Mathematical Logic

Reasoning in First Order Logic

Chiara Ghidini
ghidini@fbk.eu

FBK-IRST, Trento, Italy
May 2, 2013
(1) Introduction

- Well formed formulas
- Free and bounded variables
(2) FOL Formalization
- Simple Sentences
- FOL Interpretation
- Formalizing Problems
- Graph Coloring Problem
- Data Bases

FOL Syntax

Alphabet and formation rules

- Logical symbols:

$$
\perp, \wedge, \vee, \rightarrow, \neg, \forall, \exists,=
$$

- Non Logical symbols:
a set $c_{1}, . ., c_{n}$ of constants
a set $f_{1}, . ., f_{m}$ of functional symbols
a set P_{1}, \ldots, P_{m} of relational symbols
- Terms T :

$$
T:=c_{i}\left|x_{i}\right| f_{i}(T, . ., T)
$$

- Well formed formulas W:

$$
\begin{aligned}
W:= & T=T\left|P_{i}(T, . . T)\right| \perp|W \wedge W| W \vee W \mid \\
& W \rightarrow W|\neg W| \forall x . W \mid \exists x . W
\end{aligned}
$$

FOL Syntax

Non Logical symbols

constants a, b; functions f^{1}, g^{2}; predicates p^{1}, r^{2}, q^{3}.

Examples

Say whether the following strings of symbols are well formed formulas or terms:

- $q(a)$;
- $p(y)$;
- $p(g(b))$;
- $\neg r(x, a)$;
- $q(x, p(a), b)$;
- $p(g(f(a), g(x, f(x))))$;
- $q(f(a), f(f(x)), f(g(f(z), g(a, b))))$;
- $r(a, r(a, a))$;

FOL Syntax

Non Logical symbols

constants a, b; functions $f^{1}, g^{2} ;$ predicates p^{1}, r^{2}, q^{3}.

Examples

Say whether the following strings of symbols are well formed formulas or terms:

- $r(a, g(a, a))$;
- $g(a, g(a, a))$;
- $\forall x$. $\neg p(x)$;
- $\neg r(p(a), x)$;
- $\exists a . r(a, a)$;
- $\exists x . q(x, f(x), b) \rightarrow \forall x \cdot r(a, x)$;
- $\exists x \cdot p(r(a, x))$;
- $\forall r(x, a)$;

FOL Syntax

Non Logical symbols

constants a, b; functions f^{1}, g^{2}; predicates p^{1}, r^{2}, q^{3}.

Exercises

Say whether the following strings of symbols are well formed formulas or terms:

- $a \rightarrow p(b)$;
- $r(x, b) \rightarrow \exists y \cdot q(y, y, y)$;
- $r(x, b) \vee \neg \exists y . g(y, b)$;
- $\neg y \vee p(y)$;
- $\neg \neg p(a)$;
- $\neg \forall x . \neg p(x)$;
- $\forall x \exists y$. $(r(x, y) \rightarrow r(y, x))$;
- $\forall x \exists y .(r(x, y) \rightarrow(r(y, x) \vee(f(a)=g(a, x))))$;

Free variables

> A free occurrence of a variable x is an occurrence of x which is not bounded by a $\forall x$ or $\exists x$ quantifier.

A variable x is free in a formula ϕ (denoted by $\phi(x)$) if there is at least a free occurrence of x in ϕ.

A variable x is bounded in a formula ϕ if it is not free.

Free variables

Non Logical symbols

constants a, b; functions f^{1}, g^{2}; predicates p^{1}, r^{2}, q^{3}.

Examples

Find free and bounded variables in the following formulas:

- $p(x) \wedge \neg r(y, a)$
- $\exists x . r(x, y)$
- $\forall x . p(x) \rightarrow \exists y \cdot \neg q(f(x), y, f(y))$
- $\forall x \exists y \cdot r(x, f(y))$
- $\forall x \exists y \cdot r(x, f(y)) \rightarrow r(x, y)$

Free variables

Non Logical symbols

constants a, b; functions f^{1}, g^{2}; predicates p^{1}, r^{2}, q^{3}.

Exercises

Find free and bounded variables in the following formulas:

- $\forall x .(p(x) \rightarrow \exists y . \neg q(f(x), y, f(y)))$
- $\forall x(\exists y . r(x, f(y)) \rightarrow r(x, y))$
- $\forall z \cdot(p(z) \rightarrow \exists y \cdot(\exists x \cdot q(x, y, z) \vee q(z, y, x)))$
- $\forall z \exists u \exists y \cdot(q(z, u, g(u, y)) \vee r(u, g(z, u)))$
- $\forall z \exists x \exists y(q(z, u, g(u, y)) \vee r(u, g(z, u)))$

Free variables

Intuitively..

Free variables represents individuals which must be instantiated to make the formula a meaningful proposition.

- Friends(Bob, y) y free
- $\forall y$.Friends (Bob, y) no free variables
- $\operatorname{Sum}(x, 3)=12 \quad x$ free
- $\exists x .(\operatorname{Sum}(x, 3)=12)$ no free variables
- $\exists x \cdot(\operatorname{Sum}(x, y)=12) \quad y$ free

FOL: Intuitive Meaning

Examples

- bought(Frank, dvd)
"Frank bought a dvd."
- $\exists x . b o u g h t(F r a n k, x)$
"Frank bought something."
- $\forall x$. (bought $($ Frank, $x) \rightarrow$ bought (Susan, $x)$)
"Susan bought everything that Frank bought."
- $\forall x$.bought (Frank, $x) \rightarrow \forall x$.bought(Susan, x)
"If Frank bought everything, so did Susan."
- $\forall x \exists y$.bought (x, y)
"Everyone bought something."
- $\exists x \forall y$.bought (x, y)
"Someone bought everything."

FOL: Intuitive Meaning

Example

Which of the following formulas is a formalization of the sentence:
"There is a computer which is not used by any student"

- $\exists x .(\operatorname{Computer}(x) \wedge \forall y .(\neg \operatorname{Student}(y) \wedge \neg U \operatorname{ses}(y, x)))$
- $\exists x .(\operatorname{Computer}(x) \rightarrow \forall y$. $(\operatorname{Student}(y) \rightarrow \neg U \operatorname{ses}(y, x)))$
- $\exists x$. $(\operatorname{Computer}(x) \wedge \forall y$. $(\operatorname{Student}(y) \rightarrow \neg U \operatorname{ses}(y, x)))$

Formalizing English Sentences in FOL

Common mistake..

- "Everyone studying at DISI is smart."
$\forall x .(A t(x, D I S I) \rightarrow \operatorname{Smart}(x))$
and NOT

$$
\forall x .(\operatorname{At}(x, D I S I) \wedge \operatorname{Smart}(x))
$$

"Everyone studies at DISI and everyone is smart"

- "Someone studying at DISI is smart."
$\exists x .(\operatorname{At}(x, D I S I) \wedge \operatorname{Smart}(x))$
and NOT
$\exists x .(A t(x, D I S I) \rightarrow \operatorname{Smart}(x))$
which is true if there is anyone who is not at DIT.

Formalizing English Sentences in FOL

Common mistake.. (2)

Quantifiers of different type do NOT commute $\exists x \forall y . \phi$ is not the same as $\forall y \exists x . \phi$

Example

- $\exists x \forall y$.Loves (x, y)
"There is a person who loves everyone in the world."
- $\forall y \exists x . \operatorname{Loves}(x, y)$
"Everyone in the world is loved by at least one person."

Formalizing English Sentences in FOL

Examples

- All Students are smart.
$\forall x$.(Student $(x) \rightarrow \operatorname{Smart}(x))$
- There exists a student. $\exists x$.Student (x)
- There exists a smart student $\exists x .(S t u d e n t(x) \wedge \operatorname{Smart}(x))$
- Every student loves some student $\forall x .(\operatorname{Student}(x) \rightarrow \exists y .(\operatorname{Student}(y) \wedge \operatorname{Loves}(x, y)))$
- Every student loves some other student. $\forall x .(\operatorname{Student}(x) \rightarrow \exists y .(\operatorname{Student}(y) \wedge \neg(x=y) \wedge \operatorname{Loves}(x, y)))$

Formalizing English Sentences in FOL

Examples

- There is a student who is loved by every other student. $\exists x .(\operatorname{Student}(x) \wedge \forall y .(\operatorname{Student}(y) \wedge \neg(x=y) \rightarrow \operatorname{Loves}(y, x)))$
- Bill is a student.

Student (Bill)

- Bill takes either Analysis or Geometry (but not both).

Takes(Bill, Analysis) $\leftrightarrow \neg$ Takes(Bill, Geometry)

- Bill takes Analysis and Geometry.

Takes(Bill, Analysis) ^ Takes(Bill, Geometry)

- Bill doesn't take Analysis.
\neg Takes(Bill, Analysis)

Formalizing English Sentences in FOL

Examples

- No students love Bill.
$\neg \exists x .($ Student $(x) \wedge \operatorname{Loves}(x$, Bill $))$
- Bill has at least one sister.
$\exists x$.SisterOf (x, Bill)
- Bill has no sister.
$\neg \exists x$.SisterOf $(x$, Bill $)$
- Bill has at most one sister.
$\forall x \forall y .($ SisterOf $(x$, Bill $) \wedge \operatorname{SisterOf}(y$, Bill $) \rightarrow x=y)$
- Bill has (exactly) one sister.
$\exists x .($ SisterOf $(x$, Bill $) \wedge \forall y .($ SisterOf $(y$, Bill $) \rightarrow x=y))$
- Bill has at least two sisters. $\exists x \exists y .($ SisterOf $(x$, Bill $) \wedge$ SisterOf $(y$, Bill $) \wedge \neg(x=y))$

Formalizing English Sentences in FOL

Examples

- Every student takes at least one course.
$\forall x$. $($ Student $(x) \rightarrow \exists y$. $($ Course $(y) \wedge \operatorname{Takes}(x, y)))$
- Only one student failed Geometry.
$\exists x .(S t u d e n t(x) \wedge$ Failed $(x$, Geometry $) \wedge \forall y .(S t u d e n t(y) \wedge$
Failed (y, Geometry) $\rightarrow x=y)$)
- No student failed Geometry but at least one student failed Analysis. $\neg \exists x$. (Student $(x) \wedge$ Failed $(x$, Geometry $)) \wedge \exists x .(S t u d e n t(x) \wedge$ Failed(x, Analysis))
- Every student who takes Analysis also takes Geometry. $\forall x$. $($ Student $(x) \wedge$ Takes $(x$, Analysis $) \rightarrow$ Takes $(x$, Geometry $))$

Formalizing English Sentences in FOL

Exercises

Define an appropriate language and formalize the following sentences in FOL:

- someone likes Mary.
- nobody likes Mary.
- nobody loves Bob but Bob loves Mary.
- if David loves someone, then he loves Mary.
- if someone loves David, then he (someone) loves also Mary.
- everybody loves David or Mary.

Formalizing English Sentences in FOL

Exercises

Define an appropriate language and formalize the following sentences in FOL:

- there is at least one person who loves Mary.
- there is at most one person who loves Mary.
- there is exactly one person who loves Mary.
- there are exactly two persons who love Mary.
- if Bob loves everyone that Mary loves, and Bob loves David, then Mary doesn't love David.
- Only Mary loves Bob.

Formalizing English Sentences in FOL

Example

Define an appropriate language and formalize the following sentences in FOL:

- "A is above C, D is on E and above F."
- "A is green while C is not."
- "Everything is on something."
- "Everything that has nothing on it, is free."
- "Everything that is green is free."
- "There is something that is red and is not free."
- "Everything that is not green and is above B, is red."

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F;
Predicates: On 2, Above 2, Free 1, Red 1, Green ${ }^{1}$.

Example

- "A is above C, D is above F and on E." $\phi_{1}: \operatorname{Above}(A, C) \wedge \operatorname{Above}(D, F) \wedge O n(D, E)$
- "A is green while C is not."
$\phi_{2}: \operatorname{Green}(A) \wedge \neg \operatorname{Green}(C)$
- "Everything is on something."
$\phi_{3}: \forall x \exists y . O n(x, y)$
- "Everything that has nothing on it, is free."
$\phi_{4}: \forall x .(\neg \exists y . \operatorname{On}(y, x) \rightarrow \operatorname{Free}(x))$

Formalizing English Sentences in FOL

Non Logical symbols

Constants: A, B, C, D, E, F;
Predicates: On 2, Above 2, Free 1, Red 1, Green 1.

Example

- "Everything that is green is free." $\phi_{5}: \forall x .(\operatorname{Green}(x) \rightarrow \operatorname{Free}(x))$
- "There is something that is red and is not free."

$$
\phi_{6}: \exists x .(\operatorname{Red}(x) \wedge \neg \operatorname{Free}(x))
$$

- "Everything that is not green and is above B, is red." $\phi_{7}: \forall x .(\neg \operatorname{Green}(x) \wedge \operatorname{Above}(x, B) \rightarrow \operatorname{Red}(x))$

An interpretation \mathcal{I}_{1} in the Blocks World

Non Logical symbols

Constants: A, B, C, D, E, F;
Predicates: On 2, Above 2, Free 1, Red ${ }^{1}$, Green ${ }^{1}$.

Interpretation \mathcal{I}_{1}

- $\mathcal{I}_{1}(A)=b_{1}, \mathcal{I}_{1}(B)=b_{2}, \mathcal{I}_{1}(C)=b_{3}, \mathcal{I}_{1}(D)=b_{4}, \mathcal{I}_{1}(E)=b_{5}, \mathcal{I}_{1}(F)=$ table
- $\mathcal{I}_{1}(O n)=\left\{\left\langle b_{1}, b_{4}\right\rangle,\left\langle b_{4}, b_{3}\right\rangle,\left\langle b_{3}\right.\right.$, table $\rangle,\left\langle b_{5}, b_{2}\right\rangle,\left\langle b_{2}\right.$, table $\left.\rangle\right\}$
- $\mathcal{I}_{1}($ Above $)=\left\{\left\langle b_{1}, b_{4}\right\rangle,\left\langle b_{1}, b_{3}\right\rangle,\left\langle b_{1}\right.\right.$, table $\rangle,\left\langle b_{4}, b_{3}\right\rangle,\left\langle b_{4}\right.$, table \rangle, $\left\langle b_{3}\right.$, table $\rangle,\left\langle b_{5}, b_{2}\right\rangle,\left\langle b_{5}\right.$, table $\rangle,\left\langle b_{2}\right.$, table $\left.\rangle\right\}$
- $\mathcal{I}_{1}($ Free $)=\left\{\left\langle b_{1}\right\rangle,\left\langle b_{5}\right\rangle\right\}, \mathcal{I}_{1}($ Green $)=\left\{\left\langle b_{4}\right\rangle\right\}, \mathcal{I}_{1}($ Red $)=\left\{\left\langle b_{1}\right\rangle,\left\langle b_{5}\right\rangle\right\}$

A different interpretation \mathcal{I}_{2}

Non Logical symbols

Constants：A，B，C，D，E，F；
Predicates： On 2, Above 2 ， Free 1 ，Red ${ }^{1}$ ，Green ${ }^{1}$ ．

ground

Interpretation \mathcal{I}_{2}

－ $\mathcal{I}_{2}(A)=$ hat， $\mathcal{I}_{2}(B)=$ Joe， $\mathcal{I}_{2}(C)=$ bike， $\mathcal{I}_{2}(D)=$ Jill， $\mathcal{I}_{2}(E)=$ case， $\mathcal{I}_{2}(F)=$ ground
－ $\mathcal{I}_{2}($ On $)=\{\langle$ hat，Joe \rangle,\langle Joe，bike \rangle,\langle bike，ground \rangle,\langle Jill，case \rangle,\langle case，ground $\rangle\}$
－ $\mathcal{I}_{2}($ Above $)=\{\langle$ hat，Joe $\rangle,\langle h a t$, bike $\rangle,\langle h a t$, ground \rangle,\langle Joe，bike \rangle,\langle Joe，ground \rangle ，〈bike，ground \rangle,\langle Jill，case〉，〈Jill，ground〉，〈case，ground $\rangle\}$
－ $\mathcal{I}_{2}($ Free $)=\{\langle$ hat \rangle,\langle Jill $\rangle\}, \mathcal{I}_{2}($ Green $)=\{\langle$ hat \rangle,\langle ground $\rangle\}$, $\mathcal{I}_{2}($ Red $)=\{\langle$ bike \rangle,\langle case $\rangle\}$

FOL Satisfiability

Example

For each of the following formulas, decide whether they are satisfied by \mathcal{I}_{1} and/or \mathcal{I}_{2} :

- $\phi_{1}: \operatorname{Above}(A, C) \wedge \operatorname{Above}(D, F) \wedge O n(D, E)$
- $\phi_{2}: \operatorname{Green}(A) \wedge \neg \operatorname{Green}(C)$
- $\phi_{3}: \forall x \exists y \cdot \operatorname{On}(x, y)$
- $\phi_{4}: \forall x .(\neg \exists y . \operatorname{On}(y, x) \rightarrow F r e e(x))$
- $\phi_{5}: \forall x .(\operatorname{Green}(x) \rightarrow \operatorname{Free}(x))$
- $\phi_{6}: \exists x .(\operatorname{Red}(x) \wedge \neg F r e e(x))$
- $\phi_{7}: \forall x .(\neg \operatorname{Green}(x) \wedge \operatorname{Above}(x, B) \rightarrow \operatorname{Red}(x))$

Sol.

- $\mathcal{I}_{1} \models \neg \phi_{1} \wedge \neg \phi_{2} \wedge \neg \phi_{3} \wedge \phi_{4} \wedge \neg \phi_{5} \wedge \neg \phi_{6} \wedge \phi_{7}$
- $\mathcal{I}_{2} \models \phi_{1} \wedge \phi_{2} \wedge \neg \phi_{3} \wedge \phi_{4} \wedge \neg \phi_{5} \wedge \phi_{6} \wedge \phi_{7}$

FOL Satisfiability

Example

Consider the following sentences:

- (1) All actors and journalists invited to the party are late.
- (2) There is at least a person who is on time.
- (3) There is at least an invited person who is neither a journalist nor an actor.

Formalize the sentences and prove that (3) is not a logical consequence of (1) and (2)

FOL Satisfiability

Example

Consider the following sentences:

- All actors and journalists invited to the party are late.
(1) $\quad \forall x .((a(x) \vee j(x)) \wedge i(x) \rightarrow I(x))$
- There is at least a person who is on time.
(2)
$\exists x . \neg /(x)$
- There is at least an invited person who is neither a journalist nor an actor. (3) $\exists x .(i(x) \wedge \neg a(x) \wedge \neg j(x))$

It's sufficient to find an interpretation \mathcal{I} for which the logical consequence does not hold:

	$\mathrm{I}(\mathrm{x})$	$\mathrm{a}(\mathrm{x})$	$\mathrm{j}(\mathrm{x})$	$\mathrm{i}(\mathrm{x})$
Bob	F	T	F	F
Tom	T	T	F	T
Mary	T	F	T	T

Exercise
Let $\Delta=\{1,3,5,15\}$ and \mathcal{I} be an interpretation on Δ interpreting the predicate symbols E^{1} as 'being even', M^{2} as 'being a multiple of' and L^{2} as 'being less then', and s.t. $\mathcal{I}(a)=1, \mathcal{I}(b)=3, \mathcal{I}(c)=5, \mathcal{I}(d)=15$.
Determine whether \mathcal{I} satisfies the following formulas:

$$
\begin{array}{lccrr}
\exists y . E(y) & \forall x . \neg E(x) & \forall x \cdot M(x, a) & \forall x \cdot M(x, b) & \exists x \cdot M(x, d) \\
\exists x \cdot L(x, a) & \forall x .(E(x) \rightarrow M(x, a)) & \forall x \exists y \cdot L(x, y) & \forall x \exists y \cdot M(x, y) \\
\forall x .(M(x, b) \rightarrow L(x, c)) & \forall x \forall y \cdot(L(x, y) \rightarrow \neg L(y, x)) & \\
\forall x .(M(x, c) \vee L(x, c)) & & &
\end{array}
$$

Graph Coloring Problem

Provide a propositional language and a set of axioms that formalize the graph coloring problem of a graph with at most n nodes, with connection degree $\leq m$, and with less then $k+1$ colors.

- node degree: number of adjacent nodes
- connection degree of a graph: max among all the degree of its nodes
- Graph coloring problem: given a non-oriented graph, associate a color to each of its nodes in such a way that no pair of adjacent nodes have the same color.

Graph Coloring: FOL Formalization

FOL Language

- A unary function color, where $\operatorname{color}(x)$ is the color associated to the node x
- A unary predicate node, where node (x) means that x is a node
- A binary predicate edge, where edge (x, y) means that x is connected to y

FOL Axioms

Two connected node are not equally colored:

$$
\begin{equation*}
\forall x \forall y .(\operatorname{edge}(x, y) \rightarrow(\operatorname{color}(x) \neq \operatorname{color}(y)) \tag{1}
\end{equation*}
$$

A node does not have more than k connected nodes:

$$
\begin{equation*}
\forall x \forall x_{1} \ldots \forall x_{k+1} \cdot\left(\bigwedge_{h=1}^{k+1} \operatorname{edge}\left(x, x_{h}\right) \rightarrow \bigvee_{i, j=1, j \neq i}^{k+1} x_{i}=x_{j}\right) \tag{2}
\end{equation*}
$$

Graph Coloring: Propositional Formalization

Prop. Language

- For each $1 \leq i \leq n$ and $1 \leq c \leq k$, color $_{i c}$ is a proposition, which intuitively means that "the i-th node has the color"
- For each $1 \leq i \neq j \leq n$, edge ${ }_{i j}$ is a proposition, which intuitively means that "the i-th node is connected with the j-th node".

Prop. Axioms

- for each $1 \leq i \leq n, \bigvee_{c=1}^{k}$ color $_{i c}$ "each node has at least one color"
- for each $1 \leq i \leq n$ and $1 \leq c, c^{\prime} \leq k$, color $_{i c} \rightarrow$ color $_{i c^{\prime}}$ "every node has at most 1 color"
- for each $1 \leq i, j \leq n$ and $1 \leq c \leq k$, edge $_{i j} \rightarrow \neg\left(\right.$ color $_{i c} \wedge$ color $\left._{j c}\right)$ "adjacent nodes do not have the same color"
- for each $1 \leq i \leq n$, and each $J \subseteq\{1 . . n\}$, where $|J|=m$, $\bigwedge_{j \in J}$ edge $_{i j} \rightarrow \bigwedge_{j \notin J}$ edge $_{i j}$ "every node has at most m connected nodes"

Analogy with Databases

When the language \mathcal{L} and the domain of interpretation Δ are finite, and \mathcal{L} doesn't contain functional symbols (relational language), there is a strict analogy between FOL and databases.

- relational symbols of \mathcal{L} correspond to database schema (tables)
- Δ corresponds to the set of values which appear in the tables
- the interpretation \mathcal{I} corresponds to the tuples that belongs to each relation
- formulas on \mathcal{L} corresponds to queries over the database
- interpretation of formulas of \mathcal{L} corresponds to answers

Analogy with Databases

FOL	DB
friends	CREATE TABLE FRIENDS(friend1 : INTEGER friend2 : INTEGER)
friends (x, y)	SELECT friend1 AS x friend2 AS y FROM FRIENDS
friends (x, x)	SELECT friend1 AS x FROM FRIENDS WHERE friend1 = friend2
friends $(x, y) \wedge x=y$	```SELECT friend1 AS x friend2 AS y FROM FRIENDS WHERE friend1 = friend2```
$\exists x . f r i e n d s(x, y)$	SELECT friend2 AS y FROM FRIENDS

Analogy with Databases

Example

Consider the following database schema:

- Students(Name, University, OriginT, LiveT)
- Universities(Name, Town)
- Town(Name, Country)

Express each of the following queries in FOL formulas with free variables.
1 Give Names of students living in Trento
2 Give Names of students studying in a university in Trento
3 Give Names of students living in their origin town
4 Give (Name, University) pairs for each student studying in Italy
5 Give all Country that have at least one university for each town.

Analogy with Databases

Example

Consider the following database schema:

- Students(Name, University, OriginT, LiveT)
- Universities(Name, Town)
- Town(Name, Country)

Express each of the following queries in FOL formulas with free variables.
1 Give Names of students living in Trento
$\exists y \exists z . S t u d e n t s(x, y, z$, Trento)
2 Give Names of students studying in a university in Trento $\exists y \exists z \exists v$.(Students $(x, y, z, v) \wedge$ Universities (y, Trento))
3 Give Names of students living in their origin town
$\exists y \exists z$.Students (x, y, z, z)

Analogy with Databases

Example

Consider the following database schema:

- Students(Name, University, OriginT, LiveT)
- Universities(Name, Town)
- Town(Name, Country)

Express each of the following queries in FOL formulas with free variables.
4 Give (Name, University) pairs for each student studying in Italy $\exists z \exists v \exists w$. (Students $(x, y, z, v) \wedge$ Universities $(y, w) \wedge \operatorname{Town}(w$, Italy $)$
5 Give all Country that have at least one university for each town. $\forall x$. $($ Town $(x, y) \rightarrow \exists z$.Universities $(z, x))$

Analogy with Databases

Exercise

Consider the following database schema

- Lives (Name,Town)
- Works (Name, Company, Salary)
- Company_Location(Company,Town)
- Reports_To (Name,Manager)
(you may use the abbreviations $L(N, T), W(N, C, S), C L(C, T)$, and $R(N, M)$).
Express each of the following queries in first order formulas with free variables.
1 Give (Name,Town) pairs for each person working for Fiat.
2 Find all people who live and work in the same town.
3 Find the maximum salary of all people who work in Trento.
4 Find the names of all companies which are located in every city that has a branch of Fiat

