition on A, the relation R defined as xRx' iff x and x' belong to the same subset, is an equivalence relation on A.

Equivalence classes (3)

- Example: Parallelism relation.
 Two straight lines in a plane are parallel if they do not have any point in common or if they coincide.
- The parallelism relation || is an equivalence relation since it is:
 - reflexive r||r|
 - symmetric r||s implies s||r
 - transitive r||s and s||t imply r||t
- We can thus obtain a partition in equivalence classes: intuitively, each class represent a direction in the plane.

Order Relation

- Let A be a set and R be a binary relation on A. R is an order (partial), usually denoted with ≤, if it satisfies the following properties:
 - reflexive $a \le a$
 - anti-symmetric $a \le b$ and $b \le a$ imply a = b
 - transitive $a \le b$ and $b \le c$ imply $a \le c$
- If the relation holds for all $a, b \in A$ then it is a total order
- A relation is a strict order, denoted with <, if it satisfies the following properties:
 - transitive a < b and b < c imply a < c
 - for all $a, b \in A$ either a < b or b < a or a = b

Relations: Exercises

• Exercises:

• Decide whether the following relations $R: \mathbb{Z} \times \mathbb{Z}$ are symmetric, reflexive and transitive:

```
• R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : n = m\}
```

•
$$R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : |n - m| = 5\}$$

•
$$R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} : n \geq m\}$$

$$\bullet \ R = \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n \ mod \ 5 = m \ mod \ 5\}$$

Relations: Exercises (2)

• Exercises:

- Let $X = \{1, 2, 3, ..., 30, 31\}$. Consider the relation on X: xRy if the dates x and y of January 2006 are on the same day of the week (Monday, Tuesday ..). Is R an equivalence relation? If this is the case describe its equivalence classes.
- Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
 - Consider the following relation on X: xRy iff x + y is an even number. Is R an equivalence relation? If this is the case describe its equivalence classes.
 - Consider the following relation on X: xRy iff x + y is an odd number. Is R an equivalence relation? If this is the case describe its equivalence classes.

Relations: Exercises (3)

Exercises:

- Let X be the set of straight-lines in the plane, and let x be a
 point in the plane. Are the following relations equivalence
 relations? If this is the case describe the equivalence classes.
 - $r \sim s$ iff r and s are parallel
 - ullet $r\sim s$ iff the distance between r and x is equal to the distance between s and x
 - $r \sim s$ iff r and s are perpendicular
 - $r \sim s$ iff the distance between r and x is greater or equal to the distance between s and x
 - $r \sim s$ iff both r and s pass through x

Relations: Exercises (4)

- Exercises:
 - Let div be a relation on $\mathbb N$ defined as a div b iff a divides b. Where a divides b iff there exists an $n \in \mathbb N$ s.t. a * n = b
 - Is div an equivalence relation?
 - Is div an order?

Functions

- Given two sets A and B, a function f from A to B is a relation that associates to each element a in A exactly one element b in B. Denoted with f: A → B
- The domain of f is the whole set A; the image of each element a in A is the element b in B s.t. b = f(a); the co-domain of f (or image of f) is a subset of B defined as follows: $Im_f = \{b \in B \mid \text{there exists an } a \in A \text{ s.t. } b = f(a)\}$
- Notice that: it can be the case that the same element in *B* is the image of several elements in *A*.

Classes of functions

- A function f: A → B is surjective if each element in B is image of some elements in A:
 for each b∈ B there exists an a∈ A s.t. f(a) = b
- A function f: A → B is injective if distinct elements in A have distinct images in B:
 for each b ∈ Im_f there exists a unique a ∈ A s.t. f(a) = b
- A function f: A → B is bijective if it is injective and surjective:
 for each b∈ B there exists a unique a∈ A s.t. f(a) = b

Inverse Function

- If $f: A \longrightarrow B$ is bijective we can define its inverse function: $f^{-1}: B \longrightarrow A$
- For each function f we can define its inverse relation; such a relation is a function iff f is bijective.
- Example:

the inverse relation of f is NOT a function.

Composed functions

• Let $f:A\longrightarrow B$ and $g:B\longrightarrow C$ be functions. The composition of f and g is the function $g\circ f:A\longrightarrow C$ obtained by applying f and then g: $(g\circ f)(a)=g(f(a))$ for each $a\in A$ $g\circ f=\{(a,g(f(a))\mid a\in A)\}$

Functions: Exercises

• Exercises:

- Given $A = \{$ students that passed the Logic exam $\}$ and $B = \{18, 19, ..., 29, 30, 30L\}$, and let $f : A \longrightarrow B$ be the function defined as f(x) = grade of x in Logic. Answer the following questions:
 - What is the image of f?
 - Is f bijective?
- Let A be the set of all people, and let f: A → A be the function defined as f(x) = father of x. Answer the following questions:
 - What is the image of f?
 - Is f bijective?
 - Is f invertible?
- Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be the function defined as f(n) = 2n.
 - What is the image of f?
 - Is f bijective?
 - Is f invertible?