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Recap of what is Σ-structure

Σ-structure

Given a vocabulary Σ = 〈c1, c2, . . . , f1, f2, . . . ,R1,R2, . . . 〉 a
Σ-structure is M is composed of a non empty set ∆M and an
interpretation function such that

cMi ∈ |M|
fMi ∈ |M|arity(fi ) −→ |M|
RMi ∈ |M|arity(Ri )
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Substructures and isomorphic structures

Substructure

A Σ-structure M is a substructure of a Σ-structure N , in symbols M⊆ N if

|M| ⊆ |N |
cM = cN

f M is the restriction of f N to the set |M|, i.e., for all a1, . . . , an ∈ |M|,
f M(a1, . . . , an) = f N (a1, . . . , an).

RM = RN ∩ |M|n

where n is the arity of f and R.

Isomorphic structures

Two Σ-structures M and N are isomorphic, in symbols M' N , if there is a
bijection i : |M| → |N | such that

i(cM) = cN for every constant c

i(f M(a1, . . . , an) = f N (i(a1), . . . , i(an)).

〈a1, . . . , an〉 ∈ RM iff 〈i(a1), . . . , i(an)〉 ∈ RN
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Elementary equivalent structures

Elementary equivalent structures

Two Σ-structures M and M are elementary equivalent, in symbols M≡ N , if
for all sentences ϕ

M |= ϕ ⇐⇒ N |= ϕ

Theorem

ifM' N thenM≡ N .

The viceversa of the above theorem does not hold. There are pairs of structure
which are elementary equivalent but they are not isomorphic.

Example

〈Q, <〉 ≡ 〈R, <〉. (the order on rational numbers is elementary equivalent with
the order on real numbers). But these two structures cannot be isomorphic
since one has numerable cardinality and the other is not. Which implies that
there cannot exist an isomorphism. We therefore conclude that
〈Q, <〉 6' 〈R, <〉.
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Definability

We can consider the expressiveness of first order logic by observing
which are the mathematical objects (actually the relations) that
can be defined.
For example we can define the unit circle as the binary relation
{〈x , y〉 |x2 + y 2 = 1} on R. We can also define the symmetry
property for a binary relation R as ∀x∀y(xRy ↔ yRx) which is
satisfied by all symmetric binary relations including the circle
relations.

definability within a fixed Σ-Structure

definability within a class of Σ-Structure.
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Definability within a structure

Definability of a relation w.r.t. a structure

An n-ary relation R defined over the domain |M| of a Σ-structure
M is definable in M if there is a formula ϕ that contains n free
variables (in symbols φ(x1, . . . , xn)) such that for every n-tuple of
elements a1, . . . , an ∈ |M|

〈a1, . . . , an〉 ∈ R iff M |= ϕ(x1, . . . , xn)[a1, . . . an]
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Definability within a structure (cont’d)

Example (Definition of 0 in different structures)

In the structure of ordered natural numbers 〈N, <〉, the singleton set (= unary
relation containing only one element) {0} is defined by the following formula

∀y(y 6= x → x < y)

In the structure of ordered real numbers 〈R, <〉, {0} has no special property that
distinguish it from the other real numbers, and therefore it cannot be defined.

In the structure of real numbers with sum 〈R,+〉, {0} can be defined in two
alternatives way:

∀y(x + y = y) x + x = x

In the structure of real numbers with product 〈R, ·〉, {0} can be defined by the
following formula:

∀y(x + y = y)

Notice that unlike the previous case {0} cannot be defined by x · x = x since
also {1} satisfies this property (1 · 1 = 1)

Luciano Serafini Mathematical Logics



Definability within a structure (cont’d)

Example (Definition of reachability relation in a graph)

Consider a graph structure G = 〈V ,E〉, we would like to define the reachability
relation between two nodes. I.e., the relation

Reach = {〈x , y〉 ∈ V 2|there is a path from x to y in G}

We can scompose Reach in the following relations
“y is reachable from x in 1 step” or
“y is reachable from x in 2 steps” or . . . .
And define each single relation for all n ≥ 0 as follows:

reach1(x , y) ≡ E(x , y) (1)

reachn+1(x , y) ≡ ∃z(reachn(x , z) ∧ E(z , y)) (2)

If V is finite, then the relation Reach can be defined by the formula

reach0(x , y) ∨ reach1(x , y) ∨ · · · ∨ reach|V ||(x , y)

if V is infinite, then reachability is not definable in first order logic.
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Definability within a class of structures

Class of structures defined by a (set of) formula(s)

Given a formula ϕ of the alphabet Σ we define mod(φ) as the
class of Σ-structures that satisfies ϕ. i.e.,

mod(ϕ) = {M | M is a Σ-structures and M |= ϕ}

Given a set of formulas T , mod(T ) is the class of Σ structures
that satisfies each formula in T .

Example

mod(∀xy x = y) = {M | |M| = 1}

The question we would like to answer is: What classes of
Σ-structures can we describe using first order sentences? For
instance can we describe the class of all connected graphs?
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Definability within a class of structures (cont’d)

Example (Classes definable with a single formula)

The class of undirected graphs

ϕUG = ∀x ¬E (x , x) ∧ ∀xy (E (x , y) ≡ E (y , x))

the class of partial orders:

ϕPO =∀xR(x , x) ∧
∀xy(R(x , y) ∧ R(y , x)→ x = y) ∧
∀xyz(R(x , y) ∧ R(y , z)→ R(x , z))

the class of total orders:

ϕTO = ϕPO ∧ ∀xy(R(x , y) ∨ R(y , x))
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Definability within a class of structures (cont’d)

Example (Classes definable with a single formula)

the class of groups:

ϕG =∀x(x + 0 = x ∧ 0 + x = x) ∧
∀x∃y(x + y = 0 ∧ y + x = 0) ∧
∀xyz((x + y) + z = x + (y + z))

the class of abelian groups:

ϕAG = ϕG ∧ ∀xy(x + y = y + x)

the class of structures that contains at most n elements

ϕn = ∀x0 . . . xn
∨

0≤i<j≤n
xi = xj

Remark

Notice that every class of structures that can be defined with a
finite set of formulas (as e.g., groups, rings, vector spaces, boolean
algebras topological spaces, . . . ) can also be defined by a single
sentence by taking the finite conjunction of the set of formulas.
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Classes of Structures characterizable by an infinite
set of formulas

Theorem

The class of infinite structures is characterizable by the following
infinite set of formulas:

there are at least 2 elements ϕ2 =∃x1x2 x1 6= x2

there are at least 3 elements ϕ3 =∃x1x2x3(x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3)

there are at least n elements ϕn =∃x1x2x3 . . . xn
∧

1≤i<j≤n
xi 6= xj
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Finite satisfiability and compactness

Definition (Finite satisfiability)

A set Φ of formulas is finitely satisfiable if every finite subset of Φ
is satisfiable.

Theorem (Compactness)

A set of formulas Φ is satisfiable iff it is finitely satisfiable

Proof.

An indirect proof of the compactness theorem can be obtained by
exploiting the completeness theorem for FOL as follows:
If Φ is not satisfiable, then, by the completeness theorem of FOL,
there Φ ` ⊥. Which means that there is a deduction Π of ⊥ from
Φ. Since Π is a finite structure, it “uses” only a finite subset Φf of
Φ of hypothesis. This implies that Φf ` ⊥ and therefore, by
soundness that Φf is not satisfiable; which contradicts the fact
that all finite subsets of Φ are satisfiable
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Classes of Structures characterizable by an infinite
set of formulas

Theorem

The class Cinf of infinite structures is not characterizable by a
finite set of formulas.

Proof.

Suppose, by contradiction, that there is a sentence φ with mod(φ) = Cinf .

Then Φ = {¬φ} ∪ {ϕ2, ϕ2, . . . } (as defined in the previous slides) is not
satisfiable,

by compactness theorem Φ is not finitely satisfiable, and therefore there is
an n such that Φf = {¬φ} ∪ {ϕ2, ϕ2, . . . , ϕn} is not satisfiable.

let M be a structure with |M| = n + 1. Since M is not infinite then
M |= ¬φ, and since it contains more than k elements for every k ≤ n + 1
we have that M |= ϕk for 2 ≤ k ≤ n + 1.

Therefore we have that M |= Φ, i.e., Φ is satisfiable, which contradicts
the fact that Φ was derived to be unsatisfiable.
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First order theory

Theory

A first order theory T over a signature,
Σ = 〈c1, c2, . . . , f1, f2, . . . ,R1,R2, . . . 〉, or more simply a Σ-theory
is a set of sentences over Σa closed logical consequence. I.e

T |= φ ⇒ φ ∈ T

aRemember: a sentence is a closed formula. A closed formula is a formula
with no free variables

Consistency

A Σ-theory is consistency if T has a model, i.e., if there is a
Σ-structure M such that M |= T .
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Theory of a class of Σ-structures

Th(M)

Let M a class of Σ-structure. The Σ-theory of M is the set of
formulas:

th(M) = {α ∈ sent(Σ)|M |= α, for all M∈M}

Furthermore th(M) has the following two important properties:

th(M) is consistent th(M) 6|= ⊥
th(M) is closed under logical consequence

And therefore is a consistent Σ-theory

Remark

Thus, th(M) consists exarcly of all Σ-sentences that hold in all
structures in M.
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Every theory is a theory for a class of structures

Every Σ-theory T is the Σ-theory of a class M of Σ structure. in
particular M can be defined as follows:

M = {M|M is Σ-structure, and M |= T}
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Axiomatization of a class of Σ-structures

Axiomatization

An (finite) axiomatization of a class of Σ-structures M is a (finite)
set of formulas A such that

th(M) = {φ|A |= φ}

An axiomatization of a (class of) structure(s) M contains a set of
formulas (= axioms) which describes the salient properties of the
symbols in Σ (constant, functions and relations) when they are
interpreted in the structure M. Every other property of the
symbols of Σ in the structure M are logical consequences of the
axioms.
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