Mathematical Logic Practical Class: Set Theory

Chiara Ghidini

FBK-IRST, Trento, Italy

2013/2014

(1) Set Theory

- Basic Concepts
- Operations on Sets
- Operation Properties
(2) Relations
- Properties
- Equivalence Relation
(3) Functions
- Properties

Sets: Basic Concepts

- The concept of set is considered a primitive concept in math
- A set is a collection of elements whose description must be unambiguous and unique: it must be possible to decide whether an element belongs to the set or not.
- Examples:
- the students in this classroom
- the points in a straight line
- the cards in a playing pack
- are all sets, while
- students that hates math
- amusing books
are not sets.

Describing Sets

- In set theory there are several description methods:
- Listing: the set is described listing all its elements Example: $A=\{a, e, i, o, u\}$.
- Abstraction: the set is described through a property of its elements Example: $A=\{x \mid x$ is a vowel of the Latin alphabet $\}$.
- Eulero-Venn Diagrams: graphical representation that supports the formal description

Sets: Basic Concepts (2)

- Empty Set: \emptyset, is the set containing no elements;
- Membership: $a \in A$, element a belongs to the set A;
- Non membership: a $\notin A$, element a doesn't belong to the set A;
- Equality: $A=B$, iff the sets A and B contain the same elements;
- inequality: $A \neq B$, iff it is not the case that $A=B$;
- Subset: $A \subseteq B$, iff all elements in A belong to B too;
- Proper subset: $A \subset B$, iff $A \subseteq B$ and $A \neq B$.

Power set

- We define the power set of a set A, denoted with $P(A)$, as the set containing all the subsets of A.
- Example: if $A=\{a, b, c\}$, then $P(A)=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}$,
- If A has n elements, then its power set $P(A)$ contains 2^{n} elements.
- Exercise: prove it!!!

Operations on Sets

- Union: given two sets A and B we define the union of A and B as the set containing the elements belonging to A or to B or to both of them, and we denote it with $A \cup B$.
- Example: if $A=\{a, b, c\}, B=\{a, d, e\}$ then $A \cup B=\{a, b, c, d, e\}$
- Intersection: given two sets A and B we define the intersection of A and B as the set containing the elements that belongs both to A and B, and we denote it with $A \cap B$.
- Example: if $A=\{a, b, c\}, B=\{a, d, e\}$ then $A \cap B=\{a\}$

Operations on Sets (2)

- Difference: given two sets A and B we define the difference of A and B as the set containing all the elements which are members of A, but not members of B, and denote it with $A-B$.
- Example: if $A=\{a, b, c\}, B=\{a, d, e\}$ then $A-B=\{b, c\}$
- Complement: given a universal set U and a set A, where $A \subseteq U$, we define the complement of A in U, denoted with \bar{A} (or $C_{U} A$), as the set containing all the elements in U not belonging to A.
- Example: if U is the set of natural numbers and A is the set of even numbers (0 included), then the complement of A in U is the set of odd numbers.

Sets: Examples

- Examples:
- Given $A=\{a, e, i, o,\{u\}\}$ and $B=\{i, o, u\}$, consider the following statements:
(1) $B \in A \quad \mathrm{NO}$!
(2) $(B-\{i, o\}) \in A \quad O K$
(3) $\{a\} \cup\{i\} \subset A \quad \mathrm{OK}$
(4) $\{u\} \subset A \quad \mathrm{NO}$!
(5) $\{\{u\}\} \subset A \quad \mathrm{OK}$
(6) $B-A=\emptyset \quad \mathrm{NO}!\quad B-A=\{u\}$
(7) $i \in A \cap B \quad$ OK
(8) $\{i, o\}=A \cap B \quad O K$

Sets: Exercises

- Exercises:
- Given $A=\{t, z\}$ and $B=\{v, z, t\}$ consider the following statements:
(1) $A \in B$
(2) $A \subset B$
(3) $z \in A \cap B$
(4) $v \subset B$
(5) $\{v\} \subset B$
(0) $v \in A-B$
- Given $A=\{a, b, c, d\}$ and $B=\{c, d, f\}$
- find a set X s.t. $A \cup B=B \cup X$; is this set unique?
- there exists a set Y s.t. $A \cup Y=B$?

Sets: Exercises (2)

- Exercises:
- Given $A=\{0,2,4,6,8,10\}, B=\{0,1,2,3,4,5,6\}$ and $C=\{4,5,6,7,8,9,10\}$, compute:
- $A \cap B \cap C, A \cup(B \cap C), A-(B-C)$
- $(A \cup B) \cap C,(A-B)-C, A \cap(B-C)$
- Describe 3 sets A, B, C s.t. $A \cap(B \cup C) \neq(A \cap B) \cup C$

Sets: Operation Properties

- $A \cap A=A$,
$A \cup A=A$
- $A \cap B=B \cap A$,
$A \cup B=B \cup A$ (commutative)
- $A \cap \emptyset=\emptyset$, $A \cup \emptyset=A$
- $(A \cap B) \cap C=A \cap(B \cap C)$, $(A \cup B) \cup C=A \cup(B \cup C)$ (associative)

Sets: Operation Properties(2)

- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$, $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (distributive)
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$, $\overline{A \cup B}=\bar{A} \cap \bar{B}$ (De Morgan laws)
- Exercise: Prove the validity of all the properties.

Cartesian Product

- Given two sets A and B, we define the Cartesian product of A and B as the set of ordered couples (a, b) where $a \in A$ and $b \in B$; formally,
$A \times B=\{(a, b): a \in A$ and $b \in B\}$
- Notice that: $A \times B \neq B \times A$

Cartesian Product (2)

- Examples:
- given $A=\{1,2,3\}$ and $B=\{a, b\}$, then

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\} \text { and } \\
& B \times A=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3)\} .
\end{aligned}
$$

- Cartesian coordinates of the points in a plane are an example of the Cartesian product $\Re \times \Re$
- The Cartesian product can be computed on any number n of sets $A_{1}, A_{2} \ldots, A_{n}, A_{1} \times A_{2} \times \ldots \times A_{n}$ is the set of ordered n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ where $x_{i} \in A_{i}$ for each $i=1 \ldots n$.

Relations

- A relation R from the set A to the set B is a subset of the Cartesian product of A and $B: R \subseteq A \times B$; if $(x, y) \in R$, then we will write $x R y$ for ' x is R-related to y '.
- A binary relation on a set A is a subset $R \subseteq A \times A$
- Examples:
- given $A=\{1,2,3,4\}, B=\{a, b, d, e, r, t\}$ and $a R b$ iff in the Italian name of a there is the letter b, then

$$
R=\{(2, d),(2, e),(3, e),(3, r),(3, t),(4, a),(4, r),(4, t)\}
$$

- given $A=\{3,5,7\}, B=\{2,4,6,8,10,12\}$ and $a R b$ iff a is a divisor of b, then

$$
R=\{(3,6),(3,12),(5,10)\}
$$

- Exercise: in prev example, let $a R b$ iff $a+b$ is an even number $R=$?

Relations (2)

- Given a relation R from A to B,
- the domain of R is the set $\operatorname{Dom}(R)=\{a \in A \mid$ there exists a $b \in B, a R b\}$
- the co-domain of R is the set $\operatorname{Cod}(R)=\{b \in B \mid$ there exists an $a \in A, a R b\}$
- Let R be a relation from A to B. The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ where $R^{-1}=\{(b, a) \mid(a, b) \in R\}$

Relation properties

- Let R be a binary relation on $A . R$ is
- reflexive iff $a R a$ for all $a \in A$;
- symmetric iff $a R b$ implies $b R a$ for all $a, b \in A$;
- transitive iff $a R b$ and $b R c$ imply $a R c$ for all $a, b, c \in A$;
- anti-symmetric iff $a R b$ and $b R a$ imply $a=b$ for all $a, b \in A$;

Equivalence Relation

- Let R be a binary relation on a set $A . R$ is an equivalence relation iff it satisfies all the following properties:
- reflexive
- symmetric
- transitive
- an equivalence relation is usually denoted with \sim or \equiv

Set Partition

- Let A be a set, a partition of A is a family F of non-empty subsets of A s.t.:
- the subsets are pairwise disjoint
- the union of all the subsets is the set A
- Notice that: each element of A belongs to exactly one subset in F.

Equivalence Classes

- Let A be a set and \equiv an equivalence relation on A, given an $x \in A$ we define equivalence class X the set of elements $x^{\prime} \in A$ s.t. $x^{\prime} \equiv x$, formally $X=\left\{x^{\prime} \mid x^{\prime} \equiv x\right\}$
- Notice that: any element x is sufficient to obtain the equivalence class X, which is denoted also with $[x]$
- $x \equiv x^{\prime}$ implies $[x]=\left[x^{\prime}\right]=X$
- We define quotient set of A with respect to an equivalence relation \equiv as the set of equivalence classes defined by \equiv on A, and denote it with A / \equiv

Equivalence Classes (2)

- Theorem: Given an equivalence relation \equiv on A, the equivalence classes defined by \equiv on A are a partition of A. Similarly, given a partition on A, the relation R defined as $x R x^{\prime}$ iff x and x^{\prime} belong to the same subset, is an equivalence relation on A.

Equivalence classes (3)

- Example: Parallelism relation.

Two straight lines in a plane are parallel if they do not have any point in common or if they coincide.

- The parallelism relation $\|$ is an equivalence relation since it is:
- reflexive $r|\mid r$
- symmetric $r \| s$ implies $s \| r$
- transitive $r \| s$ and $s \| t$ imply $r \| t$
- We can thus obtain a partition in equivalence classes: intuitively, each class represent a direction in the plane.

Order Relation

- Let A be a set and R be a binary relation on A. R is an order (partial), usually denoted with \leq, if it satisfies the following properties:
- reflexive $a \leq a$
- anti-symmetric $a \leq b$ and $b \leq a$ imply $a=b$
- transitive $a \leq b$ and $b \leq c$ imply $a \leq c$
- If the relation holds for all $a, b \in A$ then it is a total order
- A relation is a strict order, denoted with $<$, if it satisfies the following properties:
- transitive $a<b$ and $b<c$ imply $a<c$
- for all $a, b \in A$ either $a<b$ or $b<a$ or $a=b$

Relations : Exercises

- Exercises:
- Decide whether the following relations $R: \mathbb{Z} \times \mathbb{Z}$ are symmetric, reflexive and transitive:
- $R=\{(n, m) \in \mathbb{Z} \times \mathbb{Z}: n=m\}$
- $R=\{(n, m) \in \mathbb{Z} \times \mathbb{Z}:|n-m|=5\}$
- $R=\{(n, m) \in \mathbb{Z} \times \mathbb{Z}: n \geq m\}$
- $R=\{(n, m) \in \mathbb{Z} \times \mathbb{Z}: n \bmod 5=m \bmod 5\}$

Relations : Exercises (2)

- Exercises:
- Let $X=\{1,2,3, \ldots, 30,31\}$. Consider the relation on X : $x R y$ if the dates x and y of January 2006 are on the same day of the week (Monday, Tuesday ..). Is R an equivalence relation? If this is the case describe its equivalence classes.
- Let $X=\{1,2,3,4,5,6,7,8,9,10\}$
- Consider the following relation on X : $x R y$ iff $x+y$ is an even number. Is R an equivalence relation? If this is the case describe its equivalence classes.
- Consider the following relation on X : $x R y$ iff $x+y$ is an odd number. Is R an equivalence relation? If this is the case describe its equivalence classes.

Relations : Exercises (3)

- Exercises:
- Let X be the set of straight-lines in the plane, and let x be a point in the plane. Are the following relations equivalence relations? If this is the case describe the equivalence classes.
- $r \sim s$ iff r and s are parallel
- $r \sim s$ iff the distance between r and x is equal to the distance between s and x
- $r \sim s$ iff r and s are perpendicular
- $r \sim s$ iff the distance between r and x is greater or equal to the distance between s and x
- $r \sim s$ iff both r and s pass through x

Relations : Exercises (4)

- Exercises:
- Let div be a relation on \mathbb{N} defined as a div b iff a divides b. Where a divides b iff there exists an $n \in \mathbb{N}$ s.t. $a * n=b$
- Is div an equivalence relation?
- Is div an order?

Functions

- Given two sets A and B, a function f from A to B is a relation that associates to each element a in A exactly one element b in B. Denoted with $f: A \longrightarrow B$
- The domain of f is the whole set A; the image of each element a in A is the element b in B s.t. $b=f(a)$; the co-domain of f (or image of f) is a subset of B defined as follows: $I m_{f}=\{b \in B \mid$ there exists an $a \in A$ s.t. $b=f(a)\}$
- Notice that: it can be the case that the same element in B is the image of several elements in A.

Classes of functions

- A function $f: A \longrightarrow B$ is surjective if each element in B is image of some elements in A : for each $b \in B$ there exists an $a \in A$ s.t. $f(a)=b$
- A function $f: A \longrightarrow B$ is injective if distinct elements in A have distinct images in B : for each $b \in \operatorname{Im} m_{f}$ there exists a unique $a \in A$ s.t. $f(a)=b$
- A function $f: A \longrightarrow B$ is bijective if it is injective and surjective: for each $b \in B$ there exists a unique $a \in A$ s.t. $f(a)=b$

Inverse Function

- If $f: A \longrightarrow B$ is bijective we can define its inverse function:

$$
f^{-1}: B \longrightarrow A
$$

- For each function f we can define its inverse relation; such a relation is a function iff f is bijective.
- Example:

the inverse relation of f is NOT a function.

Composed functions

- Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be functions. The composition of f and g is the function $g \circ f: A \longrightarrow C$ obtained by applying f and then g :

$$
\begin{aligned}
& (g \circ f)(a)=g(f(a)) \text { for each } a \in A \\
& g \circ f=\{(a, g(f(a)) \mid a \in A)\}
\end{aligned}
$$

Functions : Exercises

- Exercises:
- Given $A=\{$ students that passed the Logic exam $\}$ and $B=\{18,19, . .29,30,30 L\}$, and let $f: A \longrightarrow B$ be the function defined as $f(x)=$ grade of x in Logic. Answer the following questions:
- What is the image of f ?
- Is f bijective?
- Let A be the set of all people, and let $f: A \longrightarrow A$ be the function defined as $f(x)=$ father of x. Answer the following questions:
- What is the image of f ?
- Is f bijective?
- Is f invertible?
- Let $f: \mathbb{N} \longrightarrow \mathbb{N}$ be the function defined as $f(n)=2 n$.
- What is the image of f ?
- Is f bijective?
- Is f invertible?

