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Decision procedures

Four tipes of questions

Model Checking(I, φ): I
?

|= φ. What is the truth value of φ
in I, or equivalently, does I satisfy φ or does it not satisfy φ.

Satisfiability(φ):
?
∃I . I |= φ Is there a model I that satisfies

φ?

Validity(φ):
?

|= φ. Is φ satisfied by all the models I?

Logical consequence(Γ, φ): Γ
?

|= φ Is φ satisfied by all the
models I, that satisfies all the formulas in Γ?
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Model Checking

Model checking decision procedure

A model checking decision procedure, MCDP is an algorithm that
checks if a formula φ is satisfied by an interpretation I. Namely

MCDP(φ, I) = true if and only if I |= φ

MCDP(φ, I) = false if and only if I 6|= φ

Observations

The procedure of model checking returns for all inputs either true
or false since for all models I and for all formulas φ, we have that
either I |= φ or I 6|= φ.
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A simple recursive MCDP

MCDP(I, φ) applyes one of the following cases:

MCDP(I, p)
if I(p) = true

then return YES
else return NO

MCDP(I, φ ∧ ψ)
if MCDP(I,A)

then return MCDP(I, ψ)
else return NO

MCDP(I, φ ∨ ψ)
if MCDP(I, φ)

then return YES
else return MCDP(I , ψ)

MCDP(I, φ ⊃ ψ)
if MCDP(I, φ)

then return MCDP(I, ψ)
else return YES

MCDP(I, φ ≡ ψ)
if MCDP(I, φ)

then return MCDP(I, ψ)
else return not(MCDP(I, ψ)
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Satisfiability

Satisfiability decision procedure

A satisfiability decision procedure SDP is an algorithm that takes
in input a formula φ and checks if φ is (un)satisfiable. Namely

SDP(φ) = Satisfiable if and only if I |= φ for some I
SDP(φ) = Unsatisfiable if and only if I 6|= φ for all I

When SDP(φ) = satisfiable, SDP can return a (model) I, that
satisfies φ. Notice that this might not be the only one.
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Validity

Validity decision procedure

A decision procedure for Validity VDC, is an algorithm that checks
whether a formula is valid. VDP can be based on a satisfiability
decision procedure by exploiting the equivalence

φ is valid if and only if ¬φ is not satisfiable

VDP(φ) = true if and only if SDP(¬φ) = Unsatisfiable

VDP(φ) = false if and only if SDP(¬φ) = Satisfiable

When SDP(¬φ) returns an interpretation I, this interpretation is
a counter-model for φ.
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Logical consequence

Logical consequence decision procedure

A decision procedure for logical consequence LCDP is an algorithm
that cheks whether a formula φ is a logical consequence of a finite
set of formulas Γ = {γ1, . . . , γn}. LCDP can be implemented on
the basis of satisfiability decision procedure by exploiting the
property

Γ |= φ if and only if Γ ∪ {¬φ} is unsatisfiable

LCDP(Γ, φ) = true if and only if SDP(γ1 ∧ · · · ∧ γn ∧ ¬φ) = Unatisfiable

LCDP(Γ, φ) = false if and only if SDP(γ1 ∧ · · · ∧ γn ∧ ¬φ) = Satisfiable

When SDP(γ1 ∧ · · · ∧ γn ∧ ¬φ) returns an interpretation I, this
interpretation is a model for Γ and a counter-model for φ.
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Proof of the previous property

Theorem

Γ |= φ if and only if Γ ∪ {¬φ} is unsatisfiable

Proof.

⇒ Suppose that Γ |= φ, this means that every interpretation I
that satisfies Γ, it does satisfy φ, and therefore I 6|= ¬φ. This
implies that there is no interpretations that satisfies together
Γ and ¬φ.

⇐ Suppose that I |= Γ, let us prove that I |= φ, Since
Γ ∪ {¬phi} is not satisfiable, then I 6|= ¬φ and therefore
I |= φ.
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Davis-Putnam (DP) Algorithm

In 1960, Davis and Putnam published a SAT algorithm.

Davis, Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM,
7(3):2012̆013215, 1960.

In 1962, Davis, Logemann, and Loveland improved the DP
algorithm.

Davis, Logemann, Loveland. A Machine Program for
Theorem-Proving. Communications of the ACM,
5(7):3942̆013397, 1962.

The DP algorithm is often confused with the more popular
DLL algorithm. In the literature you often find the acronym
DPLL.

Basic framework for most current SAT solvers.

We consider the DP algorithm . . .
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Conjunctive Normal form

Definition (Conjunctive Normal form)

A formula φ is in conjunctive normal form, if it is of the form:

(l11 ∨ . . . l1n1) ∧ . . . ∧ (lm1 ∨ · · · ∨ lmnm)×

where lij is a literal, i.e., a formula of the form p or ¬p, with p
atomic proposition. Each (lk1 ∨ · · · ∨ l1nk ) is called clause

Example

(p ∨ ¬q) ∧ (r ∨ p ∨ ¬r) ∧ (p ∨ p) (1)

p ∨ q (2)

p ∧ q (3)

p ∧ ¬q ∧ (r ∨ s) (4)
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Proposition

existence Every formula can be reduced into CNF

equivalence |= CNF(φ) ≡ φ
normality |= φ ≡ ψ implies that CNF(φ) = CNF(ψ) (up to

reordering of clauses and of literals inside each
clauses)
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Reduction in CNF

Definition (the CNF function)

The function CNF, which transforms a propositional formula in its CNF is
recursively defined as follows:

CNF(p) = p if p ∈ P
CNF(¬p) = ¬p if p ∈ P

CNF(φ ⊃ ψ) = CNF(¬φ)⊗ CNF(ψ)

CNF(¬¬φ) = CNF(φ)

CNF(¬(φ ∧ ψ)) = CNF(¬φ)⊗ CNF(¬ψ)

CNF(¬(φ ∨ ψ)) = CNF(¬φ) ∧ CNF(¬ψ)

CNF(φ ∧ ψ) = CNF(φ) ∧ CNF(ψ)

CNF(φ ∨ ψ) = CNF(φ)⊗ CNF(ψ)

where (C1 ∧ · · · ∧ Cn)⊗ (D1 ∧ · · · ∧ Dm) is defined as

(C1 ∨ D1) ∧ · · · ∧ (C1 ∨ Dm) ∧ · · · ∧ (Cn ∨ D1) ∧ · · · ∧ (Cn ∨ Dm)

Luciano Serafini Mathematical Logics



Termination of CNF

Proposition

CNF terminates for every input φ.

Proof.

We define the complexity of the formula φ as the maximal
number of nested logical operators it contains.

Termination of this CNF algorithm is guaranteed since the the
complexity of the formula given in input to all the recursive
applications of CNF is always decreasing.

Since the complexity of every formula is finite, then after a
finite number of recursive calls of CNF, the base case is
reached.
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CNF preserves the meaning of a formula

Proposition

|= φ ≡ CNF(φ)

Proof.

By induction on the definition of CNF.

base case; φ is a literal CNF(φ) = φ and, form the fact that
|= φ ≡ φ we conclude that |= CNF(φ) ≡ φ

step case: φ is of the form ψ ⊃ θ . By the induction hypothesis
we have that |= CNF(¬ψ) ≡ ¬ψ and |= CNF(θ) ≡ θ.
Furthermore,for every α and β,
|= CNF(α)⊗ CNF(β) ≡ CNF(α) ∨ CNF(β). (Prove
by exercize the simple example with α = p ∧ q and
β = r ∧ s). furthermore, |= (ψ ⊃ θ) ≡ (¬ψ ∨ θ).
This implies that |= CNF(ψ ⊃ θ) ≡ ψ ⊃ θ.

other step cases By exercise.
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Proposition

|= φ ≡ ψ implies that CNF(φ) = CNF(ψ) (up to reordering of
clauses and of literals inside each clauses)

Compact representation of CNF

The CNF formula (l11 ∨ . . . l1n1) ∧ . . . ∧ (lm1 ∨ · · · ∨ lmnm) can be
represented by a set of sets

{{l11, . . . , l1n1}, . . . , {lm1, . . . , lmnm}}

The ∅ represents any unsatisfiable formula. (e.g. p ∧ ¬p).
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Satisfiability of a set of clauses

Let N = C1, . . . ,Cn = CNF (φ)

I |= φ if and only if I |= Ci for all i = 1..n;
I |= Ci if and only if for some l ∈ C , I |= l

To check if a model I satisfies N we do not need to know the
truth values that I assigns to all the literals appearing in N.

For instance, if I(p) = true and I(q) = false, we can say that
I |= {{p, q,¬r}, {¬q, s, q}}, without considering the
evaluations of I(r) and I(s).

Partial evaluation

A partial evaluation is a partial function that associates to some
propositional variables of the alphabet P a truth value (either true
or false) and can be undefined for the others.
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Partial Valuation

Partial evaluations allow us to construct models for a set of
clauses N = {C1, . . . ,Cn} incrementally

DPLL starts with an empty valuation (i.e., the truth values of
all propositional letters are not defined) and tries to extend it
step by step to all variables occurring in N = {C1, . . . ,Cn}.
Under a partial valuation I literals and clauses can be true,
false or undefined;

A clause is true under I if one of its literals is true;
A clause is false (or conflicting) if all its literals are false
otherwise C it is undefined (or unresolved).
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DPLL

Simplification of a formula by an evaluated literal

For any CNF formula φ and atom p, φ|p stands for the formula
obtained from φ by replacing all occurrences of p by > and
simplifying the result by removing

all clauses containing the disjunctive term >, and

the literals ¬> in all remaining clauses

Similarly, φ|¬p is the result of replacing p in φ by ⊥ and simplifying
the result.

Example

For instance,

{{p, q,¬r}, {¬p, r¬}}|¬p = {{q,¬r}}
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DPLL (cont’d)

Unit clause

If a CNF formula φ contains a clause C = {l} that consists of a
single literal, it is a unit clause

Unit propoagation

If φ contains unit clause {l} then, to satisfy φ we have to satisfy
{l} and therefore the literal l must be evaluated to True. As a
consequence φ can be simplified using the procedure called
UnitPropagation

UnitPropagation(φ, I)
while φ contains a unit clause {l}

φ := φ|l
if l = p, then I(p) := true
if l = ¬p, then I(p) := false

end
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DPLL (cont’d)

Example

UnitPropagation({p}, {¬p,¬q}, {¬q, r}}, I)

{{p}, {¬p,¬q}, {¬q, r}}
{{p}, {¬p,¬q}, {¬q, r}}|p I(p) = true
{{>}, {¬>,¬q}, {¬q, r}}
{{¬q}, {¬q, r}}
{{¬q}, {¬q, r}}
{{¬q}, {¬q, r}}|¬q I(q) = false
{{>}, {>, r}}
{}

Exercize

Use unit propagation to decide whether the formula

p ∧ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (q ∨ r) ∧ (¬q ∨ ¬r)

is satisfiable.
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)
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DPLL (cont’d)

Remark

Unit propagation is enough to decide the satisfiability problem
when it terminates with the following two results:

{} as in the example above, then the initial formula is
satisfiable, and a satisfying interpretation can be easily
extracted from I.

{. . . {} . . . }, then the initial formula is unatisfiable

There are cases in which UnitPropagation does terminate with
none of the above case, i.e., when there is no unit clauses and the
CNF is not empty and doesn’t contain empty clauses. e.g.,

{{p, q}, {¬q, r}}

In this case we have to do a guess . . . .
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DPLL definition

The Davis-Putnam-Logemann-Loveland procedure

. . . is an extension of the unit propagation method that can solve
the satisfiability

DPLL(φ, I)
UnitPropagation(φ, I)
if φ contains the empty clause

then return
if φ = {}

then exit with I
select a literal l ∈ C ∈ φ
DPLL(φ|l , I ∪ I(l) = true)
DPLL(φ|l , I ∪ I(l) = false)

where: if l = p, l = ¬p and if l = ¬p then l = p
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Other examples

Exercize

Check the following facts via DPLL

1 |= (p ⊃ q) ∧ ¬q ⊃ ¬p

2 |= (p ⊃ q) ⊃ (p ⊃ ¬q)

3 |= (p ∨ q ⊃ r) ∨ p ∨ q

4 |= (p ∨ q) ∧ (p ⊃ r ∧ q) ∧ (q ⊃ ¬r ∧ p)

5 |= (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r))

6 |= (p ∨ q) ∧ (¬q ∧ ¬p)

7 |= (¬p ⊃ q) ∨ ((p ∧ ¬r) ≡ q)

8 |= (p ⊃ q) ∧ (p ⊃ ¬q)

9 |= (p ⊃ (q ∨ r)) ∨ (r ⊃ ¬p)
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Other examples

Exercize

Check the following facts

1 (p ⊃ q) |= ¬p ⊃ ¬q

2 (p ⊃ q) ∧ ¬q |= ¬p

3 p ⊃ q ∧ r |= (p ⊃ q) ⊃ r

4 p ∨ (¬q ∧ r) |= q ∨ ¬r ⊃ p

5 ¬(p ∧ q) ≡ ¬p ∨ ¬q

6 (p ∨ q) ∧ (¬p ⊃ ¬q) ≡ q

7 (p ∧ q) ∨ r ≡ (p ⊃ ¬q) ⊃ r

8 (p ∨ q) ∧ (¬p ⊃ ¬q) ≡ p

9 ((p ⊃ q) ⊃ q) ⊃ q ≡ p ⊃ q

Luciano Serafini Mathematical Logics



Reducing Graph Coloring to SAT

graph k-coloring problem

A k-coloring of a graph is a labelling of its vertices with at most k colors such that no
two vertices sharing the same edge have the same color.

Reduction to SAT

The problem of generating a k-coloring of a graph G = (V ,E) can be reduced to SAT
as follows.

For every v ∈ V and every i ∈ {1, . . . , k}, introduce an atom pvi to represent
the fact that the node v is labelled with the i-th color.

Luciano Serafini Mathematical Logics



Reducing Graph Coloring to SAT

Reduction to SAT (cont’d)

The propositional formulas:

∧
v∈V

 ∨
1≤i≤k

pvi


represents the fact that all the vertexes need to be colored with at least one
color.

the formula ∧
v∈V

 ∧
1≤i<j≤k

¬(pvi ∧ pvj )


represents the fact that a node can be colored with at most one color

the formula ∧
(v,w)∈E

 ∧
1≤i≤k

¬(pvi ∧ pwi )


represents the fact that every two adjacent nodes (v ,w) cannot be labelled with
the same color i .
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MiniSat http://minisat.org

About

MiniSat is a minimalistic, open-source SAT solver, developed to
help researchers and developers alike to get started on SAT. It is
released under the MIT licence, and is currently used in a number
of projects (see ”Links”). On this page you will find binaries,
sources, documentation and projects related to MiniSat,
including the Pseudo-boolean solver MiniSat+ and the CNF
minimizer/preprocessor SatELite.
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How to use MiniSat

Input format

MiniSat, like most SAT solvers, accepts its input in a simplified ”DIMACS
CNF” format, which is a simple text format. Every line beginning “c” is a
comment. The first non-comment line must be of the form:

p cnf NUMBER OF VARIABLES NUMBER OF CLAUSES

Each of the non-comment lines afterwards defines a clause. Each of these lines
is a space-separated list of variables; a positive value means that corresponding
variable (so 4 means x4), and a negative value means the negation of that
variable (so -5 means -x5). Each line must end in a space and the number 0.

c Here is a comment

p cnf 5 3

1 -5 4 0

-1 5 3 4 0

-3 -4 0

is the representation of the CNF

{{x1,¬x5, x4}, {¬x1, x5, x3, x4}, {¬x3,¬x4}}
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Invoking MiniSat

MiniSAT’s usage is:

minisat [options] [INPUT-FILE [RESULT-OUTPUT-FILE]]
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MiniSat output format

When run, miniSAT sends to standard error a number of different
statistics about its execution. It will output to standard output either
”SATISFIABLE” or ”UNSATISFIABLE” (without the quote marks),
depending on whether or not the expression is satisfiable or not.

If you give it a RESULT-OUTPUT-FILE, MiniSat will write text to the file.
The first line will be ”SAT” (if it is satisfiable) or ”UNSAT” (if it is not). If
it is SAT, the second line will be set of assignments to the boolean
variables that satisfies the expression. (There may be many others; it
simply has to produce one assignment).

for example the output file of the previous example is

SAT

1 2 -3 4 5 0

This means that it is satisfiable, with the model I with
I(x1) = true, I(x2) = true, I(x3) = false, I(x4) = true and I(x5) = true.
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